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Abstract

In this paper, we define the concept compatible and weakly com-
patible for a non-Archimedean metric space and find conditions which
under a family of weakly compatible maps on non-Archimedean metric
spaces has a unique common fixed point.
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1 Introduction

Let as recall that a non-Archimedean metric a nonempty set X is a non-
negative real valued function on X x X such that for all z,y, z € X.
(i) =y if and only if d(z,y) = 0.

(i) d(z,y) = d(y, z).

(iii) d(x, z) < max{d(z,y),d(y, z)}.

A non-Archimedean metric space is a pair (X, d) such that X is a nonempty
set and d is a non-Archimedean metric on X.

Jungck [5] has generalized the notion of commuting maps by introducing
the notion of compatible mappings. Moreover, Jungck and Rhoades [6] have
introduced the notion of weakly compatible mappings. Here, we define the
concepts of compatible and weakly compatible for non-Archimedean metric
spaces.

Definition 1.1 Let A and S be self-maps of a non-Archimedean metric
space (X, d).

(i) the pair (A, S) is said to be compatible if d(ASp,, SAp,) — 0 whenever
{pn}is a sequence in X such that d(Ap,,u) — Oand d(Sp,,u) — 0 for some
ue X ,asn — oo.
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(i) the pair (A,S) is said to be weakly compatible if AP = SP for some
p € X, then ASp = SAp.

Many authors have proved common fixed point theorems for a variety of
commuting self-mapping on usual metric, as well as on different kinds of gen-
eralized metric space [1, 2, 3, 4, 7]. For example, in [2] Ciric has proved the
following common fixed point theorem.

Theorem 1.2 Let (X,d) be a complete, metric space and {Ty}aecs be a
family of self-mapping on X. If there exists a fixed 3 € J such that for each
ac€Jandallx,y e X

d(Towx, Tpy) < Amax{d(x,y),d(x, Tox),d(y, Tpy), 1/2[d(z, Ty) + d(y, Tux)]},
where A = A(«) € (0,1), then all T,, have a unique common fized point in X.

Singh and Jain [1] have proved the following common fixed point theorem
for commuting self -mappings.

Theorem 1.3 let A, B,S,T,L and M be self - maps of a complete matric
space (X, d), satisfying the conditions .

(i) L(X) C ST(X), M(X) C AB(X).

(i) AB=BA, ST =TS, LB=BL, MT =TM.

(iil) for all z,y € X and for some k € (0,1)

d(Lx, My) < kmax{d(Lz, ABz),d(My, STy),d(ABz, STy),

1/2[d(Lz, STy) + d(My, ABz)]}.

(iv) the pair (L, AB) is compatible and the pair (M, ST) is weakly compat-
wble.

(v) either AB or L is continuous.

Then A, B, S, T, L and M have a unique common fized point.

In this paper, we prove this result for non-Archimedean metric spaces.

2 Main Result

We commence this section with the main result of the paper.

Theorem 2.1 Let A, B, S, T, L and M be self-maps on a non—Archimedean
complete metric space (X,d). If

(i) L(X) C ST(X) and M(X) C AB(X);

(il) AB=BA, LB=BL, ST =TS and MT =TM;
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(iii) AB or L is continuous;
(iv) the pair (L, AB) is compatible and pair (M, ST) is weakly compatible;
(v) there exists 0 < k < 1 such that for every u,v € X

d(Lu, Mv) < kmax{d(ABu, Lu),d(STv, Mv),
d(ABu, STv),d(STv, Lu),d(ABu, Mv))},

then A, B,S,T, L, M have a unique common fixed point in X.
Proof. Choose xg € X. Then there exists x1, x5 € X such that
Lxg= STz =1y and Mx; = ABxy = y;.
Inductively we can construct sequences {x,} and {y,} in X such that
Lxgy = STxop41 = yor and  Mmopy1 = ABZopto = Yorta
for k € N. From (v) with u = z, = z9;, and v = 411 = Tam+1 We have

d(Yar, Yom+1) < kmax{d(yar—1,Y2k), A(Y2m: Y2m+1), A(Y2k—1, Yom)
d(me: yzk), d(y%fl, meH)}-

Since X is non—Archimedean, it follows that

d(ym yq—l—l) < k max{d(yp—la yp)> d(yq7 yq-l—l)a d(yp—la yq)> d(yq7 yp)u d(yp—la yq-i—l)}
< k maX{d(yp—la yp)> d(yq7 yq-l—l)a d(yp—la yq)> d(yq7 yp)u d(yp—la yq)>
d(yqv yq+1)}'
If g=p, then

Ad(Yp, Yp+1) < kmax{d(yp—1,Yp), d(Yp, Yp+1)} = kd(Yp-1,yp).

So d(yok, Yor+1) < kd(yar—1,yok). Similarly , d(yort1, Yort2) < kd(Yok, Yort1)-
Hence for each n € N we have

d(ym yn+1) S kd(ynfla yn> (1)

It follows that {d(y,,yn+1)} is non-increasing. Thus there exists a > 0 such
that lim,— o d(Yn, Yn+1) = «. From this and (1) we see that a = 0. Thus
limy, oo d(Yn, Yns1) = 0. Let € > 0 be arbitrary. Choose a positive number &
such that ¢ < (¢ — ke)/3 and kt < ke + (¢ — ke)/3, whenever t € (g,e + 26).
Since d(Yn, Ynt1) — 0, there exists an integer N > 1 such that

d(yn—% yn—l) < 6 (2>
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for all n > N. By induction we show that for each m > n > N

€ — ke

A(Yn, Ym) < ke + +20. (3)

Fixe n > N. Obviously, (3) holds for m = n + 1. Assuming (3) to hold for
an integer m > n + 1, we shall prove that (3) holds for m + 1. We have to
consider the following cases.
(I) if n = 2k and m = 2q, then d(Yn, Ym) = d(Y2k, Y24) and d(Yn, Ym+1) =
d(Yak; Y2q+1)
(I) if n = 2k and m = 2¢+1, then d(yn, Ym+1) < max{d(Yar, Y2q+1)s A(Ym: Ym+1)}
(III) if n = 2k+1 and m = 2q, then d(Yn, Ym+1) < max{d(Yor, Y24+1), d(Yn-1,Yn)}
(IV) if n =2k + 1 and m = 2¢ + 1, then

d(ym merl) S maX{d(ka: y2q+1)7 d(ynfla yn): d(yma ym+1)} (4>

Consider the case (IV). The other cases are similar. Since d(yax, Y2g+1) =
d(Lzog, Mxagi1), by (2), (4) and (v) we have

d(yTH ym+1) S k maX{d(Lkaa Mqu—i—l)a 57 5} S k max{d(ka—h y?k)a d(y2q7 y2q+1)7

d(y%—h y2q)> d(y2q7 y2k)> d(y%_h y2q+1)7 5} (5)
< Ktpom,

where

tnm = max{d(Yor—1, Y2 ), AY2q, Y2q+1)s A(Y2k-1, Y24)> A(Y2qs Y2i) A(Yo2k—1, Y2g+1) }-

Now we show that
d(Lxog, Mxogi1) < ke + (¢ — ke))/3, (6)
We have
d(Lxog, Mxomi1) < Kty m. (7)

If n = 2k+1 and m = 2¢+1, then by the induction hypotheses d(yax+1, Y2g+1) <
ke + (e — ke)/3 + 26. It follows from (2) that d(yax—1,Yor) = d(Yn—2, Yn—1) < 0
and d(y2q, Y2q+1) = d(Ym—-1,Ym) < 6. From this and (2) we see that

d(y%—h y2q) < maX{d(y2k+1a y2q+1)7 d(yn—27 yn—1)7 d(yn—h yn)> d(ym—la ym)}
< max{ke + (¢ — ke)/3+ 20,0} < e+ 20.

Hence

maX{d<y2k+17 y2q+1)7 d(yn—la yn)7 d(ym—h ym)}
max{ke + (¢ — ke)/3 +24,0,0} < e+ 20

d(y2q7 ka)
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and

maX{d(kaJrl: y2q+1)7 d(yan: ynq), d(ynfla yn)}
max{ke + (¢ — ke)/3 +24,6,0} < e+ 20.

d(Yok-1,Yoq+1) <
<

Thus t,,m < £+20 and so kt,, ., < ke+(e—ke)/3 by (7). Hence d(Lxa,, Mxyy+1) <
ke 4+ (¢ — ke)/3. Thus we have proved (6). Clearly, from (6) and (7) we infer
that

A(Yn, Ym+1) < ke + (e — ke)/3 + 20.

Thus (5) holds. Since 6 < (e —ke)/3, we have d(yn, ym) < € for allm >n > N.
Hence {y,} is a Cauchy sequence in X. Since X is complete, there exists z € X
such that

lign Yn = lilgn Mzopq = lilgn ST xoks1
= lilgn Loy, = lilgn ABxy, = 2.
Now, let AB be continuous. Then ABxqy, — ABz and ABLxy, — ABz. Also,

as (L, AB) is compatible, LABxy, — ABz.
(a) From (v) with u = ABxy, and v = x9;41, we have

d(LABJZ'Qk, MkaJrl) S k max{d(ABABka, LAB.TQk), d(ST.TQkJrl, M$2k+1),
d(ABABJZ‘Qk, STx2k+1), d(ST.ﬁIfngrl, LAB.TQk),
d(ABABZL’Qk, MIQ]H_l)}.

It follows that
d(ABz, z) < kmax{d(ABz,ABz),d(z,2),d(ABz, z),d(z, ABz),d(ABz, z) }.

Sod(ABz, z) < kd(ABz, z). This implies that d(ABz, z) = 0. Hence ABz = z.
(b) Put w = z and v = x9x41 in condition (v). Then

d(Lz, Mxo+1) < kmax{d(ABz, Lz),d(STxops1, Mxops1),d(ABz, STxok11),
d(STx2k+1, LZ), d(ABZ, M$2k+1)}.

Thus

d(Lz,z) < kmax{d(z, Lz),d(z,2),d(z,z2),d(z, Lz),d(z,2)}
— kd(Lz,2).
This implies that d(Lz, z) = 0. Therefore, Lz = ABz = .
(¢) From (v) with u = Bz and v = 29,41, condition (ii), we see that

d(LBz, Mxory1) < kmax{d(ABBz,LBz),d(ABBz,TSxok1),d(TSxop11,
M$2k+1), d(TSIQk_H, LBZ), d(ABBZ, M$2k+1)}.
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Hence

d(Bz,z) < kmax{d(Bz,Bz),d(z,z2),d(Bz,z),d(z, Bz),d(Bz, z)}
= kd(Bz,2z).

This shows that Bz = 2. Continuing this procedure, we obtain Lz = Az =
Bz = z. By condition (i), there exists v € X such that z = Lz = STw.
(d) Putting u = 9 in condition (v), we have

d(Lzog, Mv) < kmax{d(ABzay, Lxa),d(STv, Mv),
d(ABxog, STv),d(STv, Lray), d(ABxog, Mv)}.

So

d(z, Mv) < kmax{d(z, 2),d(z, Mv),d(z,z),d(z, z),d(z, Mv)}
— kd(z, Mv).

Hence Mv = z and therefore STv = Mv = z. As (M, ST) is weakly compati-
ble, we have ST Mv = MSTv. Thus STz = Mz=z.
(e) Putting u = 9, and v = 2z in condition (v), we have

d(Lxor, Mz) < kmax{d(ABxa, Lroy),d(STz, Mz),
d(ABxog, STz),d(STz, Lxay), d(ABxog, M2)}.

Thus

d(z,Mz) < kmax{d(zz),d(Mz, Mz),d(z, Mz),d(Mz,z)),d(z, Mz)}
— kd(z, M2).

So, STz= Mz = z.
(f) Putting u = x9 and v = T’z in condition (v), we have

d(Lzog, MTz) < kmax{d(ABzay, Lxoy),d(STTz, MTz),
d(ABxoy, STTz2),d(STTz, Lxay), d(ABxoy, BTz)}.

Then

d(z,Tz) < kmax{d(z,z2),d(TzTz),d(z,Tz)),d(Tzz2),dTzz)}
= kd(z,Tz).

Therefore Tz = z. Continuing this procedure, we have Mz = Sz = Tz. Thus
we have proved

Lz=Mz=A2=Bz=52=Tz= 2.
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If L is continuous, then L%*ry, — Lz. Since (L, AB) is compatible, we have
ABLxo, — Lz.
(g) Putting u = Lxog and v = 2941 in condition (v), we have

d(L2I2k, Ml'gk_H) S k max{d(ABLxgk, L2$2k), d(STIQk_H, M$2k+1),
d(ABLxoy, STxops1), A(STxop i1, LPwar)),
d(ABLZL’Qk, M$2k+1))}.

Hence

d(Lz,z) < kmax{d(Lz,Lz),d(z,z2),d(Lz,z),d(z,Lz),d(Lz,z)}
kd(Lz, z).
Therefore Lz = z. Now , using step (d) , (e) and (f) and continuing step (f)
givesus Mz =85z=Tz = z.

(h) By condition (i), there exists w € X such that z = Mz = ABw. Putting
u=w and v = T,y in condition (v), we have

d(Lw, Mxop11) < kmax{d(ABw, Lw),d(STxok+1, Mxog11), d(ABw, ST w2k 1),
d(ST.ﬁIfngrl, Lw), d(ABw, MkaJrl)}-

Thus

d(Lw, z) < kmax{d(z, Lw),d(z, z),d(z, z),d(z, Lw),d(z, 2)} = kd(z, Lw).
This implies that Lw = z = ABw. As (L, AB) is weakly compatible, we have
Lz = ABz = z. Similarly to in step (c) it can be shown that Az = Bz = Lz =
z. Thus we have proved that

Lz=Mz=A2=Bz=82=Tz= 2.

Let
Li=Mz:i=A2=B:=5=T%2=%

for some £ € X. Putting u = z and v = £ in condition (v), we have

d(Lz, M%) < kmax{d(ABz,Lz),d(ST% M£%),d(ABz, AB%),d(ST%, Lz),
d(ABz, M%)} = kd(z, %).

This means that d(z, ) < kd(z, £), thus z = Z and this show that z is a unique
common fixed point of the maps.
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