A Fixed Point Theorem on Quasi-Metric Spaces of Hyperbolic Type

Mojtaba Izadi

Department of Mathematics, Estahban Branch Islamic Azad University, Estahban, Iran m_ezadi@iauestaban.ac.ir

Abstract

In this paper, we first define the concept quasi- metric space of hyperbolic type and then prove the results [3] for quasi- metric space of hyperbolic type.

Keywords: quasi-metric, fixed point

1 Introduction

It is well-known that if (X,d) is a complete metric space and $T:X\to X$ is a self-mapping satisfying $d(Tx,Ty)\leq \lambda d(x,y)$ for all $x,y\in X$, where $0<\lambda<1$, then T has a unique fixed point. Ciric [2] introduced and studied self-mappings on X satisfying

$$d(Tx,Ty) \leq \lambda \max\{d(x.y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\},$$

where $0 < \lambda < 1$. Boyd and Wong [4] studied mappings which satisfy in the following from:

$$d(Tx, Ty) \le \varphi(d(x, y)),$$

where $\varphi:[0,+\infty)\to [0,+\infty)$ is an upper semi-continuous from the right function, satisfying $\varphi(t)< t$ for all t>0. Ciric [3] studied some fixed point theorems on metric space of hyperbolic type. In this paper, we prove these results for quasi- metric space of hyperbolic type.

2 Main Result

Let us recall that a quasi-metric on a nonempty set X is a nonnegative real valued function d on $X \times X$ such that for all $x, y, z \in X$ the following statements hold.

2156 M. Izadi

- i) x = y if and only if d(x, y) = d(y, x) = 0.
- ii) $d(x, y) \le d(x, z) + d(z, y)$

A quasi-metric space is a pair (X, d) such that X is a nonempty set and d is a quasi-metric on X. A quasi-metric space is called a quasi-metric space of hyperbolic type if it contains a family L of metric segments (isometric images of real line segments) such that

- (a) each two points x,y in X are endpoints of exactly one member $\operatorname{seg}[x,y]$ of L , and
- (b) if $u, x, y \in X$ and if $z \in \text{seg}[x, y]$ satisfies $d(x, z) = \lambda d(x, y)$ for $\lambda \in [0, 1]$, then

$$d(u,z) \le (1-\lambda)d(u,x) + \lambda d(u,y). \tag{1}$$

Define $\Phi = \{ \varphi : \mathcal{R}^+ \to \mathcal{R}^+ \}$, where $\mathcal{R}^+ = [0, +\infty)$ and each $\varphi \in \Phi$ satisfies the following conditions.

- (a) φ is continuous from the right on \mathbb{R}^+ .
- (b) φ is non-decreasing.
- (c) $\varphi(t) < t$ for each t > 0.
- (d) $\lim_{n\to\infty} \sup(t-\varphi_i(t)) = \infty$.

Theorem 2.1 Let (X,d) be a complete quasi-metric space of hyperbolic type, K be nonempty closed subset of X and $T:K\to X$ be a non-self mapping such that

- (i) $T(\partial K) \subseteq K$.
- (ii) $d(Tx, Ty) \leq \varphi_s(d_s)$ for all $x, y \in K$, where

$$\varphi_s(d_s) = \max\{\varphi_1(d(x,y)), \varphi_2(d(x,Tx)), \varphi_3(d(y,Ty)), \varphi_4(d(x,Ty)), \varphi_5(d(y,Tx))\}$$
(2)

and $\varphi_j \in \Phi$ for (j = 1, 2, 3, 4, 5).

Then T has a fixed point in K.

 ${\it Proof.}$ We prove theorem in three step.

Step 1. Choose $x_0 \in \partial K$. Then $Tx_0 \in K$. Set $x_1 = Tx_0$. If $Tx_1 \in K$, set $x_2 = Tx_1$. If $Tx_1 \notin K$, then by [1], there exists $x_2 \in \partial K$ such that

$$d(x_1, x_2) + d(x_2, Tx_1) = d(x_1, Tx_1),$$

that is, $x_2 \in \text{seg}[x_1, Tx_1] \cap \partial K$. Continuing this process we can choose a sequence $\{x_n\}$ in K and a sequence $\{Tx_n\}$ in X such that if $Tx_{n-1} \in K$, then $x_n = Tx_{n-1}$ and if $Tx_{n-1} \notin K$, then $x_n \in \partial k$ and $x_n \in \text{seg}[x_{n-1}, Tx_{n-1}]$. It is easy to see that if $Tx_{n-1} \notin K$, then $x_n \neq Tx_{n-1}$ and $x_{n-1} = Tx_{n-2}$. Hence in this case we have

$$x_n \in \operatorname{seg}[Tx_{n-2}, Tx_{n-1}] \cap \partial K$$
 (3)

for all $n \geq 2$.

Step2. For each integer $n \geq 1$, we define

$$A_n = \{x_i\}_{i=0}^{n-1} \cup \{Tx_i\}_{i=0}^{n-1} \quad \alpha_n = \sup\{d(a,b), d(b,a) : a, b \in A_n\}.$$

Without loss of generality, we may assume that $\alpha_n > 0$ for all $n \in \mathcal{N}$. We consider the following cases.

Case 1. Let there exist $i, k \in \{0, 1, ..., n-1\}$ such that

$$\alpha_n = d(x_i, Tx_k).$$

If $x_i \neq x_0$, then $x_{i-1} \in K$ and so Tx_{i-1} is defined.

(a) Suppose that $Tx_{i-1} \in K$. Then $x_i = Tx_{i-1}$. Thus there exists $\varphi_{j_0}(t) \in \phi_5 = \{\varphi_1, ..., \varphi_5\}$ such that

$$\alpha_n = d(x_i, Tx_k) = d(Tx_k, Tx_{i-1}) \le \varphi_{j_0}(d_{j_0}),$$
(4)

where

$$d_{i_0} \in \{d(x_k, x_{i-1}), d(Tx_{i-1}, x_{i-1}), d(Tx_k, x_k), d(Tx_k, Tx_{i-1}), d(x_{k-1}, Tx_k)\}.$$

Since $d_{j_0} \leq \alpha_n$ and $\phi_{j_0}(t)$ is non-decreasing, it follows that $\varphi_{j_0}(d_{j_0}) \leq \varphi_{j_0}(\alpha_n)$. Thus $\alpha_n \leq \varphi_{j_0}(\alpha_n)$, which is in contradiction with the hypothesis (c) for $\varphi_{j_0}(t)$. Therefore, $x_i = x_0$.

(b) Consider now the case $Tx_{i-1} \notin K$. Then $i \geq 2$, as $Tx_0 \in K$, and from (3),

$$x_i \in \operatorname{seg}[Tx_{i-2}, Tx_{i-1}]. \tag{5}$$

It follows from (1) with $x = Tx_{i-2}, y = Tx_{i-1}, z = x_i$ and $u = Tx_k$, that

$$\alpha_n = d(Tx_k, x_i) \le (1 - \lambda)d(Tx_k, Tx_{i-2}) + \lambda d(Tx_k, Tx_{i-1})$$

$$\le \max\{d(Tx_k, Tx_{i-2}), d(Tx_k, Tx_{i-1})\}.$$

Similar to (4) this relation leads to a contradiction. Therefore, if $\alpha_n = d(x_i, Tx_k)$, then $x_i = x_0$, i.e., $\alpha_n = d(x_0, Tx_k)$.

Case 2. Let there exist $0 \le i < j \le n-1$ such that $\alpha_n = d(x_i, x_j)$. Note that in this case, $x_{j-1} \in k$, because j > 0.

- (a) If $x_j = Tx_{j-1}$, then case 2(a) reduces to case 1(a).
- (b) If $Tx_{j-1} \notin K$, then from (3) with $n = j (j \ge 2)$ we get $x_j \in \text{seg}[Tx_{j-2}, Tx_{j-1}]$. Since this relation is similar to (5), it is easy to see that case 2(b) reduces to case 2(a). The remaining case $\alpha = d(Tx_i, Tx_k)$ is impossible. Thus

$$\alpha_n = \max\{d(x_0, Tx_k) : k \in \{0, 1, ..., n-1\}\}$$
(6)

2158 M. Izadi

for all $n \in \mathcal{N}$. By definition of the sequence $\{\alpha_n\}$, it is non-decreasing. Now if $\lim_{n\to\infty}\alpha_n=\infty$, then for each $\varphi_j(t)\in\phi_5$, there exists a positive number $\Delta_j=\Delta(\varphi_j)$ such that $\alpha_n-\varphi_j(\alpha_n)>d(x_0,Tx_0)$ for all $\alpha_n>\Delta_j$. Set $\Delta=\max\{\Delta_j:j\in\{1,2,3,4,5\}\}$. Then $\alpha_n-\varphi_j(\alpha_n)>d(x_0,Tx_0)$ for all $\varphi_j(t)\in\phi_5$ and $\alpha_n>\Delta$. Let n be any fixed integer such that $\alpha_n>\Delta$. From (2) and (6) we see that

$$\alpha_{n} = d(x_{0}, Tx_{k(n)}) \leq d(x_{0}, Tx_{0}) + d(Tx_{0}, Tx_{k(n)})$$

$$\leq d(x_{0}, Tx_{0}) + \varphi_{j(n)}(d_{j(n)})$$

$$\leq d(x_{0}, Tx_{0}) + \varphi_{j(n)}(\alpha_{n})$$

$$< \alpha_{n} - \varphi_{j(n)}(\alpha_{n})(\alpha_{n}) + \varphi_{j(n)}(\alpha_{n})$$

$$= \alpha_{n},$$

for some $0 < k(n) \le n-1$ and for some fixed $\varphi_{j(n)}(t) \in \varphi_5$, where

$$d_{j(n)} \in \{d(x_0, x_{k(n)}), d(x_0, Tx_0), d(x_{k(n)}, Tx_{k(n)}), d(x_0, Tx_{k(n)}), d(x_{k(n)}, Tx_0)\}.$$

This contradiction implies that $\lim_{n\to\infty} \alpha_n = \alpha < \infty$ and hence both sequences $\{x_n\}$ and $\{Tx_n\}$ are bounded.

Step3. For each integer $n \geq 2$, we define

$$B_n = \{x_i\}_{i \ge n} \cup \{Tx_i\}_{i \ge n}$$
 and $\beta_n = \sup\{d(a, b), d(b, a) : a, b \in B_n\}.$

Then $\beta_n \leq \alpha$ and $\{\beta_n\}$ is a non-increasing sequence. Thus the sequence β_n converges to some β . We shall show that $\beta = 0$. By the proof of (6)

$$\beta_n = \sup\{d(x_n, Tx_k) : k \ge n\}.$$

Let $n \in \mathcal{N}$. Denote by $\varphi_{j_0}(t)$ one of the functions $\varphi_j(t) \in \phi_5$, such that

$$\varphi_{j_0}(\beta_{n-2}) = \max\{\varphi_j(\beta_{n-2}) : \varphi_j(t) \in \phi_5\}. \tag{7}$$

Fix $k \ge n$. If $x_n = Tx_{n-1}$, then from (2)

$$d(x_n, Tx_k) = d(Tx_{n-1}, Tx_k) \le \varphi_{i(k)}(dj_{k(k)})$$

for some fixed $\varphi_{i(k)}(t) \in \phi_5$, where

$$d_{j(k)} \in \{d(x_{n-1}, x_k), d(x_{n-1}, Tx_{n-1}), d(x_k, Tx_k), d(x_{n-1}, Tx_k), d(x_k, Tx_{n-1})\}.$$

Clearly, $d_{j(k)} \leq \beta_{n-1} \leq \beta_{n-2}$. Since $\varphi_{j(k)}(t)$ is non-decreasing, it follows that

$$d(Tx_{n-1}, Tx_k) \le \varphi_{j(k)}(\beta_{n-2}) \le \varphi_{j_0}(\beta_{n-2}), \tag{8}$$

where $d(Tx_{n-1}, Tx_k) = d(x_n, Tx_k)$. Now if $x_n \neq Tx_{n-1}$, then $Tx_{n-1} \notin K$ and so $x_n \in \text{seg}[Tx_{n-2}, Tx_{n-1}]$. Since X is of hyperbolic type, from (1) with $x = Tx_{n-2}, y = Tx_{n-1}, z = x_n$ and $u = Tx_k$, we get

$$d(Tx_k, x_n) \le (1 - \lambda)d(Tx_k, Tx_{n-2}) + \lambda d(Tx_k, Tx_{n-1}). \tag{9}$$

Similarly to (8) we have

$$d(Tx_k, Tx_{n-1}), d(Tx_k, Tx_{n-2}) \le \varphi_{i_0}(\beta_{n-2}).$$

Thus, from (8) and (9), in any case we have $d(Tx_k, x_n) \leq \varphi_{j_0}(\beta_{n-2})$. Therefore,

$$\beta_n \le \varphi_{i_0}(\beta_{n-2}). \tag{10}$$

Suppose that $\beta > 0$. Choose $\varphi_i(t) \in \phi_5$ such that

$$\varphi_{j(\beta)}(\beta) = \max\{\varphi_{j(\beta)} : \varphi_j(t) \in \phi_5\}.$$

Then from property (c) of ϕ we have $\eta = \beta - \varphi_{j((\beta)}(\beta) > 0$. It follows from properties (a) and (b) of Φ that there exists $\delta = \delta(\eta)$ such that

$$|\varphi_j(\beta_n) - \varphi_j(\beta)| < \eta$$

for all $\varphi_j(t) \in \phi_5$ and $\beta_n < \beta + \delta$. Hence

$$\varphi_j(\beta_n) < \varphi_j(\beta) + \eta \le \varphi_{j(\beta)}(\beta) + \eta = \beta$$
 (11)

for all $\beta_n < \beta + \delta$ and each $\varphi_j(t) \in \phi_5$. Let n be fixed integer such that $\beta_{n-2} < \beta + \delta$. Then from (11) we have $\varphi_{j_0}(\beta_{n-2}) < \beta$, where $\varphi_{j_0}(t) \in \phi_5$ is chosen so that (7) holds. Since $\beta \leq \beta_n$, from (10) we have $\beta \leq \varphi_{j_0}(\beta_{n-2}) < \beta$, a contradiction. Thus $\beta = 0$ and so $\lim_{n\to\infty} \beta_n = \beta = 0$. From this and the definition of β_n we conclude that both $\{x_n\}$ and $\{Tx_n\}$ are cauchy sequences. Since X is complete and K is closed, there is some $z \in K$ such that

$$z = \lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_n. \tag{12}$$

We show that Tz = z. Suppose, to the contrary that

$$d(z,Tz) > 0$$
 or $d(Tz,z) > 0$.

First, let d(z, Tz) > 0. Fix $\varphi_{j(z)}(t) \in \phi_5$ such that

$$\varphi_{j(z)}(d(z,Tz)) = \max\{\varphi_j(d(z,Tz)) : \varphi_j(t) \in \phi_5\}.$$
(13)

Then by property (c) of φ ,

$$\eta = (d(z, Tz) - \varphi_{j(z)}(d(z, Tz)))/2 > 0.$$
(14)

2160 M. Izadi

From (2), for each fixed n, we get

$$d(Tx_n, Tz) \le \varphi_{j(n)}(d_{j(n)}) \tag{15}$$

for some fixed $\varphi_{j(n)}(t) \in \phi_5$, where

$$d_{j(n)} \in \{d(x_n, z), d(x_n, Tx_n), d(z, Tz), d(x_n, Tz), d(z, Tx_n)\}.$$
(16)

Since each of the five functions $\varphi_j(t)$ is non-decreasing and continuous from the right at a point t = d(z, Tz), there is an $\delta = \delta(\eta) > 0$ such that

$$\varphi_{j(n)}(t) < \varphi_{j(n)}(d(z, Tz)) + \eta \tag{17}$$

for all $t < d(z, Tz) + \delta$ and $n \in \mathcal{N}$. From (12) and (16) follows that there is $n_0 \in \mathcal{N}$ such that $d_{j(n)} < d(z, Tz) + \delta$ for all $n > n_0$. Thus from (15) and (17), with $t = d_{j(n)}$, and (13) we get

$$d(Tx_n, Tz) < \varphi_{j(n)}(d(z, Tz)) + \eta$$

$$< \varphi_{j(z)}(d(z, Tz)) + \eta.$$

By (12) and (14),

$$d(z,Tz) \leq \varphi_{j(z)}(d(z,Tz)) + \eta$$

= $(d(z,Tz) + \varphi_{j(z)}(d(z,Tz))/2$
< $d(z,Tz)$,

a contradiction. Thus, d(z, Tz) = 0. Similarly, d(Tz, z) = 0. Hence Tz = z.

References

- [1] N. A. Assad and W. A. Kirk, Fixed-point theorems for set-valued mappings of contractive type, *Pacific J. Math.* **43**(1972), 553-562.
- [2] L. B. Ciric, A generalization of Banach contraction principle, *Proc. Amer. Math. Soc.* **45** (1974), 267-273.
- [3] Criic. L. B, contractive type non-self mappings on metric spaces of hyperbolic type, *J. Math. Anal. Appl.* **317** (2006), 28-42.
- [4] D. W. Boyd, J. S. Wong, On nonlinear contraction, Proc. Amer. Math. Soc. 20 (1969), 458-469.

Received: July, 2012