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    Abstract 

 
We have formulated and analyzed a prey-predator model in a two patch 
environment (patch 1 and patch 2). Each patch is supposed to be homogeneous. 
Patch 2 constitutes a reserved area of prey and no fishing is permitted in this zone 
whereas patch 1 is an open access fishery zone. The growth of prey in each patch 
is assumed to be logistic. The transmission function from zone 1 due to predation 
is considered as a modified function of general nature. Stability analyses along 
with the optimal harvest policy are also obtained. Numerical simulation has also 
been performed in support of analysis. For different values of predation parameter, 
the equilibrium level has been tabulated. It has been observed that the use of new 
transmission function lowers down the equilibrium level. 
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1. INTRODUCTION 
 
The optimal management of renewable resources such as fishery and forestry is 
very important as they are directly linked to sustainable development. The 
growing need for more food and energy has led to increase in the exploitation of 
several biological resources. On the other hand, there is a global concern to protect 
the ecosystem at large.  
 
 Over the past three decades, mathematics has made a considerable impact 
as a tool to model and understand biological phenomena. Braza [7] analyzed a two 
predator, one prey model in which one predator interferes significantly with other. 
The analysis centers on bifurcation diagrams for various levels of interference in 
which harvesting is the primary bifurcation parameter. Kar. et. al. [16], in their 
paper, offer some mathematical analysis of the dynamics of a two prey, one 
predator system in the presence of a time delay. Singh et.al. [3] proposed a 
generalized mathematical model to study the depletion of resources by two kinds 
of populations, one is weaker and others stronger. The dynamics of resources is 
governed by generalized logistic equation whereas the population of interacting 
species follows the logistic law. Dubey et.al. [2] proposed and analyzed a 
mathematical model to study the dynamics of one prey, two predators system with 
ratio dependent predators growth rate. 
 
 Dubey et.al. [1] analyzed a dynamic model for a single species fishery 
which depends partially on a logistically growing resource in a two patch 
environment. They showed that both the equilibrium density of the fish population 
as well as the maximum sustainability yield increases as the resource biomass 
density increases. Further, Kar et.al. [14] modified the model proposed by Dubey 
et.al. [1] in the presence of predator, which seems to be more realistic. They 
discussed the local and global stability. The optimal harvesting policy has been 
discussed using Pontryagin Maximal Principal. 
 
 Taha et.al. [10] studied the effect of time delay and harvesting on the 
dynamics of the predator prey model with a time delay in the growth rate of the 
prey equation. A model of non-selective harvesting in a prey-predator fishery is 
given by Kar et.al. [12].In their further work [13], they described the regulation of 
a prey-predator fishery by taxation as the control instrument. 
 
 Kar [15] proposed and analyzed a non-linear mathematical model to study 
the dynamics of a fishery resource system in an aquatic environment that consists 
of two zones: a free fishing zone and a reserve zone where fishing is strictly 
prohibited. Biological equilibria of the system are obtained and criteria for local 
stability and global stability of the system derived. An optimal harvesting policy is 
also discussed using Pontryagin Maximal Principal. 
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2. DISCRIPTION OF THE MODEL 
 
 We study a prey-predator system in a two patch environment: one 
accessible to both prey and predators (patch 1) and the other one being a refuge 
for the prey (patch 2). Each patch is supposed to be homogeneous. The prey 
refuge (patch 2) constitutes a reserve area of prey and no fishing is permitted in 
the reserve zone while the unreserved zone area is an open access fishery zone. 
We supposed that the prey migrate between the two patches randomly .The 
growth of prey in each patch in absence of predator is assumed to be logistic. The 
transmission function from unreserved zone due to predation is considered as a 
modified function of general nature. 
 
 Following Kar [15], the mathematical formulation of the model takes the 
form 
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Where a is a positive constants and other symbols have the same meaning as 
defined in [15]. 
 
 
 
3. EXISTENCE OF THE EQUILIBRIA 
 
Equilibria of model (2.1) can be obtained by equating right hand side to zero. This 
provides three equilibria ( ) ( ) ( )0 1 2 ˆ ˆ ˆ0,0,0 , , ,0 , , , .P P x y P x y z The equilibrium 0P is 
trivial. In equilibrium point 1P , we have 
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Equation (3.1) has unique positive solution x x= if the following inequalities 
hold: 
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And for  y  to be positive, we must have 
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Hence the equilibrium ( )1 , , 0P x y exists under the above conditions. 
Again ˆ ˆ,x y  and ẑ  are positive solutions of  
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From (3.4c) we get ˆ ,adx
m dα
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which is positive if .m dα >  

 
Substituting the value of x̂ in (3.4b), we get 
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2 1 ˆ 0.− − − =

s y s y x
L
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The above equation has atleast one positive solution ˆy y= . Substituting the value 
of x̂ , we get ẑ as 
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It may be noted that for ẑ to be positive, we must have 

 

( ) 2
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4. DYNAMICAL BEHAVIOUR OF EQUILIBRIA 
 
The dynamical behavior of equilibria can be studied by computing variational 
matrix corresponding to each equilibria. The variational matrix about ( )0 0,0,0P
will provide the characteristic equation as 
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The roots of equation ( )4.1 have positive real part if ( ) ( )1 2 .r s qEσ σ+ < + + So 

under this condition, ( )0 0,0,0P will be unstable. 

The characteristic equation about ( )1 , , 0P x y is 
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The root of equation ( )4.2 has negative real part if  
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So that ( )1 , , 0P x y is locally asymptotically stable. 
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The characteristic equation about ( )2 ˆ ˆ ˆx,y,zP is  
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Performing simple calculations it can easily be verified that 5 5 5a b c>  under the 
above conditions. Thus by Routh Hurwitz criterion, all Eigen values of ( )4.3 will 

have negative real part. Hence ( )2 ˆ ˆ ˆ, ,P x y z  is asymptotically stable. 
In the following lemma we show that all the solutions of model (2.1) are positive 
and uniformly bounded. 
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Theorem: The equilibrium point 1P is globally asymptotically stable. 
 
Proof: Let us consider the Lyapunov function 
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Differentiating V w.r.t. t, we get, 
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Therefore ( )1 , , 0P x y is globally asymptotically stable. 
 
 
5. OPTIMAL HARVESTING POLICY 
 
Our objective is to maximize the present value J  of continuous time stream of 
revenue given by  
 

 ( )( ) ( ) ( )
0
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∞

−= −∫
 

 
where δ is instantaneous rate of annual discount. Thus our objective is to 
maximize J  subject to state equation ( )2.1 and to the control constraints 
 
  ( ) ( )max 5.20                                                     E t E≤ ≤  
 
To solve this optimization problem, we utilize the Pontryagin Maximal Principle. 
The associated Hamiltonian is given by 
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where 1 2 3, ,λ λ λ are adjoint variables and 
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tt e pqx c qxδσ λ−= − −  
 
is called switching function. 
 Since H is linear in control variable E , the optimal control will be a 
combination of bang-bang control and singular control. The optimal control 
( )E t which maximizes H must satisfy the following conditions: 

 max ,E E=  when ( ) 0tσ > , i.e. when 1
t ce p

qx
δλ < −                          (5.4a)                              

 0E = , when ( ) 0tσ < , i.e. when 1
t ce p

qx
δλ > −

                             
(5.4b)

 

1
teδλ is the usual shadow price and 

cp
qx

− is the net economic revenue on the 

unit harvest. This shows that maxE E= or zero according to the shadow price is 
less then or greater than the net economic revenue on a unit harvest. 
Economically, condition (5.4 )a implies that if the profit after paying all the 
expenses is positive then, it is beneficial to harvest up to the limit of available 
effort. Condition (5.4 )b implies that when the shadow price exceeds the 
fisherman’s net economic revenue on the unit harvest, then the fisherman will 
not exert any effort. 
 
When ( ) 0tσ =  i.e. the shadow price equals the net economic revenue on the unit 
harvest, then the Hamiltonian H becomes independent of the control variable 

( )E t i.e. 0.H
E

∂
=

∂  
This is the necessary condition for the singular control ( )Ê t  to 

be optimal over the control set max
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The optimal harvest policy is  
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This implies that the user’s cost of harvest per unit effort equals the discounted 
value of the future marginal profit of the effort at the steady state. 
 
Now, in order to find the path of singular control we utilize the Pontriagin 
Maximal Principle, and the adjoint variables 1 2 3, ,λ λ λ must satisfy 
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Considering the interior equilibrium ( )2 ˆ ˆ ˆx,y,zP and the equation (5.6),(5.8) can be 
written as 

2
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from ( )5.9 , we get   
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from ( )5.7 , we get   
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B

δ

λ
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−

=
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                                                          (5.12) 

from ( )5.6 and   ( )5.12 , we get the singular path 

  

2

1

Bcp
qx B δ

⎛ ⎞
− =⎜ ⎟ +⎝ ⎠

                                                     (5.13) 

Equation ( )3.4  together with equation ( )5.13 gives the optimal equilibrium 
population ˆ ˆ ˆ, , .x x y y z zδ δ δ= = =  Then the optimal harvesting effort is given by 
 

  1 2 2

1ˆ 1  .   
x y mx z

E E r
q K x a x

δ δ δ δ
δ

δ δ

σ σ
⎡ ⎤⎛ ⎞= = − − + −⎢ ⎥⎜ ⎟ +⎝ ⎠⎣ ⎦  

 
 
6. NUMERICAL SIMULATION AND CONCLUSION 
 
Using the parameters r = 3.0, K = 110, σ1 = 0.5, σ2 = 0.5, m = 2.5, a = 12.0, q = 
0.01, s = 0.4, L = 200, d = 0.01, α = 0.006, p = 15, c = 1.4, δ = 0.005.for the above 
values of parameters we find the optimal equilibrium as (4.9, 18.01, 6.78).Using 
the above parameters, the sensitivity analysis is performed to study the effect of 
predation on optimal solution. The following table shows the variation of 
( ), ,x y zδ δ δ  

   

       m                   
2 7.75 25.6 9.51 

2.5 4.9 18.01 6.78 
3 3.87 14.9 5.63 

 
 
Thus we observe that the equilibrium level goes down by using new transmission 
function. 

xδ yδ zδ
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