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Abstract 

 

In this paper we introduce a new class of sequence space namely the semi 

orlicz space of  
 

analytic. It is shown that the intersection of all semi orlicz space 

of  
 

of analytic is the semi orlicz space of  
 

of analytic. 
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1   Introduction  
 

 A complex sequence, whose k
th

 term is xk is denoted by {  } or simply  x. 

Let w be the set of all sequences x = (  ) and  be the set of all finite sequences. 

Let l, c, c0 be the sequence spaces of bounded, convergent and null sequences x = 

(  ) respectively. In respect of l, c, c0 we have  

         sup 

||x|| = k |  |, where x = (  )  c0  c  l. A sequence x = {  } is said to be 

analytic if supk |  |
1/k

 <. The vector space of all analytic sequences will be 

denoted by   . A sequence x is called entire sequence if limk|xk|
1/k

 = 0. The 

vector space of all entire sequences will be denoted by  . was discussed in  
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Kamthan [19]. Matrix transformation involving  were characterized by Sridhar 

[20] and Sirajiudeen [21]. Let  be the set of all those sequences x = (  ) such that  

(k!|   |)
1/k

   0 as k  . Then  is a metric space with the metric 

 

  d(x,y) = supk     (k!|    –   |)
1/k

 : k = 1,2,3,...  

 

Orlicz [4] used the idea of Orlicz function to construct the space (L
M

). Linden- 

strauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and 

they proved that every Orlicz sequence space lM contains a subspace isomorphic 

to lp (1 <  p < ). Subsequently, the different classes of sequence spaces defined 

by Parashar and Choudhary [6], Mursaleen et at. [7], Bektas and Altin[8], 

Tripathy et al. [9], Rao and subramanian [10] and many others. The Orlicz 

sequence spaces are the special cases of Orlicz spaces studied in Ref [11]. 

 

Recall ([4], [11]) an Orlicz function is a function M : [0,)  [0,) which 

is continuous, non – decreasing and convex with M(0) = 0, M (x) >0, for x > 0,  

and M (x)  as x  . If the convexity of Orlicz function  M is replaced by M 

(x + y) < M (x) + M (y)  then this function is called modulus function, introduced 

by Nakano [18] and further discussed by Ruckle [12] and Maddox [13] and many 

others. 

 

An Orlicz function M is said to satisfy    -condition for all values of u, if 

there exists a constant K > 0, such that M(2u)  <  KM (u) (u > 0). The   - 

condition is equivalent to M(lu) < KM (u) (u > 0). The                – condition is 

equivalent to M(lu) <  KlM (u), for all values of u and for l > 1. Lindenstrauss and 

Tzafriri [5] used the idea of Orlicz function to construct Orlicz sequence space  

lM   ={    ∑  (
|  |

 
) 

                  } 

           

The space lM with the norm 

                      

 ||x|| =    {    ∑  (
|  |

 
) 

     } 

                    

becomes a Banach space which is called an Orlicz sequence space. For M(t) =   , 

1 < p < , the space lM  coincide with the classical sequence space   . Given a 

sequence x = {xk} its n
th

 section is the sequence x
(n) 

= {x1, x2,..... xn, 0.0,......}  
(n)

 = 

( 0, 0,....., 1, 0, ....), 1 in the n
th

 place and zero’s elsewhere; and s
(n)

 =  ( 0, 0,....., 1, 

-1, 0, ....), 1 in the n
th

 place, -1 in the (n+1)
th

 place and zero’s elsewhere. An FK – 

space (Frechet coordinate space) is a Frechet space which is made up of numerical 

sequences and has the property that the coordinate functional pk (x) = xk  (k = 

1,2,3,....) are continuous. We recall the following definitions [see [15]] 

 

An FK space is a locally convex Frechet space which is made up of 

sequences and has the property that coordinate projections are continuous. An  
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metric space (X,d) is said to have AK ( or sectional convergence) if and only if d 

(x
(n)

, x) 0 as n  .[see [15]] The space is said to have AD (or) be an AD  

space if  is dense in X. We note that AK implies AD by [14]. 

 

If X is a sequence space, we define  

(i) X’ = the continuous dual of X. 

(ii)    = {a = (ak) : ∑ |  |   
 
   , for each x  X}; 

(iii)   = {a = (ak) :∑     
 
      is convergent, for each x  X}; 

                          
(iv)    = {a = (ak) : |∑     

 
   | 

   
  , for each x  X }; 

 

(v) Let X be an FK – space  . Then X 
f
 = { f (

(n)
 : f  X’} 

 

X

, X


, X


 are called the    

( or K ̈ the – T  ̈eplitz) dual of X,  - ( or 

generalized K ̈ the –            T ̈eplitiz) dual of X,  - dual of X. Note that X

  X 


 

 X 

. If X  Y then Y


  X


, for  = , ,  or . 

 

1.1 Lemma 

(Sec (15, Theorem 7.27)). Let X be an FK – space  . Then 

(i)       . (ii) If X has AK, X

 = X

f
. (iii) If X has AD. X


 = X


 

 

 

2 Definitions and Preliminaries  
 

 Let w denote the set of all complex   sequences   (  )
 

      
and M : [ 

0, )[ 0, ) 

            be an Orlicz function, or a modulus function. Let 

 
 
 = {           ( (

  |  |
 
 ⁄

  

 
 ⁄    

))                }  

                 
 = {           ( (

|  |
 
 ⁄

  

 
 ⁄    
))                }  

                
 = {         ( (

|  |
 
 ⁄

  

 
 ⁄    
))                }  

 

 The space 
 
 

   is a metric space with the metric  

   d (x,y) =   {          ( (
  |     |

 
 ⁄

  

 
 ⁄    

))   } 
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 The space   
  and   

 
 is a metric space with the metric  

  d (x,y) =   {         ( (
|     |

 
 ⁄

  

 
 ⁄    

))   } 

 

 In this chapter we define semi orlicz space of 

 of  analytic, and hence 

show that   
  is smallest semi Orlicz space of x of 

 
of analytic. 

 

 

 

3    Main Results  

 
3.1   Proposition  

 
 
    

    
Proof : It is easy. Therefore omit the proof. 

3.2   Proposition  

 
 
  has AK, where  M  is a modulus function  

Proof :  

Let x = { xk}  
 
  , then { (

  |  |
 
 ⁄

  

 
 ⁄    

)}   and hence 

supk≥n+1 { (
  |  |

 
 ⁄

  

 
 ⁄    

)}            Therefore             

 

d (   [ ])     {             ( (
  |  |

 
 ⁄

  

 
 ⁄    

))   }         

   [ ]           

 implying that 
 
  has AK. This completes the proof. 

 

3.3 Proposition  

 (
 
 )


  =   

 Proof : Step 1 : 
 
    

     by proposition 3.1 

  (  
 )

  
  (

 
 )


. But  (  

 )
  

=  . (see [22]) 

 

      (
 
 ) 

 

Step 2: Let y   (
 
 ). But f (x) = ∑     

 
     with x  

 
   We recall that 

s
k
 has(

 

  
) in the k

th
 place and zero’s elsewhere, with. 
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               x =     { (
  |  |

 
 ⁄

  

 
 ⁄    

)}  {      ( (
( )

 
 ⁄

  

 
 ⁄    
)      )} which 

converges 

   

 to zero.  Therefore s
k
  

 
 . Hence d (s

k
, 0) = 1 But |  |  ||f|| d (s

k
, 0) <   

 for all k. Thus (  ) is a bounded sequence and hence an analytic sequence, 

 In other word  y   . 

    (
 
 )


  =   

 From (1) and (2) we obtain (
 
 )


  =    This completes the proof.  

 
3.4  Lemma 

[15, theorem 8.6.1] Y  X  Y 
f
    X 

f
 where X is an AD – space and Y an 

FK – space. 

 

3.5  Proposition   

 

 Let Y be any FK – space  . Then Y   
 
  if and only if the sequence s

(k) 

is weakly analytic.  

 Proof : The following implications establish the result. 

 Y   
 
   Y 

f
  ( 

 
 ) 

f
, Since  

 
  has AD by Lemma 3.4 

 Y 
f
   , since ( 

 
 ) 

f
,=   

  for each f  Y, the topological dual of Y. 

  f ( ( )) is analytic  

    ( ) is weakly analytic. This completes the proof. 

 

 

4      Properties of Semi orlicz space of 
  

of analytic   

 
4.1   Definition  

                  An FK-Space X is called “Semi Orlicz space of  

 of  analytic” if its 

dual  (X) 
f  
  . In other    

              words X is semi Orlicz space of 

 of analytic if f (s

(k)
)   for all f  (X) 

for each fixed k.   

4.2 Example  

 
 
   is semi Orlicz space of 


 of analytic. Indeed, If  

 
 is the space of all 

Orlicz sequence of 

, then by Lemma 4.3 ( 

 
 )

 
 =   

4.3 Lemma 

  

 ( 
 
 )

 
 =   
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Proof ( 
 
 )

 
 =  by proposition 3.3 But ( 

 
 ) 

 
has AK by proposition 3.2 

Hence                    ( 
 
 )

 
 = ( 

 
 )

 
 Therefore ( 

 
 )

 
 =    . This completes 

the proof. We recall.  

4.4 Lemma  

(See 15 Theorem 4.3.7) Let z be a sequence. The (z

, P) is an AK space 

with P = (   : k = 0, 1, 2, ...) where    (x) = |∑     
 
   | 

   
,   ( )  |  |. 

For any k such that zk  0,    may be omitted. If z  ,    may be omitted. 

4.5 Proposition  

 Let z be a sequence.    is semi orlicz space of 

 of  analytic if and only if 

z is   

Proof : Step 1 :  Suppose that z

 is semi Orlicz space of 


 of analystic.    

has AK by Lemma 4.4 Therefore  z


 = (  )
 
 by theorem 7.2.7 of 

wilansky 

[15} So z
 

is semi Orlicz space of  
 

of analytic if and only if  z


   . 

But z  z
 
   Hence  z is     

Step2: Conversely suppose that z is    Then     { }  and 

     { }         because      But (  )
 
    . Hence 

(  )
 
  . Therefore z

 
is semi Orlicz space of 


 of analytic. This 

completes the proof. 

4.6 Proposition  

 Every semi Orlicz space of  
 

of analytic contained   
 

   

 Proof : Let X be any semi orlicz space of 
 

of analytic. Hence (X) 
f
  .  

 Therefore f (s
(k)

)   for all f  (X). So, {s
(k)

} is weakly analytic with 

respect to X.  

Hence X    
 
  by Proposition 3.5. But   

 
     

 . Hence  X     
 

  .This 

completes the proof.  

4.7 Proposition  

 The intersection of all semi Orlicz space of 

of analytic  

 {   : n = 1, 2,.....} is semi orlicz space of 

of analytic.  

 Proof : Let X =     
   . Then X is an FK space which contains . Also  

every f  (X) can be      

            written as f =    +   +..... +     where gk  (Xn) for some n and for 1 <   k 

< m. But f (s
k
) =   (s

k
)  +    (s

k
) +.......+    (s

k
). Since Xn (n = 1,2....) are semi 

orlicz space of 

 of analytic, if follows that               (s

k
)   for all i =1,2,....m. 

Therefore f (s
k
)   for all k and and for all f. Hence X is semi Orlicz space of 


 

of analytic. This completes the proof. 

4.8       Proposition 
           The intersection of all semi orlicz space  

    
of analytic   

   
  

          Proof:  Let I be the intersection of all semi Orclicz space of  
    

 of analytic. 

By Proposition 2.14 we  see that the intersection  
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 I    {z

 : z    } = { }  =    =    

 
    

  By proposition 2.16 it follows that I is semi Orlicz space of 
 

of 

analytic consequently 

      
   I (by Proposition 4.6) 

 From (3) and (4) we get I =     
 

. This completes the proof.  

4.9 Corollary 

 The smallest semi orlicz space of 

 of analytic is    

 . 
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