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Abstract 

 

This paper discusses the relationship of second homotopy module for two 

different presentations defining a similar group.  These two presentations can be 

transformed to each other using Tietze transformation.  This relationship was 

determined by considering the generators of second homotopy module for both 

presentations. 
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1  Introduction 
 

Let P � 〈�: �〉  be a presentation for a group G.  Then we  have  the first 

fundamental group ��(P) over P � 〈�: �〉. The elements of ��(P) are equivalent  
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classes of words 	
�.  Moreover, we can have a picture  ℙ over P.  A picture  

ℙ over P is an object consist of disjoint arcs labelled by element of x, discs 

labelled by element of r, and a boundary disc with a basepoint. 

 A picture ℙ over P is a spherical picture if all arcs in P do not touch the 

boundary disc.  Then we  have the second homotopy module �
 (P).  The 

elements of  �
(P) are equivalent classes of spherical picture [ℙ].  

 Let a group � defined by two group presentation, say P� and P
.  There 

are some alternations one can make to presentation P2 which result in presentation 

of a group isomorphic to the original P1 (see [1] and [5]).   These are called Tietze 

transformations.  Tietze transformation are simply the obvious ways of 

transforming a finite presentation 〈�: �〉.   

 Tietze transformation are useful in special cases for showing that two given 

presentations define isomorphic group, and, in particular, for simplifying a given 

presentation.  We describe this transformations as follows. 

 Let P� � 〈�: �〉 dan P
 � 〈�: �〉  be two presentations of the group � .  

Then there are the following Tietze transformations which may be performed upon 

the group presentations: 

(T1) If the word S is derivable from  ���, then add S to the list of relators.  

(T2) If the word S is derivable from ���\�, remove S from the list relators. 

(T3) If R is word in the x, and y is some symbol not in the generating set, add y to 

the generating set and add word  ���� to the relator set. 

(T4) If there is a relator of the form ���� ∈ ���, � ∈ ��� with y not appearing in 

R, delete this relator and delete y from the generating set, replacing all order 

occurences of y in the relator words with �. 

 The problem of �
(P) is to compute its  generator (see [4]).   Suppose that 

P  is set of spherical pictures over P.  If all spherical pictures ℙ are equivalent to 

the empty picture (relative to P) then we say that P generates �
(P).  In this paper 

we are going to determine the relationship between generators of �
(P1) and 

�
(P2) if P1 and P2 define the same group. 

We are going to prove: 

Theorem 1. Let P1 � 〈�: �〉  and P2 � 〈�: �, �〉 be a presentation define a 

group �, where � is a cyclically reduced word define and �~�1 (relative to �).  

If  �
(P1)	is generated by ��  then 	�
(P2)  is generated by �� ∪ �	ℙ ��, 

where ℙ  is spherical  picture  having a T-disc joining to a picture ℙ over  

P1.        

Theorem 2.  Let P1 � 〈�: �〉  and P2 � 〈�, �: �, � � �〉 be a presentation 

define a group �, where S a word on �.  Then �
(P1) has same generator with 

	�
	(P2). 

 Proof of  these theorem by using operations on picture and van Kampen’s 

Lemma and will be given on section 3. 
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2.  Picture and Operation on Picture 
 

 A picture  ℙ in P � 〈�: �〉 is an object consist of disjoint arcs labeled by 

element of x, discs labeled by element of r and a boundary disc with a basepoint 

(see [4] and [2]).  A picture ℙ in P � 〈�: �〉 is a spherical picture if all arcs in 

ℙ  do not touch the boundary disc.  Certain basic operation can be applied to a 

picture (spherical picture)  ℙ	as follows: deletion and insertion floating circle, 

deletion and insertion  floating semicircle, deletion and insertion folding pair  and 

bridge move (see [3]), as depicts below.  

 

 

 Two spherical pictures ℙ1 and ℙ2 are said to be equivalent if either: (a) 

both are spherical and one can be transformed to the other by a finite number of 

operation deletion and insertion floating circle, deletion and insertion folding pair 

and bridge move; or (b) both are not spherical and one can be transformed to the 

other by a finite number of operation deletion and insertion floating circle, 

deletion and insertion  semicircle,  deletion and insertion folding pair and 

bridge move. 

 The equivalent class containing the spherical picture ℙ is denoted by [ℙ].  

The equivalent class containing the empty picture (null) is denoted by [4].  The 

mirror image for the spherical picture ℙ is denoted by !ℙ.  The addition ℙ1 + 

ℙ2 is defined by drawing ℙ1 and ℙ2.   

 Set of equivalent classes of spherical picture with binary operation [ℙ1] + 

[ℙ2] = [ℙ1 + ℙ2] form a abelian group under this operation and this abelian group is 

right "�-module, where the action is given by [ℙ]
# � 	ℙ
� (
#  denotes the 

element of � represented by 
).  This module is called the second homotopy 

module  of  P, denoted by �
(P). 

 A set P of spherical pictures over P will be called a generating set of 

pictures if �	P�:P ∈ �� generates the "�-module �
(P) (see [6]) .  It follow [4], 

that P is generating set if and only if every spherical picture over P  can be 

transformed to empty picture by operations: bridge moves, insertion/deletion of 

floating circles, insertion/deletion of folding pairs, insertion/deletion of pictures 

from $�. 

  Consider a collection %  of spherical pictures.  Now, we define two 

extended operation on pictures as follows :   

1). (Deletion of an %-picture) If there is a simple closed path in a picture such that 
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   the part of the picture enclosed by the simple closed path is a copy of a 

spherical picture. 

2). (Insertion of an %-picture)  The opposite of 1). 

 Two pictures will be said to be equivalent (relative  %) if either: a).  the 

pictures are both spherical and one can be transformed to the other by a finite 

number of operation deletion and insertion floating circle, deletion and  insertion 

folding pair, bridge move, and deletion and insertion %-picture; or b).  the 

picture are not both spherical and one can be transformed to the other  by a finite 

number of operations deletion and insertion floating circle, deletion and insertion 

floating semicircle, deletion and insertion folding pair, bridge move and deletion 

and insertion %-picture (see [3]). 

 

 

3. Proof of Theorem 1.1 and Theorem 1.2 

Proof of Theorem 1.1 

Suppose that P� � 〈�: �〉 is generated by  �&.  Consider that: 

 P� � 〈�: �〉
				'�				
())* P
 � 〈�: �, �〉                 (*) 

is a one of  operation Tietze transformation.  From (*) we know that � is a 

relator which is add on P
 and �~�1.   Based on van Kampen Lemma, there 

is a picture  ℚ over P� where 
,ℚ- � �.  Then picture 

 

 

Figure 1.  Spherical picture 
,ℚ- � � 

 

is a spherical picture. 

 Since  ℚ has T-disc, then it could not be got ℚ  of picture in P�.   

Therefore, ℚ is one of generator of P
. From this, we have generator of P
 is 

generator of P1 and picture ℚ.  

 Let ℙ spherical picture in P
.   We consider two case, i. e. 1). ℙ has 

no �-disc, and 2). ℙ has �-disc.    

 If ℙ has no �-disc, then ℙ is picture  in P�.  So P� ~ 1 (relative 

P1).  If  ℙ  has �-disc,  
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Figure 2. Spherical Picture ℙ has �-disc and picture S has no �-disc. 

 

then we may put  the picture on Figure 1. on left side Figure 2.   We apply 

bridge move operation to delete  the inverses pair �-disc.  The operation is 

applied until there is no � -disc  in ℙ .  So we deduce that 	�
,P
-   is 

generated by � ∪ �	ℙ ��, where ℙ  is spherical  picture  having a �-disc 

joining to a picture ℙ  over  P�.∎  

 

Proof of Theorem 1.2 

 Suppose that P� � 〈�: �〉 is generated by P.  Consider that  

P� � 〈�: �〉 
				 /				
())* P
 � 〈�, �: �, � � �〉 

is one of Tietze transformation operations.  Recall that if P� � 〈�: �〉  with 

generator P is spherical picture with labeled �.  By using (T3)  operation is 

added a  new generator  in P�, say �,  where y is labeled by �,  so we have 

a new presentation,  that is  P
 � 〈�, �: �, � � �〉.   

 Suppose that Q is generator of  	�
,P
-, but it isn’t generator of 	�
,P�-.  

So Q must  have disc ����.  Since spherical picture arc  � is related to a disc 

which is inverses pair, so we can use bridge move operation.  We use this 

operation until there are no disc �.  Therefore, generator of  P
 is labeled by 

�, thus we have generator of 	�
,P
- is P.∎ 

 

Corrolari 1.  Let P� � 〈�: �, �〉 and P
 � 〈�: �〉 be a presentation define a 

group �, where � is a cyclically reduced word define and �~�1 (relative to �). 

Let 	�
,P�- is generated by P then	�
,P
- is generated by all disc are labeled 

by � changed with a picture in 〈�: �〉 is labeled �. 

 

 

Corrolari 2. Let 	P� � 〈�, �: �, � � �〉  and P
 � 〈�: �〉   be a presentation 

define a group �, where S a word on �. Let 	�
(P1) is generated by P then 

	�
,P
- is generated by same pictures in P with arc � changed by arc �.       
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