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Abstract 
 
In the present paper, we obtain the eigenvalues and eigenfunctions of the Frankl problem 

with a nonlocal parity condition of the third kind.we prove the minimalist, the completeness and 
Riesz basis of the eigenfunctions corresponding to the eigenvalues of the problem in the space 

).(2 +DL  
 
 
1. INTRODUCTION 
 
The primary Frankl problem was inquired in [1]. The problem with a nonlocal boundary 

condition of the second kind was stadid in [2]. In the present paper, we assume boundary 
canditions of the third kind that when y is limited to zero and also in ox =  x=o the function values 
are linearly dependent in the elliptic and Hyperbolic regions. In the proof of principal theorem we 
investigate the minimalist, the completeness and Riesz basis of a specified system of cosines. 

 
Definition 1. System Xx Nnn ⊂∈}{  is called complete in X  if .=]}[{ XxL Nnn ∈  

Definition 2. System Xx Nnn ⊂∈}{  is called minimal in X  if .,]}[{ NkxLx knnk ∈∀∉ ≠  
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Remark. If the system Nnnx ∈}{  is minimal in )(ILp , then it is also minimal in  

)(JLp      for IJ ⊃ ; and if it is complete in )(ILp , then it is also complete  
in )(JLp ; for .IJ ⊂  
 
 
 2. THE FRANKL PROBLEM WITH NONLOCAL CONDITION OF THE THIRD 

KIND 
 
The Frankl problem is to seek a solution for equation  

(1)0=)()( 2 uyxsgnuysgnu yyxx +++ μ  
 in 21 −−+ ∪∪ DDD  with the boundary conditions  
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The function )()()(),( 22
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 Theorem 1.The eigenvalues and eigenfunctions of problem (1)-(6) show by two series.In 
the first series, the eigenvalues 2= nknk μλ  are found from the equation  

 0=)(4 nknJ μ   
 such that 1,2,...=0,1,2,...,= kn and the )(zJα  are the Bessel functions [3, p. 12], and the 

eigenfunctions are provided by the regulations  

 )
2

(4cos)(=),( 4 θπμθ −nrJAru nknnknk  in +D  
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ψρμκψρ nJAu nknnknk 4cosh)(=),( 4  in 1−D  
ϕμκϕ nRJARu nknnknk 4cosh)(=),( 4  in 2−D   

 that we use of polar coordinate system  
 θθ sin=cos== 222 ryrxyxr +   

 for 
2

0 πθ ≤≤  and 10 ≤≤ r  in +D , 

of cartesian coordinate system  
 ψρψρρ sinh=cosh== 222 yxyx −   

 for 0<<ψ∞−  and 1<<0 ρ  in 1−D , and  
 ϕϕ cosh=sinh== 222 RyRxxyR −−   

 for ∞<<0 ϕ  and 1<<0 R  in 2−D . In the second series, the eigenvalues 2~=~
nknk μλ  are 

resulted from the equation  
 1,2,...=0,1,...=0=)~()4( knJ nkn μΔ+   

 and the eigenfunctions are determined by the relations  
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Theorem 2.The system of functions  
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 is complete and a Riesz basis in the space )
2

(0,2
πL  for ).

2
1,

4
1(−∈Δ  

for 
4
1< −

Δ  the system is not complete but is minimal, for 
4
3>Δ  is complete but is not 

minimal, and if 
4
1= −

Δ  is complete and minimal. 

Proof. The proof of this theorem we use the convergence function  
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 in )
2

(0,2
πL , Riesz basis the system ∞−Δ+ 0=)}4)((sin{ nn θπ for )

4
3,

4
1(−∈Δ  and [3].  

 
Thorem 3.The system eigenfunction  
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Proof. Using fobini theorem and Lebesgue’s integral for any 1,2,...=,kn  we have  
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 Insomuch system ∞
1=4 )}({ knkn rJr μ  in (0,1)2L  is orthogonal and complete, it is enough to 

prove;  
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 with the integration interval (0,1) ,  
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 This inequality is equivalent to  
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 Also system )}({ 4 rJr nkn μ  is orthognal and complete for 1,2,...=k  in (0,1)2L   
 of relation 
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 imply that  
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 According to theorem 2, we conclude that 0=),( θrf  in (0,1).2L  Similarly, if we consider the 

above calculations for sequence )}
2

)]([4(cos{ θπ
−Δ+n  for 1,2,...=n  we have;  
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 Because completeness  [4(n+)](2-)_n=0^, 0=),( θrf  in (0,1)2L  .The proof of the theorem is 
complete. 

Theorem 3. The system of eigenfunctions nku  and nku~  of the problem (1)-(6) is a Riesz 
basis in the space )(2 +DL  where,  

 12
)4(

1

0

12
4

1

0

2 ))~((=~))((= −
Δ+

− ∫∫ rdrrJArdrrJA nknnknknnk μμ   

 Proof.Theorem 3 results from Theorem 2 and the completeness and orthognality of the 
system ∞

1=4 )}({ knknnk rJrA μ  for 0n  and ∞
Δ+ 1=)4( )}~(~{ knknnk rJrA μ  for 1n  in (0,1).2L     
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