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Abstract

In this paper, we define the concept compatible and weakly com-
patible for a non-Archimedean metric space and find conditions which
under a family of weakly compatible maps on non-Archimedean metric
spaces has a unique common fixed point.
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1 Introduction

Let as recall that a non-Archimedean metric a nonempty set X is a non-
negative real valued function on X × X such that for all x, y, z ∈ X.
(i) x = y if and only if d(x, y) = 0.

(ii) d(x, y) = d(y, x).
(iii) d(x, z) ≤ max{d(x, y), d(y, z)}.
A non-Archimedean metric space is a pair (X, d) such that X is a nonempty

set and d is a non-Archimedean metric on X.
Jungck [5] has generalized the notion of commuting maps by introducing

the notion of compatible mappings. Moreover, Jungck and Rhoades [6] have
introduced the notion of weakly compatible mappings. Here, we define the
concepts of compatible and weakly compatible for non-Archimedean metric
spaces.

Definition 1.1 Let A and S be self-maps of a non-Archimedean metric
space (X, d).

(i) the pair (A, S) is said to be compatible if d(ASpn, SApn) → 0 whenever
{pn}is a sequence in X such that d(Apn, u) → 0and d(Spn, u) → 0 for some
u ∈ X , as n → ∞.
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(ii) the pair (A, S) is said to be weakly compatible if AP = SP for some
p ∈ X, then ASp = SAp.

Many authors have proved common fixed point theorems for a variety of
commuting self-mapping on usual metric, as well as on different kinds of gen-
eralized metric space [1, 2, 3, 4, 7]. For example, in [2] Ciric has proved the
following common fixed point theorem.

Theorem 1.2 Let (X, d) be a complete, metric space and {Tα}α∈J be a
family of self-mapping on X. If there exists a fixed β ∈ J such that for each
α ∈ J and all x, y ∈ X

d(Tαx, Tβy) ≤ λ max{d(x, y), d(x, Tαx), d(y, Tβy), 1/2[d(x, Tβy) + d(y, Tαx)]},

where λ = λ(α) ∈ (0, 1), then all Tα have a unique common fixed point in X.

Singh and Jain [1] have proved the following common fixed point theorem
for commuting self -mappings.

Theorem 1.3 let A, B, S, T, L and M be self - maps of a complete matric
space (X, d), satisfying the conditions .

(i) L(X) ⊆ ST (X), M(X) ⊆ AB(X).
(ii) AB = BA, ST = TS, LB = BL, MT = TM .
(iii) for all x, y ∈ X and for some k ∈ (0, 1)

d(Lx,My) ≤ k max{d(Lx, ABx), d(My, STy), d(ABx, STy),

1/2[d(Lx, STy) + d(My, ABx)]}.
(iv) the pair (L, AB) is compatible and the pair (M, ST ) is weakly compat-

ible.
(v) either AB or L is continuous.
Then A, B, S, T, L and M have a unique common fixed point.

In this paper, we prove this result for non-Archimedean metric spaces.

2 Main Result

We commence this section with the main result of the paper.

Theorem 2.1 Let A, B, S, T, L and M be self-maps on a non–Archimedean
complete metric space (X, d). If

(i) L(X) ⊆ ST (X) and M(X) ⊆ AB(X);
(ii) AB = BA, LB = BL, ST = TS and MT = TM ;
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(iii) AB or L is continuous;
(iv) the pair (L, AB) is compatible and pair (M, ST ) is weakly compatible;
(v) there exists 0 < k < 1 such that for every u, v ∈ X

d(Lu, Mv) ≤ k max{d(ABu, Lu), d(STv, Mv),

d(ABu, STv), d(STv, Lu), d(ABu, Mv))},

then A, B, S, T, L,M have a unique common fixed point in X.

Proof. Choose x0 ∈ X. Then there exists x1, x2 ∈ X such that

Lx0 = STx1 = y0 and Mx1 = ABx2 = y1.

Inductively we can construct sequences {xn} and {yn} in X such that

Lx2k = STx2k+1 = y2k and Mx2k+1 = ABx2k+2 = y2k+1

for k ∈ N . From (v) with u = xp = x2k and v = xq+1 = x2m+1 we have

d(y2k, y2m+1) ≤ k max{d(y2k−1, y2k), d(y2m, y2m+1), d(y2k−1, y2m),

d(y2m, y2k), d(y2k−1, y2m+1)}.

Since X is non–Archimedean, it follows that

d(yp, yq+1) ≤ k max{d(yp−1, yp), d(yq, yq+1), d(yp−1, yq), d(yq, yp), d(yp−1, yq+1)}
≤ k max{d(yp−1, yp), d(yq, yq+1), d(yp−1, yq), d(yq, yp), d(yp−1, yq),

d(yq, yq+1)}.

If q = p , then

d(yp, yp+1) ≤ k max{d(yp−1, yp), d(yp, yp+1)} = kd(yp−1, yp).

So d(y2k, y2k+1) ≤ kd(y2k−1, y2k). Similarly , d(y2k+1, y2k+2) ≤ kd(y2k, y2k+1).
Hence for each n ∈ N we have

d(yn, yn+1) ≤ kd(yn−1, yn). (1)

It follows that {d(yn, yn+1)} is non-increasing. Thus there exists α ≥ 0 such
that limn→∞ d(yn, yn+1) = α. From this and (1) we see that α = 0. Thus
limn→∞ d(yn, yn+1) = 0. Let ε > 0 be arbitrary. Choose a positive number δ
such that δ < (ε − kε)/3 and kt < kε + (ε − kε)/3, whenever t ∈ (ε, ε + 2δ).
Since d(yn, yn+1) → 0, there exists an integer N ≥ 1 such that

d(yn−2, yn−1) < δ (2)
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for all n ≥ N . By induction we show that for each m ≥ n ≥ N

d(yn, ym) < kε +
ε − kε

3
+ 2δ. (3)

Fixe n ≥ N . Obviously, (3) holds for m = n + 1. Assuming (3) to hold for
an integer m ≥ n + 1, we shall prove that (3) holds for m + 1. We have to
consider the following cases.

(I) if n = 2k and m = 2q, then d(yn, ym) = d(y2k, y2q) and d(yn, ym+1) =
d(y2k, y2q+1)

(II) if n = 2k and m = 2q+1, then d(yn, ym+1) ≤ max{d(y2k, y2q+1), d(ym, ym+1)}
(III) if n = 2k+1 and m = 2q, then d(yn, ym+1) ≤ max{d(y2k, y2q+1), d(yn−1, yn)}
(IV) if n = 2k + 1 and m = 2q + 1, then

d(yn, ym+1) ≤ max{d(y2k, y2q+1), d(yn−1, yn), d(ym, ym+1)} (4)

Consider the case (IV). The other cases are similar. Since d(y2k, y2q+1) =
d(Lx2k, Mx2q+1), by (2), (4) and (v) we have

d(yn, ym+1) ≤ k max{d(Lx2k, Mx2q+1), δ, δ} ≤ k max{d(y2k−1, y2k), d(y2q, y2q+1),

d(y2k−1, y2q), d(y2q, y2k), d(y2k−1, y2q+1), δ} (5)

≤ ktn,m,

where

tn,m = max{d(y2k−1, y2k), d(y2q, y2q+1), d(y2k−1, y2q), d(y2q, y2k), d(y2k−1, y2q+1)}.
Now we show that

d(Lx2k, Mx2q+1) ≤ kε + (ε − kε))/3, (6)

We have

d(Lx2k, Mx2m+1) ≤ ktn,m. (7)

If n = 2k+1 and m = 2q+1, then by the induction hypotheses d(y2k+1, y2q+1) <
kε + (ε − kε)/3 + 2δ. It follows from (2) that d(y2k−1, y2k) = d(yn−2, yn−1) < δ
and d(y2q, y2q+1) = d(ym−1, ym) < δ. From this and (2) we see that

d(y2k−1, y2q) ≤ max{d(y2k+1, y2q+1), d(yn−2, yn−1), d(yn−1, yn), d(ym−1, ym)}
≤ max{kε + (ε − kε)/3 + 2δ, δ} < ε + 2δ.

Hence

d(y2q, y2k) ≤ max{d(y2k+1, y2q+1), d(yn−1, yn), d(ym−1, ym)}
≤ max{kε + (ε − kε)/3 + 2δ, δ, δ} < ε + 2δ
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and

d(y2k−1, y2q+1) ≤ max{d(y2k+1, y2q+1), d(yn−2, yn−1), d(yn−1, yn)}
≤ max{kε + (ε − kε)/3 + 2δ, δ, δ} < ε + 2δ.

Thus tn,m < ε+2δ and so ktn,m < kε+(ε−kε)/3 by (7). Hence d(Lx2p, Mx2q+1) ≤
kε + (ε − kε)/3. Thus we have proved (6). Clearly, from (6) and (7) we infer
that

d(yn, ym+1) < kε + (ε − kε)/3 + 2δ.

Thus (5) holds. Since δ < (ε−kε)/3, we have d(yn, ym) < ε for all m ≥ n ≥ N .
Hence {yn} is a Cauchy sequence in X. Since X is complete, there exists z ∈ X
such that

lim
n

yn = lim
k

Mx2k+1 = lim
k

STx2k+1

= lim
k

Lx2k = lim
k

ABx2k = z.

Now, let AB be continuous. Then ABx2k → ABz and ABLx2k → ABz. Also,
as (L, AB) is compatible, LABx2k → ABz.

(a) From (v) with u = ABx2k and v = x2k+1, we have

d(LABx2k, Mx2k+1) ≤ k max{d(ABABx2k, LABx2k), d(STx2k+1, Mx2k+1),

d(ABABx2k, STx2k+1), d(STx2k+1, LABx2k),

d(ABABx2k, Mx2k+1)}.
It follows that

d(ABz, z) ≤ k max{d(ABz, ABz), d(z, z), d(ABz, z), d(z, ABz), d(ABz, z)}.
So d(ABz, z) ≤ kd(ABz, z). This implies that d(ABz, z) = 0. Hence ABz = z.

(b) Put u = z and v = x2k+1 in condition (v). Then

d(Lz, Mx2k+1) ≤ k max{d(ABz, Lz), d(STx2k+1, Mx2k+1), d(ABz, STx2k+1),

d(STx2k+1, Lz), d(ABz, Mx2k+1)}.
Thus

d(Lz, z) ≤ k max{d(z, Lz), d(z, z), d(z, z), d(z, Lz), d(z, z)}
= kd(Lz, z).

This implies that d(Lz, z) = 0. Therefore, Lz = ABz = z.
(c) From (v) with u = Bz and v = x2k+1, condition (ii), we see that

d(LBz, Mx2k+1) ≤ k max{d(ABBz, LBz), d(ABBz, TSx2k+1), d(TSx2k+1,

Mx2k+1), d(TSx2k+1, LBz), d(ABBz, Mx2k+1)}.
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Hence

d(Bz, z) ≤ k max{d(Bz, Bz), d(z, z), d(Bz, z), d(z, Bz), d(Bz, z)}
= kd(Bz, z).

This shows that Bz = z. Continuing this procedure, we obtain Lz = Az =
Bz = z. By condition (i), there exists v ∈ X such that z = Lz = STv.

(d) Putting u = x2k in condition (v), we have

d(Lx2k, Mv) ≤ k max{d(ABx2k, Lx2k), d(STv, Mv),

d(ABx2k, STv), d(STv, Lx2k), d(ABx2k, Mv)}.

So

d(z, Mv) ≤ k max{d(z, z), d(z, Mv), d(z, z), d(z, z), d(z, Mv)}
= kd(z, Mv).

Hence Mv = z and therefore STv = Mv = z. As (M, ST ) is weakly compati-
ble, we have STMv = MSTv. Thus STz = Mz.

(e) Putting u = x2k and v = z in condition (v), we have

d(Lx2k, Mz) ≤ k max{d(ABx2k, Lx2k), d(STz, Mz),

d(ABx2k, STz), d(STz, Lx2k), d(ABx2k, Mz)}.

Thus

d(z, Mz) ≤ k max{d(z, z), d(Mz, Mz), d(z, Mz), d(Mz, z)), d(z, Mz)}
= kd(z, Mz).

So, STz = Mz = z.
(f) Putting u = x2k and v = Tz in condition (v), we have

d(Lx2k, MTz) ≤ k max{d(ABx2k, Lx2k), d(STTz, MTz),

d(ABx2k, STTz), d(STTz, Lx2k), d(ABx2k, BTz)}.

Then

d(z, T z) ≤ k max{d(z, z), d(Tz, Tz), d(z, T z)), d(Tz, z), d(Tz, z)}
= kd(z, T z).

Therefore Tz = z. Continuing this procedure, we have Mz = Sz = Tz. Thus
we have proved

Lz = Mz = Az = Bz = Sz = Tz = z.
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If L is continuous, then L2x2k → Lz. Since (L, AB) is compatible, we have
ABLx2k → Lz.

(g) Putting u = Lx2k and v = x2k+1 in condition (v), we have

d(L2x2k, Mx2k+1) ≤ k max{d(ABLx2k, L
2x2k), d(STx2k+1, Mx2k+1),

d(ABLx2k, STx2k+1), d(STx2k+1, L
2x2k)),

d(ABLx2k, Mx2k+1))}.

Hence

d(Lz, z) ≤ k max{d(Lz, Lz), d(z, z), d(Lz, z), d(z, Lz), d(Lz, z)}
= kd(Lz, z).

Therefore Lz = z. Now , using step (d) , (e) and (f) and continuing step (f)
gives us Mz = Sz = Tz = z.

(h) By condition (i), there exists w ∈ X such that z = Mz = ABw. Putting
u = w and v = x2k+1 in condition (v), we have

d(Lw, Mx2k+1) ≤ k max{d(ABw, Lw), d(STx2k+1, Mx2k+1), d(ABw, STx2k+1),

d(STx2k+1, Lw), d(ABw, Mx2k+1)}.

Thus

d(Lw, z) ≤ k max{d(z, Lw), d(z, z), d(z, z), d(z, Lw), d(z, z)} = kd(z, Lw).

This implies that Lw = z = ABw. As (L, AB) is weakly compatible, we have
Lz = ABz = z. Similarly to in step (c) it can be shown that Az = Bz = Lz =
z. Thus we have proved that

Lz = Mz = Az = Bz = Sz = Tz = z.

Let

Lź = Mź = Aź = Bź = Sź = T ź = ź

for some ź ∈ X. Putting u = z and v = ź in condition (v), we have

d(Lz, Mź) ≤ k max{d(ABz, Lz), d(ST ź, Mź), d(ABz, ABź), d(ST ź, Lz),

d(ABz, Mź)} = kd(z, ź).

This means that d(z, ź) ≤ kd(z, ź), thus z = ź and this show that z is a unique
common fixed point of the maps.
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