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Abstract

In this paper we use the vanishing of first cohomology group of a
Riemannian manifold (M,g) to find a sufficient condition for a closed
vector field ξ on M to be a concircular vector field.

Mathematics Subject Classification: 53C55

Keywords: concircular transformation, Concircular vector field, Coho-
mology

1. Introduction

Let (M, g) be an n - dimensional Riemannian manifold. A diffeomorphism
ϕ : M −→ M is said to be a concircular transformation if it maps circle
to a circle, and a smooth vector field ξ on (M, g) is said to be concircular
vector field if its flow consists of concircular transformation (cf. [1], [4]). con-
circular vector fields have been used in finding characterizations of different
Riemannian manifolds (cf.[3]) and are also important in the general theory
of relativity. Recall that circular vector fields are closed vector fields; and on
a Riemannian manifold (M, g) whose first cohomology group H1 (M, R) = 0,
the closed vector fields are in abundance. Since, concircular vector fields are
important in geometry as well as physical sciences, its an interesting question
to find sufficient conditions for a closed vector field ξ on a Riemannian man-
ifold to be a concircular vector fields. Recall that on Riemannian manifold
(M, g), a smooth vector field X is said to be an eigen vector of the Laplacian
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operator Δ (also called the rough Laplacian) if there exists a constant λ such
that ΔX = −λX , λ ≥ 0.

Note that the position vector field X =
∑ xi∂

∂xi
on the Euclidian space

(Rn, 〈 , 〉) satisfies ΔX = 0. Also if Z is a constant vector field on (Rn+1, 〈 , 〉) ,
then its tangential projection u on the unit sphere Sn satisfies

Δu = −u, where Z = u + ρN, ρ = 〈Z, N〉

N being the unit normal vector field to Sn in (Rn+1, 〈 , 〉) .
In this paper, we consider the question ” under what conditions a closed

vector field ξ on a Riemannian manifold (M, g) satisfying H1 (M, R) = 0 is
a concircular vector field?”. Note that in the examples discussed above the
vector fields X and u are closed vector fields on (Rn, 〈 , 〉) and the unit sphere
Sn respectively and that H1 (Rn, R) = 0 , H1 (Sn, R) = 0 holds.

We answer the above question by proving the following
Theorem: Let (M, g) be an n− dimensional compact Riemannian manifold

with H1 (M, R) = 0. If ξ is smooth closed vector field on M satisfying Δξ =
−λξ and (div ξ)2 ≥ nλ ‖ξ‖2 , then ξ is a concircular vector field .

2. Preliminaries

Let (M, g) be an n− dimensional Riemannian manifold. A smooth vector
field ξ on M is said to be a concircular vector field if

∇Xξ = fX , X ∈ X (M), (2.1)

where f is a smooth function, ∇ the Riemannian connection on M and X (M) is
the Lie algebra of smooth vector fields on M.Suppose that the first cohomology
group H1 (M, R) = 0 for the Riemannian manifold (M, g). Since each closed
1 - form η on M defines a cohomology class in the deRham cohomology group
H1

dR (M) which is isomorphic to H1 (M, R) = 0 , the closed smooth 1 - form
η must be exact. If ξ ∈ X (M) is dual to the smooth closed 1 - form η, that is
η (X) = g (X, ξ) , X ∈ X (M) , then the conditions that η is closed and exact
imply that η = dρ for some function ρ on (M, g) , that is ξ = ∇ρ, where ∇ρ is
the gradient of ρ on (M, g) . If we define an operator A : X (M) → X (M) , BY

g (A (X) , Y ) =
1

2
(£ξg) (X, Y ) , X, Y ∈ X (M)

then A is symmetric that is g (A (X) , Y ) = g (Y, A (X)) holds and using
Koszul’s formula we have

∇Xξ = AX, X ∈ X (M) , (2.2)
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where we have used dη, = 0 , that is the smooth 1 - form η is closed. The
curvature tensor field R of the Riemannian manifold (M, g) is given by

R (X, Y ) = ∇X∇Y Z− ∇Y ∇XZ −∇[X,Y ]Z,

X, Y, Z ∈ X (M) and the Ricci curvature Ric is given by

Ric (X, Y ) =
n∑

i=1

g (R (ei, X)Y, ei) , X, Y ∈ X (M) .

where {e1, e2, . . . , en} is a local orthonormal frame on M. The Ricci operator
Q is a symmetric operator defined by Q : X (M) → X (M)

Ric (X, Y ) = g (QX, Y ) , X, Y ∈ X (M) .

For a closed vector field ξ ∈ X (M) , using (2.2, ) , we get

R (X, Y ) ξ = (∇A) (X, Y ) − (∇A) (Y, X, ) (2.3)

where the covariant derivative (∇A) (X, Y ) is defined by

(∇A) (X, Y ) = ∇XAY − A (∇XY ) , X, Y ∈ X (M) ()

Using the equation (2.3) we get

Ric (X, ξ) =
n∑

i=1

g ((∇A) (ei, X) − (∇A) (X, ei) , ei), X ∈ X (M) . (2.4)

We define a smooth function α on M by

α =
n∑

i=1

g (Aei, ei) ,

then using symmetry of the operator A in the equation (2.4) , we get

Ric (X, ξ) =
n∑

i=1

g (X, (∇A) (ei, ei)) − X (α) , X ∈ X (M) . (2.5)

The rough Laplacian operator Δ on a Riemannian manifold (M, g) is a
self adjoint operator Δ : X (M) → X (M) with respect to the inner product
( , ) : X (M) × X (M) → R

(X, Y ) =

∫
M

g (X, Y )

for compactly supported vector fields X, Y ; defined by
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ΔX =

(∑
i

∇ei∇eiX −∇∇ei
eiX

)
, X ∈ X (M) (2.6)

and that the operator Δ being elliptic has non - negative eigenvalues, a non -
negative number λ satisfying

ΔX = −λX

is called eigenvalue of Δ corresponding to eigen vector X.

3. Proof of the Theorem

Let (M, g) be an n - dimensional compact Riemannian manifold with first
singular homology group H1 (M, R) = 0. Let ξ ∈ X (M) be a closed vector
field on M that satisfies

Δξ = −λξ (3.1)
and (div ξ)2 ≥ nλ ‖ξ‖2 (3.2)

as required by the theorem, where λ is a constant.

If {e1, e2, . . . , en} is a local orthonormal frame on M and α =
n∑

i=1

g (Aei, ei) ,

then equation (2.2) gives

divξ = α (3.3)

We have

div(αξ) = ξ (α) + α2

which by Stoke’s theorem gives

∫
M

ξ (α) = −∫
M

α2 (3.4)

Now using the equation (2.5) , we get

Q (ξ) =
n∑

i=1

∇ (A) (ei, ei) −∇α (3.5)

Also, using the definition (2.6) , and the equation (2.2) we get

Δ (ξ) =
n∑

i=1

∇ (A) (ei, ei) (3.6)

Thus using the equations (3.1) , (3.5) and (3.8) , we conclude
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Q (ξ) = −λξ −∇α

and taking the inner product with ξ in the above equation, we get

Ric (ξ.ξ) = −λ ‖ξ‖2 − ξ (α) (3.7)

Note that the smooth 1- form η dual to ξ is closed and as the singular coho-
mology H1 (M, R) is isomorphic to the deRham cohomology group H1

dR (M) ,
we have H1

dR (M) = 0 and consequently λ is exact, that is there exists a smooth
function ρ : M → R such that η = dρ. Hence, we get ξ = ∇ρ. We know by
(2.2)

AX = ∇Xξ = ∇X∇ρ, X ∈ X (M) ,

that is A is the Hessian operator of the smooth function ρ. Then by Bochner
formula gives

∫
M

(Ric (∇ρ,∇ρ) + ‖A‖2 − (Δρ)2) = 0 (3.8)

Note that Δρ = div (∇ρ) = div ξ = α, where we used equation (3.3) . Thus
the equations (3.7, ) , (3.8) and ∇ρ = ξ give

∫
M

(λ ‖ξ‖2 + ξ (α) + α2 − ‖A‖2) = 0 ,

which together with the equation (3.4) gives

∫
M

(‖A‖2 − λ ‖ξ‖2) = 0 .

The above equation could be re -arranged as

∫
M

(‖A‖2 − 1

n
α2) +

1

n

(
α2 − nλ ‖ξ‖2) = 0 (3.9)

Not that the Shwarz’s inequality for the symmetric operator A states that

‖A‖2 ≥ 1

n
(trA)2 =

1

n
α2 and the equality holds if and only if A =

α

n
I. More-

over, the inequality (3.2) gives

α2 = (div ξ)2 ≥ nλ ‖ξ‖2

consequently, both terms in (3.9) are non - negative and we have
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‖A‖2 =
1

n
α2 and α2 = nλ ‖ξ‖2 (3.10)

The equation is the equality in the Shwarz’s inequality and hence we have

A =
α

n
I.Hence equation (2.2) becomes

∇Xξ = fX , X ∈ X (M) ,

where f =
α

n
is a smooth function on M. This proves that ξ is a concircular

vector field.
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