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Abstract

The problem of state linearization of multi-input nonlinear differential algebraic
control systems via coordinate transformations is addressed by defining an algorithm
allowing to compute explicitly the linearizing state coordinate for index one nonlinear
differential algebraic control systems. The algorithm is performed using a maximum
of n —1 steps (n the dimension of the system).

1. INTRODUCTION

The problem of transforming a nonlinear differential algebraic control
system (NDACS)

X = x,z)+g&x.z2)u, +--+g, (x.2)u,
5 fx.z)+g,(x.2)u g,(x.2) (1
0= o(,2)
into the linear system
o=Awo +Bu, +---+B,u,
: (1.2)
0 =0(m,z)

by a change of coordinates transformation of the form

o=¢x.,z), (x,z)eM (1.3)
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Where M = {(x,z) (x,z)cR"xR",0(x,z) =0, rank(Mj = m}, is called

oz

state linearization problem to the system (1.1). The linearization problem of nonlinear
differential algebraic control system is an important one and has been studied
sparsely. some investigations have been carried out by McClamroch et al. with
constrained mechanical systems [1,2] and also by Kaprielian et al. with an AC/DC
power system model [3,4]. Their approaches consist of using transformations to
obtain a state realization (state space representation) of the nonlinear descriptor
system and then apply differential geometry for linearization. For single-input
nonlinear differential algebraic control systems Z. Jaindong and C. Zhaolin et al.[5]

]Vl
have defined F(x.,z) = (60‘)_1 oo | where (I, is an nxn identity matrix) and
oz ) ox

deal with the index one NDAE locally as the following nonlinear control,
(x J = F(x,z)f (x,z)+F(x,z)g(x,z)uto study the exact feedback linearization
4

for this class of NDAS. On the other hand, C. Chen et al. [6] used the ideas of
differential geometric control theory to define M derivative and M bracket in order to
investigate the necessary and sufficient geometric conditions for exact feedback
linearization of index one single-input nonlinear differential algebraic control
systems. The problem of state linearization is solvable if and only if

(S') dim span {g(x.z).Mad, g (x.z).....Mad; g (x .2)} = n:
(S"2) [Mad;]g(x,z),Mad;g(x,Z)JM =0, 0<g<r<n.

Although, the conditions (S'1) and (S'2) provide a way of testing whether a given
system is state linearizable but they offer little on how to find the linearizing change
of coordinates ¢ (x,z) except by solving a systems of partial differential equations
(PDEs) which is, in general, not straightforward. For the problem of feedback
linearization of single-input nonlinear differential algebraic control systems, Ayad and
Nada [7,8] provide a complete solution by defining an algorithm that allows to
compute explicitly the linearizing state coordinates and feedback for index one
nonlinear differential algebraic control systems. Each algorithm is performed using a
maximum of n — 1 steps (n being the dimension of the system). The objective of
this paper is to provide an algorithm giving linearizing coordinates for index one
multi-input nonlinear differential algebraic control systems without solving the partial
differential equations. The algorithm based on Frobenius Theorem.

2. Notations and Preliminaries

Consider the index one multi-input nonlinear differential algebraic control systems
NDACS (1.1)
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> {x =f(x.z)+g(x.2)u ++ g, (x.2)u,
0 =o(x,z)

where x = (x,,....x,) €R".z =(z,,....z,) e R" and u = (u,....u,) €R".

Also f(x,z) : R"xR” 5> R", g(x,z): R"xR” > R" and

o(x,z):R"xR” > R are smooth vector fields. and assume that its linear system

|\w=Ao +Bu=Aw + By, +---+B,u,
' {O =o(@,z)

is controllable, that is, there exist positive integers r, >1,...,7, =1 with
1, + -+ +r, = n such that

dimspan{AkBi,OSk <r,-11<i Sm} = n.
Define the coordinates x, = ((x}{ Y e (xp) )T on R” = R"x---x R"™ , where for

any 1<i <r weset x| = (x},,...,X},) and we put

X, = (XLI,...,X}(,,Xil,...,Xi,,...,xﬁ,...,xﬁ.)T.
Let the system X be denoted in the coordinates x, by X,
s {Xk = [(X2) + g X 2)uy + - + gy, (X4.2)u,,
0 = o(x,z)
and for any 1<i <m the ith subsystem X, by
5 - {x = £(502) + g (5e2)u, + o+ gy, (5.2,
0 = o(x.2)
Forany 1<i <m and any 1<k <r we define 4 in the following way: for any
x =(x,,...,x,) wehave
Afx =(0,...,0,x, ,,....x,,0)

that is, 4 is the matrix 4, with the entries in the first & rows being zeros.

Definition 2.1: [9]

The minimum number of times that all or part of the constraint equation must be
differentiated with respect to time in order to solve for Z as a continuous function of
x and z is the index of the nonlinear differential algebraic system (1.1).

Definition 2.2: [6]
Let / :R"xR" -5 R" be a smooth vector field and w : R" xR" — R a smooth
function. The M derivative of w along f is a function R" xR" — R, written M, w

-1
and definedas M, w = E(w)f , where E(w):aﬂ—%(a—o-j a—O-.Ifw is

ox 0z \ oz ox
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differential k£ times along f , the function M /f w can be defined as
M]f‘w =M, (Mf’.‘_lw)with M;w = w.

Definition 2.3: [6]

Given two smooth vector fields /" (x,z) and g(x,z), both are defined on R" then
the M bracket is defined as follows:

Madf(x,z)g(xaz) = [f(x,z),g(x,z)]M = E(g)f _E(.f)g .
Repeated M brackets are denoted as
Madfk(x’z)g (x,z) = Mad, (Madfk_lg), Madfl(x’z)g(x,z) = Mad, g and

Mad , g(x.z)=g.Also, [f(x,2),g(x.2)], =-[g(x.2).f (x.2)], and
[f(x,z),g(x,z)]Mw(x,Z)=MfMgw -M Mw .

Theorem 2.4: (Frobenius) [6]

Consider the partial differential equation of function w (x,z) with constraint
condition 0 = o(x,z)

Ew )[vl(x Z)V,(x,z) o vi(x,z )] =0
in which
E(w)zﬂ_m(a_ﬂ el
ox 0z \ 0Oz ox
where (x,z)eR"xR" v, (x,z)(i =1,2,...,k <n)are linearly independent vector
fields. If vector field set
D={ (x,z) vy(x,z) ... vy(x,2)}

is involutive at (x,z) = (x°,z°), then there exist certainly (# —k) functions

w'(x,z),w?(x,z),....w"¥(x,z) which satisfy given partial differential equation
groups and the vectors

[El(wj)Ez(w’) En(w’)] (J =12,....(n—k),E, =0/0x" =%/ 1, 0/0z",i =1,2,...

are linearly independent at (x °, z°).

Theorem 2.5: [7]

Let v be a smooth vector field on R", for any integer 1<k <n such that
0, (0,000 and o, (x,z)=1/v,(x,z). The diffeomorphism & =¢@(x,z), where
@: M —R" defined by

© (_] sxs . .
goj(x,z):xj+z(;—"‘kai(a)kuj)(x,z), £k
s=1 .

oy (2.5.1)
p..2) = X LT ) x.2)
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Satisfies ¢"(v) = 8, . Moreover, the diffeomorphism (),
where i : R" — M defined by

V& =¢ +i%{i(—1>'C;"a;kM5-'-‘<u, )(g,z)j

e (2.5.2)

v, (&) = Z%{Z(—l)’ci"aw;"*(w )&,z >j

s=1 + \i=0
is the inverse of & = @(x,z).

i !

where 8, =0, 9. h=20 & n=2" isramdcr-—3

¢ 0g, ' o<, ' oS, i(s —i)!

3. MAIN RESULTS

Definition 3.1: The index one multi-input nonlinear differential algebraic control
systems X, is called (ST), —linear from if

g = B,,Mad] (g,,)=A4'B,,1<j<r-k,1<i<m.
It follows easily that X, is (ST), —linear if and only if each subsystem X
decomposes as follows
Xy, = b (Xg»2) if1<j<k
o X, = X0 + B (R 2) itk+1<j<r-1
X = B, X 2) + 1,

0 = o0(Xy.2)
A more compact representation of X, is obtained as
.0 ki S i r
s )%= A'x + K (Xy,2) +bu, x, eR
k * ~
0 = o0(Xy,-2)
where 4/x| = (0,...,0,X}, ,,, X}, 3»---»X},,0) is a vector whose last and first
components are zero. By extension, a compact notation for X, would be
o {Xk = Ax, + K (Xy.2) + Buy + -+ Bu,
k

0 = 60Xy 2)

(A5 @iy )

— . "~ T
and F, (Ry1.2) = (Bl R- ) oo (B Ry 2))' )

where x, € R” and 4*x,

Theorem 3.2: Consider the index one multi-input NDACS
s {Xr = f(x,z)+g,x.2)u, +-+g. (X.,z)u,

e

0 = o(x,,z)
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that is state linearizable, i.e., such that (S'1)and (S'2)hold. There exists a sequence of
explicit coordinates changes ¢ (x,,z),9 (X, .2 ),....¢(X,,z) giving rise to a
sequence of state (ST), -linear systems X _,,...,%, such that

=0, (%), 2<k<r.

The (ST), -linear system X, can be transformed into a (ST), ,-linear system X, , if
and only if

az.fl‘c(ikkﬂﬁz) — 0

(a) Lk Thksl 1<i,j<m
ox,, . 0x!
kk+1 kk+1 (32)
(b){a,i,%}zo 1<i,j<m
aXkk+l aXkk+l

Moreover, in the coordinates @ = ¢,(x,,z) the system X _ takes the linear form
o=Ao+Bu, +--+B,u,
10 = o(m,2)

T
1 1 2 2 m m
where @ = (wl,...,wr,wl,...,wr,...,wl RN )

The proof of the above theorem follows from the algorithm below.

Algorithm 3.3:
Step r. Consider a state linearizable system 2 denoted in the coordinates x = x, by

> x.r = fr(Xr’Z)+gr1(Xr’Z)ul +.“+grm(Xr9Z)um
"0 = o(x,.2) '
Because X, is state linearizable, and hence the distribution A = {grl,..., grm}is

involutive, we apply Theorem 2.5 to construct a change of coordinates
X, =®,(X,,z) suchthat (p,)"g,, = B, forall 1<i <m . The change of coordinates

takes the system into X, = (¢,)"2,
. Xr—l = r—l(Xr—l’Z) + gr—ll(Xr—I’Z)ul +oeet gr—lm (Xr—lﬂz)um
0 = o(x,.2)
where f_(X,,,z) = (@) f(x,,z) and g, (X, ,,z)=(9,)' g,
Step k. Assume that X (or X ) has been transformed, via explicit coordinates
changes, into (S7 ), —linear system
x, = fL(x.2)+g,xX,2)u, +-+ g, X.2)u,
PN
0 = O-(XkaZ)
with f, (x,,z) = 4'x, + F(X,,,.2) and g,,(x,,z) =B, for all 1<i <m . Since X
(hence X,) is state linearizable , then condition (S'2) is satisfied, implying in
particular,
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| Mad. (g,;)-Mad (g,,) ]| = 0. 5.t =20, 1<i,j <m. (3.3)
Setting s =r—k and ¢t = r—k —1 implies

[[f,.4"*7'B,1.A "B |=0, 1<i.j<m.
This latter condition is equivalent to
asz(iksz) _
0%y 0%y
The vector field E (x,,,,,z) decomposes uniquely as

~ 1 - i~ - ~
F () =FK (X2 + X0 80 (Xpr 2) + 0+ X & Xk 2)s

(SL,.,) = 0, 1<ij<m.

where
Fk (Xy4.2) = Fk(xid,...,X}(k,xil,...,xik,...,X]'fl,...,xl'fk,z)
2 (X s2) = Zi(Xipsenos Xhps Xppoees Xppoees Xoiperes X1isZ)
We deduce from (S1) that the distribution
Ek = {gkl(iklwz)’gkz(;(kk?Z)a'"9§km(§(kk9z)}
is commutative and of maximal rank m . By Theorem 2.5 we can construct a change

of coordinates X, , = ¢, (x,,z) suchthat (¢,) g,; =0, = A"B ,1<i<m.

This change of coordinates transforms X, into
xe = fa s 2) + gen K 2)uy o+ g, (X 2)u,
DI B
0 = o(x2)
where gaiXz)=(9) g =B, and
f (X ,2) = (@) 1,
=(@) (Aka)“‘((”k)* (B X 2D+ (@) (X &)+ (@) (X051 &11)
= Aka—l +E (X)) + XL—1k+1Ar_kB1 teeet Xln<1—1k+1Ar_k B,

Because the first k components of 4“x, are zero. We also have

(2 K n€i) = K o8 (@) &y = X 477 B,
It is straightforward to verify that

A" X +Z X{(-lk+1 A r_kBi =4 k_lxk—l
i=l
and hence the system X, | is in (ST), , —linear form. This ends the general step and
shows that a sequence of explicit coordinates changes @, (x,,z),...,¢,(x,,z) can be
constructed whose composition @, o---o@, (x,,z ) takes the original system X into a

linear form.

Example: Consider the index one multi-input nonlinear differential algebraic control
system (NDACS)
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s . Xy = 5(%5.2) + €5(X3.2)uy + €5(X5.2)u,

.
0 =o(x,.2)

. . a 5

Defined in the coordinates X, = (X;)....,X;5) € R’ by

X5 = Z +U,

. 3 2

Xy = Xay = X3Xyy = X3 + X3y Xg5 = 2X55 =2 X5,

. 2 2
Xy = Z Xay + X3 X35 +3X3,X55 — X35+

Xy, = X

X35 =U,

0 =x45-2z
where

-1

oo
52) -
oo

— =(01000
7 )

-1
Jdo a_o'z(()_1()()())
0z 0X

T
_ _ 3 ny2 2, 2
f,(x5.2) = (Z s X3 = Xy Xgy = Xy X5y X355 = 2 X35, 2 Xy + X, X5 +3X5, X X35’X3590)

g,,(x5,2) = (0,0,1,0,0)" and g,,(x,,z) = (1,2x,,,0,0,1)’

Put v' = g,, and v’ = g,,. we look for a change of coordinates x, = @,(x;,z) that
rectifies the distribution A, = span{vl,vz}, i.e., such that (¢),A = span {OXSZ,OXSS}.
Apply Theorem 2.5 to v* = g,,(x;,z) with n =5 and o, =1. Since M*;'v} =0
and Mj{lvzz =0 for all s >1. It follows easily that the change of coordinates is
defined by

o (=D’ X35 1 oa 2
Xy = X5 +ZTM05V2 (o) (x5,2)
s=1 .

2
= X3 — X35V, (X3,2) = Xy — Xy
o0 s S
(=1)" X35 ;s 2
X,y = Xi, +ZITM;SV2 (04v3)(X5,2)
- !

A
X, = @5(X5,2) = 2
= X3, —X35V5 (X3,2) = X5, +2X55X5,
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System X, is brought under this change of coordinates into

21X, =5(X,,2) + €5(X,,2)uy + g0,(X,,2 ),
f,(x,,z) = (z VX3 = Xy Xy = XogsZ Xy X, X5 +3X5,Xos ,X25,0)T
2,,(x,,2) = (0,0,1,0,0)" and g,,(x,,2) = (0,0,0,0,1)’

. A A . .
For k =2 with x,; = x},,X3, = X, are satisfied and equivalent to

_oh
OX 130X o3
P
(L= =22 =0
Ox 550X 5
62f2 _0o
OX ;0% 55

Thus the vector field f, decomposes uniquely as

245

£,(%,.2) = (27X, X, = X307 %5,.0,0) +%,, (0,1,0,0,0) +x,(0.0,x,, +3x2,.1,0)

Now we look for a change of coordinates X, = ¢,(x,,z ) that rectifies the distribution
A, =span{g, (x,.2 ), g (X,,2)} = span{ﬁl,ﬁz}. Apply  Theorem 2.5 to
0’2 g,,(X,,2) with n=>5 and o, =1. We get
M, L (0,00)(5,.2) = 6%y M L (0,09)(%,.2) = 6, M (6,03)(x,.2) = 0 for all

s >4 . We deduce the change of coordinates as follows

_ - (_1)S XSZ4 MS—I —2
X = Xy +z e (oW )(X,,2)
s=1 .

- (=D’ X5 -1 )
X3 = Xp3 +z—'24M;,;2 (o) (X,,2)
s=1 .

A
X; = @,(X,,2) = s

P 3
= Xo3 = XuUs +%(6X24)_%(6)

_ 3
= X3 — XXy —2X),

The change of coordinates transforms X, into
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X, =z
Xpp = X3
S % =Ax, +Bu +Bu, 2]
Xy = X5
Xi5 =,
0 = x;+X;X) +X134 -z

A linearizing coordinates is obtained by taking a composition of the different
coordinates X, = ¢, o ,(X;,2)

Xy = X3~ X35

Xy = Xy +2X55X5,

A 2

X; =0y 005(X5,2 ) = (X3 = Xg3 — XXy + X3y X5 +X5, o
Xy = Xy
X5 = Xss
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