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Abstract

In this paper, we first define the concept quasi- metric space of hy-
perbolic type and then prove the results [3] for quasi- metric space of
hyperbolic type.
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1 Introduction

It is well-known that if (X, d) is a complete metric space and T': X — X is a
self-mapping satisfying d(Tx, Ty) < Ad(z,y) for all z,y € X, where 0 < A < 1,
then T has a unique fixed point. Ciric [2] introduced and studied self-mappings
on X satisfying

d(Tz, Ty) < Amax{d(z.y),d(z,Tx),d(y, Ty),d(z, Ty),d(y, Tx)},

where 0 < A < 1. Boyd and Wong [4] studied mappings which satisfy in the
following from:

d(Tx, Ty) < p(d(x,y)),

where ¢ : [0,+00) — [0,400) is an upper semi-continuous from the right
function,satisfying ¢(t) < t for all t > 0. Ciric [3] studied some fixed point
theorems on metric space of hyperbolic type. In this paper, we prove these
results for quasi- metric space of hyperbolic type.

2 Main Result

Let us recall that a quasi-metric on a nonempty set X is a nonnegative real
valued function d on X x X such that for all z,y, z € X the following statements
hold.
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i) x =y if and only if d(z,y) = d(y,z) = 0.

i) d(z,y) < d(x,z)+d(z,v)

A quasi-metric space is a pair (X, d) such that X is a nonempty set and d
is a quasi-metric on X. A quasi-metric space is called a quasi-metric space of
hyperbolic type if it contains a family L of metric segments(isometric images
of real line segments) such that

(a) each two points z, y in X are endpoints of exactly one member seg[z, y]
of L , and

(b) ifu,z,y € X and if z € seg|x, y| satisfies d(x, z) = Ad(x,y) for A € [0, 1],
then

d(u, z) < (1= N)d(u, x) + Ad(u, y). (1)

Define ® = {¢: R™ — RT}, where R* = [0, +00) and each ¢ € ® satisfies
the following conditions.
(a) ¢ is continuous from the right on R™.
(b) ¢ is non-decreasing.
(c) p(t) <t for each t > 0.
(d) limy, oo sup(t — ¢;(t)) = oo.

Theorem 2.1 Let (X,d) be a complete quasi-metric space of hyperbolic
type, K be nonempty closed subset of X andT' : K — X be a non-self mapping
such that

(i) T(OK) C K.
(ii) d(Tz, Ty) < ps(ds) for all z,y € K, where

©s(ds) = max{g1(d(z,y)), pa(d(z, Tx)), e3(d(y, Ty)), pa(d(z, Ty)), es(d(y, Tx))} (2)

and p; € ® for (j =1,2,3,4,5).
Then T has a fixed point in K.

Proof. We prove theorem in three step.
Step 1. Choose xg € OK. Then Txzy € K. Set x1 = Txg. If Txq € K, set
xo = Txy. If Ty ¢ K, then by [1], there exists x5 € OK such that

d(l’l, .CI?Q) + d(l’g, Tl'l) = d(l’l, Tl'l),

that is, xo € seg[zy,Tz1] N OK. Continuing this process we can choose a
sequence {z,} in K and a sequence {T'z,} in X such that if Tz,,_; € K, then
xp =Tx,_1 and if Tx,_; ¢ K, then z,, € 0k and z,, € seg|x,_1,Tx,_1]. It is
easy to see that if Tr,_, € K, then z,, # Tx,_1 and x,,_; = Tx,,_5. Hence in
this case we have

T, € seg[Tx, o, Tx, 1] NOK (3)
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for all n > 2.
Step2. For each integer n > 1, we define

A, = {z ¥ U{Tx ¥y o, =sup{d(a,b),d(b,a) : a,b € A,}.

Without loss of generality, we may assume that «,, > 0 for all n € . We
consider the following cases.
Case 1. Let there exist i,k € {0,1,...,n — 1} such that

ap = d(f]?z, T.Tk)

If x; # xy, then z;_y € K and so Tx;_; is defined.
(a) Suppose that T'z;_; € K. Then x; = T'z;_;. Thus there exists ¢;,(t) €

¢s5 = {p1, ..., p5} such that
oy, = d(z;, Try) = d(Tay, Tri—1) < @;0(dj,), (4)
where
dj, € {d(xg, zi—1), d(Txi—1, wi1), d(Txg, vg), d(Twg, Twig), d(xk—1, Txy) }

Since dj, < a,, and ¢, (t) is non-decreasing, it follows that ¢, (d;,) < @, ().
Thus a,, < ¢j, (), which is in contradiction with the hypothesis (c) for ¢;, (t).
Therefore, x; = xg.

(b) Consider now the case T'z;_1 ¢ K. Then i > 2, as Tzg € K, and from

(3),
x; € seg[TxZ-_g, TZEZ'_l]. (5)
It follows from (1) with x = Tz;_o,y = Tx;_1,2 =x; and wu = Txy, that

a, = d(Txp,x;) < (1= Nd(Txy, Tri—o) + Md(Txg, T 1)
< max{d(Txy, Tx;_s),d(Txy, Tx;_1)}.

Similar to (4) this relation leads to a contradiction. Therefore, if «, =
d(x;, Txy), then z; = xg, ie., o, = d(xg, Txy).

Case2. Let there exist 0 < ¢ < j < n — 1 such that a,, = d(x;, x;). Note
that in this case, x;_; € k, because j > 0.

(a) If x; = Tx;_q, then case 2(a) reduces to case 1(a).

(b) If Txj_y ¢ K, then from (3) withn = j(j > 2) we get x; € seg[T'z;j_2, Txj_41].
Since this relation is similar to (5), it is easy to see that case 2(b) reduces to
case 2(a). The remaining case a = d(Tx;, T'z) is impossible. Thus

o, = max{d(zo, Tz} : k€ {0,1,....,n—1}} (6)
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for all n € N. By definition of the sequence {a,}, it is non-decreasing. Now
if lim, o v, = 00, then for each ¢;(t) € ¢5, there exists a positive number
A; = A(yp;) such that o, — pj(ay,) > d(xg, Txg) for all a,, > A;. Set A =
max{A; : j € {1,2,3,4,5}}. Then a,, — p;(ay) > d(zo, T'zo) for all ¢;(t) € ¢5
and a,, > A. Let n be any fixed integer such that «,, > A. From (2) and (6)
we see that

an = d(xo, Tgn)) d(zo, Txo) + d(Two, Ty ()

)
d(z0, T0) + 050 (dj(m))
d(*’”Oa Tfo) + Pj(n) (an)

— @iy (an)(an) + ©jm (an)

VAN VAN VAN VAN

an7
for some 0 < k(n) <n — 1 and for some fixed ;) (t) € @5, where
d](n) € {d(xm xk(n))a d(fEO: T.leo), d(xk(n)a Txk(n)): d(l’o, Txk(n))a d(mk(n)a T.leo)}

This contradiction implies that lim,,_.., a,, = a < oo and hence both sequences
{z,} and {T'z,} are bounded.
Step3. For each integer n > 2, we define

B, ={z;}isn U{Tx;}i>n and [, =sup{d(a,b),d(b,a): a,b € B,}.

Then (3, < « and {f,} is a non-increasing sequence. Thus the sequence 3,
converges to some . We shall show that 3 = 0. By the proof of (6)

B = sup{d(zn, Txy) : k > n}.
Let n € N. Denote by ¢, (t) one of the functions ¢;(t) € ¢s, such that
jo(On—2) = max{w;(Bn-2) : ¢;(t) € ¢5}. (7)
Fix k > n. If z, = T'x,_1, then from (2)
d(@n, Tay) = d(Txp—1, Txr) < Qi) (k)

for some fixedyp;)(t) € ¢5, where

digy € {d(@n_1,21), d(@p_1, Txp_1), d(xp, Try), d(n_1, Ta}), d(TR, TT0-1)}
Clearly, dju) < Bn-1 < Bn—2. Since ;) (t) is non-decreasing, it follows that

d(Tp1, Trg) < @ik (Bu-2) < ©jo(Bn-2), (8)
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where d(Tx,_1,Txy) = d(z,, Txy). Now if z, # Tx,_y, then Tz, | ¢ K
and so x, € seg|Tx,_2,Tx,_1]. Since X is of hyperbolic type, from (1) with
r=Tx, 9,y=Tx, 1,2 =2, and u = Tx, we get

d(Txg, x,) < (1 = N)d(Txg, Tap—o) + Ad(Txg, Txp1). 9)
Similarly to (8) we have
ATz, Tap_1),d(Try, Try—2) < ©jo(Bn_2).
Thus, from (8) and (9), in any case we have d(T'xy, z,) < @;,(,—2). Therefore,
O < @5 (Bn2). (10)
Suppose that 3 > 0. Choose ¢,(t) € ¢5 such that
i) (0) = max{p;) : ¢;(t) € ¢5}-

Then from property (c) of ¢ we have n = 3 — @3 (8) > 0. It follows from
properties (a) and (b) of ® that there exists § = §(n) such that

|0;(Bn) — @i (B)] <n
for all p;(t) € ¢5 and 3, < + 9. Hence

©i(Bn) < i(B)+n<j(B)+n=270 (11)

for all 8, < B+ J and each ¢;(t) € ¢5. Let n be fixed integer such that
Bn—2 < f+ 9. Then from (11) we have pj,(8,—2) < [, where @; (t) € ¢5 is
chosen so that (7) holds. Since 5 < 3, from (10) we have 3 < ¢, (fn—2) < 3,
a contradiction. Thus 8 = 0 and so lim,_.. 6, = # = 0. From this and the
definition of 3, we conclude that both {z,} and {T'z,} are cauchy sequences.
Since X is complete and K is closed, there is some z € K such that

z= lim z, = lim T'z,. (12)
We show that Tz = z. Suppose, to the contrary that
d(z,Tz) >0 or d(Tzz) > 0.
First, let d(z,Tz) > 0. Fix @;,)(t) € ¢5 such that
pio(d(z,T2)) = max{p, (d(=.T2)) : 5(0) € 65 (13)
Then by property (c) of ¢,

n= (d(zv TZ) - (Pj(z)(d<z’Tz)))/2 > 0. (14>
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From (2), for each fixed n , we get
d(Txn, Tz) < jn)(djin)) (15)

for some fixed @;n)(t) € ¢5, where
djwm) € {d(zy, 2),d(zy, Txy),d(2,T2),d(x,, T2), d(2z, T,)}. (16)

Since each of the five functions ¢,(t) is non-decreasing and continuous from
the right at a point ¢ = d(z, T'z), there is an § = §(n) > 0 such that

Pim (1) < @i (d(z,T2)) +n (17)

for all t < d(z,Tz) + 0 and n € N. From (12) and (16) follows that there is
no € N such that d;,) < d(z,Tz)+ ¢ for all n > ny. Thus from (15) and (17),
with t = dj,,), and (13) we get

d(Txn, Tz) < @jm(d(z,T2))+n
< in(d(z,T2)) +n.

By (12) and (14),

d(z,Tz) < @j(d(z,Tz)) +n
= (d(2,Tz2) + pj(»)(d(2,T%))/2
< d(z,T=z),

a contradiction. Thus, d(z,Tz) = 0. Similarly, d(T'z,z) = 0. Hence Tz = z.
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