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Abstract

In this note we investigate Property T for crossed product C∗-algebra
C(X)�σ Z. Let µ be a Borel measure on X. We show that every Hilbert
bimodule induced from µ has almost central vectors. We derive several
important corollaries.
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1 Introduction

Property T was first introduced by Kazhdan [6] to study the lattice structure of
groups. Bekka extended the notion of Property T to C∗-algebras [1] following
the approach of Connes [3]. He showed that a discrete group G has Property
T if and only if its group C∗-algebra C∗(G) has Property T. It has been since
studied by several authors in [2, 4, 5, 7]. In particular, Brown showed that a
nuclear C∗-algebra with a faithful tracial state must be finite dimensional [2].
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The goal of this note is to investigate Property T for crossed product C∗-
algebra C(X) �σ Z. The class of C∗-algebras C(X) �σ Z include many impor-
tant examples including the rotation algebras and Bunce-Deddens algebras.
Note that C(X)�σ Z is a nuclear C∗-algebra and has a tracial state. However,
the tracial state on C(X) �σ Z is not necessarily faithful so we can not use
Brown’s theorem [2]. Our main result is Theorem 2.3, where we show that a
certain class of Hilbert bimodules corresponding to Borel measures on X always
have almost central unit vectors. As a corollary, we show that C(X)�σ Z does
not have Property T. In addition, we obtain that the pair (C(X) �σ Z, C(X))
does not have Property T.

2 Background and Results

Let X be a compact Hausdorff space and α a homeomorphism of X. We can
define the action of Z on X by x · n = αn(x) for all x ∈ X and n ∈ Z. The
pair (X, Z) is called a dynamical system. We can further define the action
of Z on C(X) by (fn)(x) = f(x · n) for all f ∈ C(X), x ∈ X and n ∈ Z.
We denote by C(X) �σ Z the C∗-algebra associated to the dynamical system
(X, Z). Recall that C(X) �σ Z is the closure of the linear span of the set
{fVn}, where f ∈ C(X) and Vn is the unitary representing n ∈ Z.

Definition 2.1. A Hilbert bimodule over a C∗-algebra A is a Hilbert space
H carrying a pair of commuting representations, one of A and one of its op-
posite algebra Ao. We denote the action by

ξ �→ aξb

for all ξ ∈ H, a ∈ A and b ∈ Ao.

Let μ be a finite Borel measure on X and form the Hilbert space Hμ =
L2(X ×Z, μ×λ), where λ is the counting measure on Z. Define the left action
of C(X) �σ Z on Hμ ⊗Hμ by

((fVn)ξ)((x, i), (y, j)) = f(y · j)ξ((x, i), (y, j + n)

and the right action by

(ξ(fVn))((x, i), (y, j)) = f(x · (i − n))ξ((x, i − n), (y, j))

for all f ∈ C(X), ξ ∈ Hμ ⊗Hμ, x, y ∈ X and n, i, j ∈ Z. We call Hμ ⊗Hμ the
Hilbert bimodule induced from the measure μ.

Definition 2.2. A C∗-algebra A has Property T if every bimodule with al-
most central vectors has a central vector; i.e. if H is a bimodule and there exist
unit vectors ξi ∈ H such that ‖ aξi − ξia ‖→ 0 for all a ∈ A, then there exists
a unit vector ξ ∈ H such that aξ = ξa for all a ∈ A.
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We are now ready to state our main result.

Theorem 2.3. Let (X, Z) be a dynamical system, where X is a compact
Hausdorff second countable space. Suppose that μ is a finite Borel measure on
X and Hμ ⊗ Hμ is the Hilbert bimodule induced from μ. Then Hμ ⊗ Hμ has
almost central unit vectors.

Proof. Let μ be a finite Borel measure on X. Since X is compact there exists
a point x0 ∈ X such that μ(W ) > 0 for all open sets W containing x0. It
follows from the hypothesis that X is a metrizable space with metric d. Let
B(x, r) denote the ball centered at x ∈ X with radius r > 0. For each n ≥ 1
define En =

⋂
1≤i≤n(B(x0 · i, 1/n)) · (−i) and Dn = {(i, i) ∈ Z×Z : 1 ≤ i ≤ n}.

Define a sequence of unit vectors in Hμ ⊗Hμ by

ξn((x, i), (y, j)) = [
1

n

1

μ(2)(E
(2)
n )

]1/2χEn×En(x, y)χDn(i, j).

Let f ∈ C(X) and ε > 0 be given. Since X is compact then f is uniformly
continuous on X. There exists N such that |f(x) − f(y)| < ε for all x, y ∈ X
with d(x, y) < 1/N . For each n ≥ 2N and 1 ≤ i ≤ n we have

d(x · i, y · i) < 1/N

for all (x, y) ∈ En ×En. It follows that |f(x · i)− f(y · i)| < ε for all 1 ≤ i ≤ n
and (x, y) ∈ En × En. Then we have

||(fVm)ξn − ξn(fVm)||2

=
1

n

1

μ(2)(E
(2)
n )

(
∑

−m≤j<0

∫
En×En

|f(y · j)|2

+
∑

0≤j≤n−m

∫
En×En

|f(x · j) − f(y · j)|2

+
∑

n−m<j≤n

∫
En×En

|f(x · j)|2)

<
2mM2

n
+

ε2(n − m)

n

for all n ≥ 2N , where M =supx|f(x)|. It follows ||(fVm)ξn−ξn(fVm)|| → 0 for
all f ∈ C(X) and m ∈ Z. Since the linear span of fVm is dense in C(X) �σ Z

then ||aξn − ξna|| → 0 for all a ∈ C(X) �σ Z. It follows that (ξn)n≥1 is a
sequence of almost central vectors in Hμ ⊗Hμ.

The above theorem has important implications about Property T for C(X)�σ

Z.
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Corollary 2.4. Let (X, Z) be a dynamical system, where X is a compact
Hausdorff second countable space. Then C(X)�σ Z does not have Property T.

Proof. Suppose for contradiction that C(X) �σ Z has Property T. Let x0 ∈ X
and define a measure μ0 on X by μ0(E) = χx0(E). Then the Hilbert bimodule
Hμ0 ⊗Hμ0 induced by μ0 is isomorphic to L2(Z × Z). By Theorem 2.3 there
exists a sequence of almost central unit vectors in L2(Z × Z). Then there is a
unit vector ξ such that aξ = ξa for all a ∈ C(X) �σ Z. In particular, we have
ξ(i, j+m) = ξ(i−m, j) for all i, j,m ∈ Z. It follows that ξ(i, j) = ξ(i+m, j+m)
for all i, j,m ∈ Z. Choose i0, j0 ∈ Z such that ξ(i0, j0) 
= 0. Then

||ξ||2 =
∑
i,j∈�

|ξ(i, j)|2 ≥
∑
m∈�

|ξ(i0 + m, j0 + m)|2 =
∑
m∈�

|ξ(i0, j0)|2 > ∞.

It follows that C(X) �σ Z does not have Property T.

Definition 2.5. Let A be a C∗-algebra and B a subalgebra of A. Then the
pair (A, B) has Property T if every A-bimodule with almost central vectors has
a B-central vector.

The next corollary follows directly from Theorem 2.3.

Corollary 2.6. Let (X, Z) be a dynamical system, where X is a compact
Hausdorff second countable space. If X is infinite then (C(X) �σ Z, C(X))
does not have Property T.
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