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Abstract 

 
In order to better study the Markov chain of track structure typical bilateral 

birth-death process, nature has regular chain of in-depth study, this paper mainly 
discusses some probabilistic properties of normal chain. 
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1 Introduction 
For the Markov chain of stochastic process model, bilateral birth-death 

process is one of typical Markov chain. However, how to find out all solutions of 
bilateral birth-death process attracts the interesting of many experts, and it needs a 
lot of work. Academician Wang Zikun et. al proposed the method of combing the 
function structure and probability methods, and this method is considered to be 
more reasonable and attracted a lot of attention[1]-[3]. Therefore, it is necessary to  
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study the probabilistic properties of normal chain corresponding to Q matrix. This 
paper will discuss probabilistic properties of normal chain. 

 

2 Preliminary notes 
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,i j E∀ ∈ , t >0, 
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By the definition of minimal transfer function, 
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t t
P X E t P X Eδ∈ > = ∈  that is almost certainly getting 

tδ >  from X E∈ . Then, that is almost certainly getting 
t

X = Δ  from 

tδ ≤ . Therefore X ≡ Δ  is almost in [ , )δ ∞ . 

 

3. Probabilistic properties of normal chain 

Property 1 { } { }, , .i ii i m
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Prove: Assume 
0
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Note 1: property 1 and 2 describe the probability of , 0,1, 2,
i

z i = L. 

Property3 Assume R < ∞ , let { }1 i
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y E e λσ− Δ= − , so that lim 0
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The process of proving can be seen in reference [4]. 
Property 4  Assume R < ∞ , so that  
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Prove: Based on Property 3, get  
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{ }iE σ
Δ

=
⎧
⎨
⎩

( ) ( )

( ) ( )

1

1

1

1

i

k k i k

k i k

i
i k

k k i k

k i k

z z z z

z z
z z z z

z z

μ μ

μ μ

∞ −

= =

∞ −

= =

− + −

− + − ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
 

We can get the following property from property 3 and 4. 

Property 5  If R = ∞ , { } 1iP σ = ∞ = . 
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Property 6  For { }, 1kk E P σ∀ ∈ = ∞ =  or { } 1kP σ < ∞ = , and these 

two kinds of probabilities are reflected by , &R R= ∞ < ∞ . 

Note 2: Property 5 and 6 describe the probability of canonical measure. 
 

4 Conclusion 
Bilateral birth-death process is one of important Markov chain. It is widely 

used in the actual models of chemistry, physics, medicine, etc. And bilateral 
birth-death process has important theoretical significance. Thereby, to provide 
theoretical basis for finding out all solutions of the irregular matrix Q based on the 
research on probability property of normal chain corresponding to bilateral 
birth-death matrix Q of set E. 
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