On the Stability of an Iteration in Cone Metric Spaces

Bahmann Yousefi and Gholam Reza Moghimi

Department of Mathematics, Payame Noor University P.O. Box: 19395-3697, Tehran, Iran b_yousefi@pnu.ac.ir, Moghimimath@gmail.com

Abstract

In this paper we give necessary conditions for the semistability of an iteration procedure in cone metric spaces.

Mathematics Subject Classification: 47J25; 26A18

Keywords: Cone metric, nonexpansive, stability

1 Introduction

Let E be a real Banach space. A subset $P \subset E$ is called a cone in E if it satisfies the following:

- (i) P is closed, nonempty and $P \neq \{0\}$.
- (ii) $a, b \in R$, $a, b \ge 0$ and $x, y \in P$ imply that $ax + by \in P$.
- (iii) $x \in P$ and $-x \in P$ imply that x = 0.

The space E can be partially ordered by the cone $P \subset E$, by defining; $x \leq y$ if and only if $y - x \in P$. Also, we write $x \ll y$ if $y - x \in int P$, where int P denotes the interior of P. A cone P is called normal if there exists a constant k > 0 such that $0 \leq x \leq y$ implies $||x|| \leq k||y||$.

In the following we suppose that E is a real Banach space, P is a cone in E and \leq is a partial ordering with respect to P.

Definition 1.1 ([1]) Let X be a nonempty set. Assume that the mapping $d: X \times X \to E$ satisfies the following:

- (i) $0 \le d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y,
- (ii) d(x,y) = d(y,x) for all $x, y \in X$,
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in X$.

Then d is called a cone metric on X and (X,d) is called a cone metric space.

If T is a self-map of X, then by F(T) we mean the set of fixed points of T. Also, N_0 will denotes the set of nonnegative integers, i.e., $N_0 = N \cup \{0\}$.

Lemma 1.2 ([3]) Let P be a normal cone, and let $\{a_n\}$ and $\{b_n\}$ be sequences in E satisfying the following inequality:

$$a_{n+1} \leq ha_n + b_n$$

where $h \in (0,1)$ and $b_n \to 0$ as $n \to \infty$. Then $\lim_n a_n = 0$.

Definition 1.3 A self-map T of (X, d) is called nonexpansive if

$$d(Tx, Ty) \le d(x, y)$$

for all $x, y \in X$.

Definition 1.4 A self-map T of (X, d) is called affine if

$$T(\alpha x + (1 - \alpha)y) = \alpha Tx + (1 - \alpha)Ty$$

for all $x, y \in X$, and $\alpha \in [0, 1]$.

For some sources on this topics see [1–7].

2 Main Result

Let (X, d) be a cone metric space and T be a self-map of X. Let x_0 be a point of X, and assume then $x_{n+1} = f(T, x_n)$ is an iteration procedure involving T, which yields a sequence $\{x_n\}$ of points from X. The stability of Picard's iteration, $x_{n+1} = Tx_n$, has been studied in metric spaces in [5]. Here we want to investigate the stability of the iteration

$$x_{n+1} = f(T, x_n) = (1 - \alpha_n)x_n + \alpha_n T z_n$$

where

$$z_n = (1 - \beta_n)x_n + \beta_n T x_n$$

and $\alpha_n, \beta_n \in [0, 1]$.

Definition 2.1 Let X be a vector space over the field F. Assume that the function $p: X \to E$ having the properties:

- (a) $p(x,y) \ge 0$ for all x, y in X.
- (b) $p(x+y) \le p(x) + p(y)$ for all x, y in X.
- (c) $p(\alpha x) = |\alpha| p(x)$ for all $\alpha \in F$ and $x \in X$.

Then p is called a cone seminorm on X. A cone norm is a cone seminorm p such that

(d)
$$x = 0$$
 if $p(x) = 0$.

We will denote a cone norm by $\|.\|_c$ and $(X, \|.\|_c)$ is called a cone normed space. Also, $d_c(x, y) = \|x - y\|_c$ defines a cone metric on X.

Definition 2.2 Let T be a self-map of a metric space (X, d). An iteration procedure $x_{n+1} = f(T, x_n)$ is said T-semistable if $\{x_n\}$ converges to a fixed point q of T, and whenever $\{y_n\}$ is a sequence in X with

$$\lim_{n} d(y_{n+1}, f(T, y_n)) = 0$$

and

$$d(y_n, f(T, y_n)) = o(t_n)$$

for some sequence $\{t_n\} \subset R^+$, we have $y_n \to q$.

Theorem 2.3 Let $(X, ||.||_c)$ be a cone normed space with respect to a normal cone P in the real Banach space E, and T be an affine nonexpansive self-map of X. Consider the iteration procedure

$$x_{n+1} = f(T, x_n) = (1 - \alpha_n)x_n + \alpha_n T z_n$$

where

$$z_n = (1 - \beta_n)x_n + \beta_n T x_n$$

and $\alpha_n, \beta_n \in [0, 1]$. If there exist $a \geq 0$ and $b \in (0, 1)$ such that

$$d_c(f(T, y_n), q) \le a \ d_c(f(T, y_n), y_n) + b \ d_c(y_n, q)$$
 (*)

for all sequences $\{y_n\}$ with

$$d_c(Ty_n, y_n) = o(\frac{1}{\alpha_n(1+\beta_n)}),$$

and all $q \in F(T)$, then the given iteration is T-semistable.

Proof. First, note that (*) implies that F(T) is a singleton. Indeed, if p and q belong to F(T), then by setting $y_n = p$ in (*) for all n, we get $d_c(p,q) \leq b \ d_c(p,q)$. This implies that p = q. Now let $F(T) = \{q_0\}$ and $\{y_n\} \subseteq X$ be such that

$$\lim_{n} d_{c}(y_{n+1}, f(T, y_{n})) = \lim_{n} \alpha_{n}(1 + \beta_{n}) \ d_{c}(Ty_{n}, y_{n}) = 0.$$

Now we show that $y_n \to q_0$. To see this note that by using the notation (*) we have:

$$d_c(y_{n+1}, q_0) \leq d_c(y_{n+1}, f(T, y_n)) + d_c(f(T, y_n), q_0)$$

$$\leq d_c(y_{n+1}, f(T, y_n)) + a d_c(f(T, y_n), y_n) + b d_c(y_n, q_0)$$

$$= c_n + b d_c(y_n, q_0),$$

where

$$c_n = d_c(y_{n+1}, f(T, y_n)) + a \ d_c(f(T, y_n), y_n).$$

By Lemma 1.2, it is sufficient to show that

$$c_n \to 0$$
.

For this we show that $d_c(f(T, y_n), y_n) \to 0$ as $n \to \infty$. Note that

$$d_{c}(f(T, y_{n}), y_{n}) = \|f(T, y_{n}) - y_{n}\|_{c}$$

$$= \|(1 - \alpha_{n})y_{n} + \alpha_{n}T(z_{n}) - y_{n}\|_{c}$$

$$= \alpha_{n} \|Tz_{n} - y_{n}\|_{c}$$

$$= \alpha_{n} \|T((1 - \beta_{n})y_{n} + \beta_{n}Ty_{n}) - y_{n}\|_{c}$$

$$\leq \alpha_{n}[(1 - \beta_{n}) \|Ty_{n} - y_{n}\|_{c} + \beta_{n} \|T^{2}y_{n} - y_{n}\|_{c}]$$

$$= \alpha_{n}(1 - \beta_{n}) \|d_{c}(Ty_{n}, y_{n}) + \alpha_{n}\beta_{n} \|d_{c}(T^{2}y_{n}, y_{n})$$

$$\leq \alpha_{n}(1 - \beta_{n}) \|d_{c}(Ty_{n}, y_{n}) + \alpha_{n}\beta_{n} \|d_{c}(T^{2}y_{n}, y_{n})$$

$$+ \alpha_{n}\beta_{n} \|d_{c}(Ty_{n}, y_{n})$$

$$\leq \alpha_{n}(1 - \beta_{n}) \|d_{c}(Ty_{n}, y_{n}) + 2\alpha_{n}\beta_{n} \|d_{c}(Ty_{n}, y_{n})$$

$$= [\alpha_{n}(1 - \beta_{n}) + 2\alpha_{n}\beta_{n}] \|d_{c}(Ty_{n}, y_{n})$$

$$= \alpha_{n}(1 + \beta_{n}) \|d_{c}(Ty_{n}, y_{n})$$

which tends to 0 since

$$d_c(Ty_n, y_n) = o(\frac{1}{\alpha_n(1+\beta_n)}).$$

Thus $y_n \to q_0$ and so the iteration $x_{n+1} = f(T, x_n)$ is T-semistable. So the proof is complete. \square

References

- [1] M. Asadi, Soleimani, S. M. Vaezpour, and B. E. Rhoades, "On T-stability of picard iteration in cone metric spaces", *Fixed point Theory and Applications*, **2009**, Article ID 751090, 6 pages, 2009.
- [2] A. M. Harder and T. L. Hicks, "Stability results for fixed point iteration procedures", *Mathematica Japanica*, **33** (5) (1988), 693-706.
- [3] L. G. Huang and X. Zheng, "Cone metric space and fixed point theorems of contractive mapping", *Journal of Mathematic Analysis and Applications*, **332** (2) (2007), 1468-1476.
- [4] D. Ilic and V. Rakocevic, "Quasi-contraction on a cone metric space", *Applied mathematics letters*, **22** (5) (2009), 728-731.

- [5] Y. Qing and B. E. Rhoades, "T-stability of picard iteration in metric spaces", Fixed point Theory and Applications, 2008, Article ID 418971, 4 pages, 2008.
- [6] B. E. Rhoades and S. M. Soltus, "The equivalence between the T-stabilities of Mann and Ishikawa iterations", Journal of Mathematic Analysis and Applications, 318 (2006), 472-475.
- [7] T. Zamfirescu, "Fixed point theorem in metric spaces", Arch. Math. (Basel), 23 (1972), 91-101.

Received: January, 2012