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Abstract

In this paper, we first define the concept quasi- metric space of hy-
perbolic type and then prove the results [3] for quasi- metric space of
hyperbolic type.
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1 Introduction

It is well-known that if (X, d) is a complete metric space and T : X → X is a
self-mapping satisfying d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X, where 0 < λ < 1,
then T has a unique fixed point. Ciric [2] introduced and studied self-mappings
on X satisfying

d(Tx, Ty) ≤ λ max{d(x.y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
where 0 < λ < 1. Boyd and Wong [4] studied mappings which satisfy in the
following from:

d(Tx, Ty) ≤ ϕ(d(x, y)),

where ϕ : [0, +∞) → [0, +∞) is an upper semi-continuous from the right
function,satisfying ϕ(t) < t for all t > 0. Ciric [3] studied some fixed point
theorems on metric space of hyperbolic type. In this paper, we prove these
results for quasi- metric space of hyperbolic type.

2 Main Result

Let us recall that a quasi-metric on a nonempty set X is a nonnegative real
valued function d on X×X such that for all x, y, z ∈ X the following statements
hold.
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i) x = y if and only if d(x, y) = d(y, x) = 0.
ii) d(x, y) ≤ d(x, z) + d(z, y)
A quasi-metric space is a pair (X, d) such that X is a nonempty set and d

is a quasi-metric on X. A quasi-metric space is called a quasi-metric space of
hyperbolic type if it contains a family L of metric segments(isometric images
of real line segments) such that

(a) each two points x, y in X are endpoints of exactly one member seg[x, y]
of L , and

(b) if u, x, y ∈ X and if z ∈ seg[x, y] satisfies d(x, z) = λd(x, y) for λ ∈ [0, 1],
then

d(u, z) ≤ (1 − λ)d(u, x) + λd(u, y). (1)

Define Φ = {ϕ : R+ → R+}, where R+ = [0, +∞) and each ϕ ∈ Φ satisfies
the following conditions.

(a) ϕ is continuous from the right on R+.
(b) ϕ is non-decreasing.
(c) ϕ(t) < t for each t > 0.
(d) limn→∞ sup(t − ϕj(t)) = ∞.

Theorem 2.1 Let (X, d) be a complete quasi-metric space of hyperbolic
type, K be nonempty closed subset of X and T : K → X be a non-self mapping
such that

(i) T (∂K) ⊆ K.
(ii) d(Tx, Ty) ≤ ϕs(ds) for all x, y ∈ K, where

ϕs(ds) = max{ϕ1(d(x, y)), ϕ2(d(x, Tx)), ϕ3(d(y, Ty)), ϕ4(d(x, Ty)), ϕ5(d(y, Tx))} (2)

and ϕj ∈ Φ for (j = 1, 2, 3, 4, 5).
Then T has a fixed point in K.

Proof. We prove theorem in three step.
Step 1. Choose x0 ∈ ∂K. Then Tx0 ∈ K. Set x1 = Tx0. If Tx1 ∈ K, set

x2 = Tx1. If Tx1 �∈ K, then by [1], there exists x2 ∈ ∂K such that

d(x1, x2) + d(x2, Tx1) = d(x1, Tx1),

that is, x2 ∈ seg[x1, Tx1] ∩ ∂K. Continuing this process we can choose a
sequence {xn} in K and a sequence {Txn} in X such that if Txn−1 ∈ K, then
xn = Txn−1 and if Txn−1 �∈ K, then xn ∈ ∂k and xn ∈ seg[xn−1, Txn−1]. It is
easy to see that if Txn−1 �∈ K, then xn �= Txn−1 and xn−1 = Txn−2. Hence in
this case we have

xn ∈ seg[Txn−2, Txn−1] ∩ ∂K (3)
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for all n ≥ 2.
Step2. For each integer n ≥ 1, we define

An = {xi}n−1
i=0 ∪ {Txi}n−1

i=0 αn = sup{d(a, b), d(b, a) : a, b ∈ An}.

Without loss of generality, we may assume that αn > 0 for all n ∈ N . We
consider the following cases.

Case 1. Let there exist i, k ∈ {0, 1, ..., n − 1} such that

αn = d(xi, Txk).

If xi �= x0, then xi−1 ∈ K and so Txi−1 is defined.
(a) Suppose that Txi−1 ∈ K. Then xi = Txi−1. Thus there exists ϕj0(t) ∈

φ5 = {ϕ1, ..., ϕ5} such that

αn = d(xi, Txk) = d(Txk, Txi−1) ≤ ϕj0(dj0), (4)

where

dj0 ∈ {d(xk, xi−1), d(Txi−1, xi−1), d(Txk, xk), d(Txk, Txi−1), d(xk−1, Txk)}.

Since dj0 ≤ αn and φj0(t) is non-decreasing, it follows that ϕj0(dj0) ≤ ϕj0(αn).
Thus αn ≤ ϕj0(αn), which is in contradiction with the hypothesis (c) for ϕj0(t).
Therefore, xi = x0.

(b) Consider now the case Txi−1 �∈ K. Then i ≥ 2, as Tx0 ∈ K, and from
(3),

xi ∈ seg[Txi−2, Txi−1]. (5)

It follows from (1) with x = Txi−2, y = Txi−1, z = xi and u = Txk, that

αn = d(Txk, xi) ≤ (1 − λ)d(Txk, Txi−2) + λd(Txk, Txi−1)

≤ max{d(Txk, Txi−2), d(Txk, Txi−1)}.

Similar to (4) this relation leads to a contradiction. Therefore, if αn =
d(xi, Txk), then xi = x0, i.e., αn = d(x0, Txk).

Case2. Let there exist 0 ≤ i < j ≤ n − 1 such that αn = d(xi, xj). Note
that in this case, xj−1 ∈ k, because j > 0.

(a) If xj = Txj−1, then case 2(a) reduces to case 1(a).
(b) If Txj−1 �∈ K, then from (3) with n = j(j ≥ 2) we get xj ∈ seg[Txj−2, Txj−1].

Since this relation is similar to (5), it is easy to see that case 2(b) reduces to
case 2(a). The remaining case α = d(Txi, Txk) is impossible. Thus

αn = max{d(x0, Txk} : k ∈ {0, 1, ..., n − 1}} (6)
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for all n ∈ N . By definition of the sequence {αn}, it is non-decreasing. Now
if limn→∞ αn = ∞, then for each ϕj(t) ∈ φ5, there exists a positive number
Δj = Δ(ϕj) such that αn − ϕj(αn) > d(x0, Tx0) for all αn > Δj . Set Δ =
max{Δj : j ∈ {1, 2, 3, 4, 5}}. Then αn − ϕj(αn) > d(x0, Tx0) for all ϕj(t) ∈ φ5

and αn > Δ. Let n be any fixed integer such that αn > Δ. From (2) and (6)
we see that

αn = d(x0, Txk(n)) ≤ d(x0, Tx0) + d(Tx0, Txk(n))

≤ d(x0, Tx0) + ϕj(n)(dj(n))

≤ d(x0, Tx0) + ϕj(n)(αn)

< αn − ϕj(n)(αn)(αn) + ϕj(n)(αn)

= αn,

for some 0 < k(n) ≤ n − 1 and for some fixed ϕj(n)(t) ∈ ϕ5, where

dj(n) ∈ {d(x0, xk(n)), d(x0, Tx0), d(xk(n), Txk(n)), d(x0, Txk(n)), d(xk(n), Tx0)}.

This contradiction implies that limn→∞ αn = α < ∞ and hence both sequences
{xn} and {Txn} are bounded.

Step3. For each integer n ≥ 2, we define

Bn = {xi}i≥n ∪ {Txi}i≥n and βn = sup{d(a, b), d(b, a) : a, b ∈ Bn}.

Then βn ≤ α and {βn} is a non-increasing sequence. Thus the sequence βn

converges to some β. We shall show that β = 0. By the proof of (6)

βn = sup{d(xn, Txk) : k ≥ n}.

Let n ∈ N . Denote by ϕj0(t) one of the functions ϕj(t) ∈ φ5, such that

ϕj0(βn−2) = max{ϕj(βn−2) : ϕj(t) ∈ φ5}. (7)

Fix k ≥ n. If xn = Txn−1, then from (2)

d(xn, Txk) = d(Txn−1, Txk) ≤ ϕj(k)(djk(k))

for some fixedϕj(k)(t) ∈ φ5, where

dj(k) ∈ {d(xn−1, xk), d(xn−1, Txn−1), d(xk, Txk), d(xn−1, Txk), d(xk, Txn−1)}.

Clearly, dj(k) ≤ βn−1 ≤ βn−2. Since ϕj(k)(t) is non-decreasing, it follows that

d(Txn−1, Txk) ≤ ϕj(k)(βn−2) ≤ ϕj0(βn−2), (8)
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where d(Txn−1, Txk) = d(xn, Txk). Now if xn �= Txn−1, then Txn−1 �∈ K
and so xn ∈ seg[Txn−2, Txn−1]. Since X is of hyperbolic type, from (1) with
x = Txn−2, y = Txn−1, z = xn and u = Txk, we get

d(Txk, xn) ≤ (1 − λ)d(Txk, Txn−2) + λd(Txk, Txn−1). (9)

Similarly to (8) we have

d(Txk, Txn−1), d(Txk, Txn−2) ≤ ϕj0(βn−2).

Thus, from (8) and (9), in any case we have d(Txk, xn) ≤ ϕj0(βn−2). Therefore,

βn ≤ ϕj0(βn−2). (10)

Suppose that β > 0. Choose ϕj(t) ∈ φ5 such that

ϕj(β)(β) = max{ϕj(β) : ϕj(t) ∈ φ5}.
Then from property (c) of φ we have η = β − ϕj((β)(β) > 0. It follows from
properties (a) and (b) of Φ that there exists δ = δ(η) such that

|ϕj(βn) − ϕj(β)| < η

for all ϕj(t) ∈ φ5 and βn < β + δ. Hence

ϕj(βn) < ϕj(β) + η ≤ ϕj(β)(β) + η = β (11)

for all βn < β + δ and each ϕj(t) ∈ φ5. Let n be fixed integer such that
βn−2 < β + δ. Then from (11) we have ϕj0(βn−2) < β, where ϕj0(t) ∈ φ5 is
chosen so that (7) holds. Since β ≤ βn, from (10) we have β ≤ ϕj0(βn−2) < β,
a contradiction. Thus β = 0 and so limn→∞ βn = β = 0. From this and the
definition of βn we conclude that both {xn} and {Txn} are cauchy sequences.
Since X is complete and K is closed, there is some z ∈ K such that

z = lim
n→∞xn = lim

n→∞Txn. (12)

We show that Tz = z. Suppose, to the contrary that

d(z, T z) > 0 or d(Tz, z) > 0.

First, let d(z, T z) > 0. Fix ϕj(z)(t) ∈ φ5 such that

ϕj(z)(d(z, T z)) = max{ϕj(d(z, T z)) : ϕj(t) ∈ φ5}. (13)

Then by property (c) of ϕ,

η = (d(z, T z) − ϕj(z)(d(z, T z)))/2 > 0. (14)
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From (2), for each fixed n , we get

d(Txn, T z) ≤ ϕj(n)(dj(n)) (15)

for some fixed ϕj(n)(t) ∈ φ5, where

dj(n) ∈ {d(xn, z), d(xn, Txn), d(z, T z), d(xn, T z), d(z, Txn)}. (16)

Since each of the five functions ϕj(t) is non-decreasing and continuous from
the right at a point t = d(z, T z), there is an δ = δ(η) > 0 such that

ϕj(n)(t) < ϕj(n)(d(z, T z)) + η (17)

for all t < d(z, T z) + δ and n ∈ N . From (12) and (16) follows that there is
n0 ∈ N such that dj(n) < d(z, T z)+ δ for all n > n0. Thus from (15) and (17),
with t = dj(n), and (13) we get

d(Txn, T z) < ϕj(n)(d(z, T z)) + η

< ϕj(z)(d(z, T z)) + η.

By (12) and (14),

d(z, T z) ≤ ϕj(z)(d(z, T z)) + η

= (d(z, T z) + ϕj(z)(d(z, T z))/2

< d(z, T z),

a contradiction. Thus, d(z, T z) = 0. Similarly, d(Tz, z) = 0. Hence Tz = z.
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