Property(ω) and Hypercyclic/ Supercyclic Operators

Abdeslam El Bakkali and Abdelaziz Tajmouati

Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar El Marhaz, Fez, Morocco abdelaziztajmouati@yahoo.fr, aba0101q@yahoo.fr

Abstract

Let T be a bounded linear operator acting on a complex separable infinite-dimensional Banach space X. Denote by T^* the adjoint of T, We say that T satisfies the property (ω) if : $\sigma_a(T) \setminus \sigma_{uw}(T) = \pi_{00}(T)$ where $\sigma_a(T)$, $\sigma_{uw}(T) \pi_{00}(T)$ are respectively the approximate point spectrum, the upper semi-Weyl spectrum and the set of isolated eigenvalues of finite multiplicities of T. In the present paper we show that if T is supercyclic/hypercyclic then T satisfies the property (ω) if and only if $\pi_{00}(T) = \pi_{00}(T^*)$. Also if X is a separable Hilbert space and T satisfies the property (ω) , we give the necessary and sufficient conditions for T to be in the norm-closure of the class of hypercyclic (supercyclic) operators.

Keywords: Weyl's theorem, Browder's theorem, property(ω) hypercyclic/supercyclic operators

1 Introduction, Notation and Terminology

Throughout this paper $\mathcal{B}(X)$ denots the Banach algebra of all bounded operators acting in an infinite-dimensional complex Banach space X. For an operator $T \in \mathcal{B}(X)$, T is said to be cyclic if there is a vector $x_0 \in X$, called cyclic vector, such that the orbit $Orb(T, x_0) = (T^k x_0)_{k \geq 0}$ has dense linear span $\overline{Vect(Orb(T, x_0))} = X$. T is said supercyclic if there exists a vector $x_0 \in X$ called supercyclic vector for T such that the set of scalar multiples of the orbit is dense, in the case that $\overline{Orb(T, x_0)} = X$. T is said hypercyclic (x_0 called hypercyclic vector for T), clearly if T is hypercyclic or supercyclic then X is separable. We denote by $\mathcal{H}P(X)$ (resp $\mathcal{S}P(X)$) the set of all hypercyclic (resp supercyclic) operator in $\mathcal{B}(X)$ and $\overline{\mathcal{H}P(X)}$ (rep $\overline{\mathcal{S}P(X)}$) the norm-closure of

the class $\mathcal{H}P(X)$ (resp $\mathcal{S}P(X)$), evidently $\mathcal{H}P(X) \subset \mathcal{S}P(X)$. The first example of a hypercyclic operator was constructed by Rolewicz [18], he showed hat if T is the backword shift on $l^2(IN)$ then λT is hypercyclic if and only if $|\lambda| > 1$, the first sufficient condition for hypercyclicity (hypercyclic criterion) discovered independently by Kitai [13] and Gethner and Shopiro [9]. Recently Salas [19] gave a characterization of supercyclic bilateral backword weighted shifts via the supersyclicity criterion (ie a sufficient condition for supercyclicity). Feldman, V. Miller and L.Miller [8] gave new supercyclicity criteria.

For $T \in \mathcal{B}(X)$ let N(T), T(X), $\sigma(T)$ and T^* denote respectively the kernel, the range, the spectrum, and adjoint of T. Let $\alpha(T) = dim N(T)$ and $\beta(T) = codim T(X)$ be the nullity and the deficiency of T respectively.

 $T \in \mathcal{B}(X)$ is called a semi-Fredholm operator if T(X) is closed and $\alpha(T) < \infty$ or $\beta(T) < \infty$, in the sequel $\rho_{sF}(T)$ will denote the semi-Fredholm resolvent set and the index of T is defined by: $ind(T) = \alpha(T) - \beta(T)$, if both $\alpha(T)$ and $\beta(T)$ are finite then T is a Fredholm operator.

An operator T is called Weyl operator if it is Fredholm operator of index zero, the descent q(T) and the ascent p(T) are given by $q(T) = \inf\{n : R(T^n) = R(T^{n+1})\}$ and $p(T) = \inf\{n : N(T^n) = N(T^{n+1})\}$ where the infimum over the empty set is taken ∞ , it is well known that if p(T) and q(T) are both finite then p(T) = q(T) [1], [14].

 $T \in \mathcal{B}(X)$ is called Browder operator if it is Fredholm operator of finite ascent and descent, the Weyl spectrum $\sigma_w(T)$ and Browder spectrum $\sigma_b(T)$ of T are defined by [1]:

 $\sigma_w(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl operator } \}$ and $\sigma_b(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Browder operator } \}$

Evidently $\sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma(T)$. We denote by $\mathcal{H}(\sigma(T))$ (resp $\mathcal{H}_c(\sigma(T))$)the set of all complex-valued functions which are analytic (resp analytic and non constant) in a neighborhood of the spectrum $\sigma(T)$, for $f \in \mathcal{H}(\sigma(T))$ the operator f(T) is defined by the classical functional calculus. Γ (resp $\Gamma_r, r \geq 0$) denote the unit circle (resp circle of radius r). In the case that X is Hilbert space the following simple spectral description of the $\overline{\mathcal{H}P(X)}$ and $\overline{\mathcal{S}P(X)}$ is due to Herrero [11].

Theorem 1.1. [11, Theorem(2-1)].

 $\overline{\mathcal{H}P(X)}$ is the class of all those operators $T \in \mathcal{B}(X)$ satisfying the conditions:

- 1) $\sigma_w(T) \bigcup \Gamma$ is connected
- 2) $\sigma(T) \setminus \sigma_b(T) = \emptyset$
- 3) $ind(\lambda I T) \ge 0$ for every $\lambda \in \rho_{sF}(T)$

<u>Theorem 1.2.</u> [11, Theorem(3-3)].

 $\overline{\mathcal{S}P(X)}$ is the class of all those operators $T \in \mathcal{B}(X)$ satisfying the conditions:

```
1) \sigma(T) \bigcup \Gamma_r is connected (for same r \geq 0)
```

- 2) $\sigma_w(T) \bigcup \Gamma_r$ is connected (for same $r \geq 0$)
- 2) either $\sigma(T)\setminus \sigma_b(T)=\emptyset$ or $\sigma(T)\setminus \sigma_b(T)=\{\alpha\}$ for same $\alpha\neq 0$
- 3) $ind(\lambda I T) \ge 0$ for every $\lambda \in \rho_{sF}(T)$

In [15] V.Miller and L.Miller proved the following corollary.

Corollary 1 [15, Corollary1]

Suppose that X is separable and $T \in \mathcal{B}(X)$, if $\lambda I - T$ is surjective and $\bigcup_{k\geq 0} N(\lambda I - T)^k$ is dense for some λ , then $\varphi(T)$ is supercyclic whenever $\varphi \in \mathcal{H}_c(\sigma(T))$, if G is the component of $\rho_{su}(T)$ containing λ , and if $\varphi(G) \cap \Gamma \neq \emptyset$ then $\varphi(T)$ is hypercyclic, $\rho_{su}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is surjectif } \}$.

Denote the following classes of operators, see [1], [2], [3],

 $\Phi_+(X) := \{T \in \mathcal{B}(X) : \alpha(T) < \infty \text{ and } T(X) \text{ is closed } \}$ the class of all upper semi-Fredholm operators,

 $\Phi_{-}(X) := \{T \in \mathcal{B}(X) : \beta(T) < \infty\}$ the class of all lower semi-Fredholm operators,

 $\Phi_{\pm}(X) := \Phi_{+}(X) \bigcup \Phi_{-}(X)$ the class of all semi-Fredholm operators,

 $\Phi(X) := \Phi_+(X) \cap \Phi_-(X)$ the class of all Fredholm operators,

 $\mathcal{B}_+(X) := \{T \in \mathcal{B}(X) : p(T) < \infty\}$ the class of all upper semi-Browder operators,

 $\mathcal{B}_{-}(X) := \{T \in \mathcal{B}(X) : q(T) < \infty\}$ the class of all lower semi-Browder operators,

 $\mathcal{B}_0(X) := \mathcal{B}_+(X) \cap \mathcal{B}_-(X)$ the class of all Browder operators,

 $\mathcal{W}_+(X) := \{T \in \Phi_+(X) : ind(T) \leq 0\}$ the class of all upper semi-Weyl operators,

 $\mathcal{W}_+(X) := \{T \in \Phi_-(X) : ind(T) \ge 0\}$ the class of all lower semi-Weyl operators,

 $\mathcal{W}(X) := \mathcal{W}_{+}(X) \cap \mathcal{W}_{-}(X)$ the class of all Weyl operators,

These classes of operators motivate the following spectra:

 $\sigma_{ub}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{B}_+(X)\}$ the upper semi-Browder spectrum of T

 $\sigma_{lb}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{B}_{-}(X)\}$ the lower semi-Browder spectrum of T

 $\sigma_b(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{B}_0(X)\}$ the Browder spectrum of T

 $\sigma_{uw}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{W}_+(X)\}$ the upper semi-Weyl spectrum of T

 $\sigma_{lw}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{W}_{-}(X)\}$ the lower semi-Weyl spectrum of T

 $\sigma_w(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \notin \mathcal{W}(X) \}$ the Weyl spectrum of T

we have: $\sigma_w(T) = \sigma_w(T^*)$; $\sigma_b(T) = \sigma_b(T^*)$ and $\sigma_{ub}(T) = \sigma_{lb}(T^*)$,

 $\sigma_{lb}(T) = \sigma_{ub}(T^*), \ \sigma_{uw}(T) \subseteq \sigma_{ub}(T), \ \text{and} \ \sigma_{lw}(T) \subseteq \sigma_{lb}(T).$

Recall that $T \in \mathcal{B}(X)$ is said to be bounded below if T is injective and

has closed range, the approximate point spectrum of T denoted by $\sigma_a(T)$, $\sigma_a(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not bounded below }\}$, we have, see [1] [14]: $\sigma_{uw}(T) \subseteq \sigma_a(T)$ and $\sigma_{lw}(T) \subseteq \sigma_a(T^*)$.

We say that $T \in \mathcal{B}(X)$ has the single-valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0) if for every open neighborhood U of λ_0 , the only analytic function $f: U \longrightarrow X$ which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in U$ is the function f = 0, we say that T has the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$, the SVEP was introduced by Dunford, it plays an important role in local spectral theory [1] [14].

Evidently T has the SVEP at every point of the resolvent $\rho(T) = \mathbb{C} \setminus \sigma(T)$ and both T, T^* have the SVEP at the points of the topological boundary $\partial \sigma(T)$ of the spectrum, in particular at every isolated point of $\sigma(T)$, ($\lambda_0 \in \text{iso } \sigma(T)$). We have the following implications [1]:

 $\lambda_0 \in \text{ iso } \sigma_a(T) \Longrightarrow T \text{ has SVEP at } \lambda_0$ (1)

In particular if the point spectrum $\sigma_p(T)$ is empty then T satisfied the SVEP. $p(\lambda_0 I - T) < \infty \Longrightarrow T$ has SVEP at λ_0 (2)

Dually, $q(\lambda_0 I - T) < \infty$ implies T^* has SVEP at λ_0 (3)

The implications (1), (2) and (3) are equivalences if we assume that $\lambda_0 I - T \in \Phi_{\pm}(X)$ [2].

For $T \in \mathcal{B}(X)$, let us consider the set of all Riesz points :

 $p_{00}(T) = \sigma(T) \setminus \sigma_b(T) = \{\lambda \in \sigma(T) : \lambda I - T \text{ is Browder operator } \}$ let as denote:

 $p_{00}^a(T) = \sigma_a(T) \setminus \sigma_{ub}(T) = \{ \lambda \in \sigma_a(T) : \lambda I - T \in \mathcal{B}_+(X) \}.$

 $\pi_{00}(T) = \{\lambda \in \text{ iso } \sigma(T) : 0 < \alpha(\lambda I - T) < \infty\}$ the set of isolated eigenvalues of finite multiplicities, and $\pi_{00}^a(T) = \{\lambda \in \text{ iso } \sigma_a(T) : 0 < \alpha(\lambda I - T) < \infty\}$ It should be noted that:

 $p_{00}(T) \subseteq p_{00}^a(T) \subseteq \pi_{00}^a(T), \ p_{00}(T) \subseteq \pi_{00}(T) \subseteq \pi_{00}^a(T) \text{ and } p_{00}(T) = p_{00}(T^*).$

Harte and W.Y. Lee [10] was introduced the Browder's theorem

and a-Browder's theorem : T is said to be satisfying Browder's theorem if $\sigma_w(T) = \sigma_b(T)$ or equivalently

 $\sigma(T)\backslash \sigma_w(T) = p_{00}(T)$, and T is said to be satisfy a-Browder's theorem if $\sigma_{uw}(T) = \sigma_{ub}(T)$ or equivalently $\sigma_a(T)\backslash \sigma_{uw}(T) = p_{00}^a(T)$.

In [1] we have a-Browder's theorem \Longrightarrow Browder's theorem

In [2] it is given that: T or T^* has SVEP \Longrightarrow a-Browder's theorem hold for both T, T^*

Coburn [6] introduced the Weyl's theorem: T is said to satisfy Weyl's theorem if $\sigma(T)\setminus \sigma_w(T) = \pi_{00}(T)$, this equality is the properly proved by Weyl in the case where T is a hermitian operator acting on Hilbert space [20], and after it has been extend to several classes of Hilbert spaces and Banach spaces operators [16].

Rakocevic [17] was introduced two variants of Weyl's theorem, the so called a-Weyl's theorem and the property (ω) studied also by Aiena, Pena and Gillen in [2], [3], [4]:

 $T \in \mathcal{B}(X)$ is said to satisfy a-Weyl's theorem if $\sigma_a(T) \setminus \sigma_{uw}(T) = \pi_{00}^a(T)$

 $T \in \mathcal{B}(X)$ is said to satisfy property (ω) if $\sigma_a(T) \setminus \sigma_{uw}(T) = \pi_{00}(T)$.

We have [3]: property $(\omega) \Longrightarrow$ a-Browder's theorem.

a-Weyl's theorem \Longrightarrow Weyl's theorem, and property (ω) \Longrightarrow Weyl's theorem.

The next theorem [2] establishes the precise relationship between property (ω) and a-Browder's theorem:

Theorem 1.3. [2, Theorem(2-7)].

If $T \in \mathcal{B}(X)$ the following statements are equivalent

- 1) T satisfies property(ω)
- 2) a-Browder's theorem hold for T and $p_{00}^a(T) = \pi_{00}(T)$

In presence of SVEP we have the equivalence between Weyl's theorem and property (ω) .

Theorem 1.4. [2, Theorem (2-16)].

Let $T \in \mathcal{B}(X)$ then the following equivalences hold.

1) if T^* has SVEP the property(w) holds for T if and only if Weyl's theorem holds for T, and this is the case if and only if a-Weyl's theorem holds for T 2) If T has SVEP:

 T^{\star} has property(ω) \iff T^{\star} satisfies Weyl's theorem \iff T^{\star} satisfies a-weyl's theorem

A result of Cao [5] shows the relations between hypercyclic (supercyclic) operators and the operators for which Weyl's theorem holds. More recently Duggel in [7] have given necessary and sufficient conditions for hypercyclic and supercyclic operators to satisfy a-weyl's theorem.

In this paper we study the property(ω) for hypercyclic/supercyclic operators, we prove that if $T \in \mathcal{H}P(X) \cup \mathcal{S}P(X)$, then T obeys the property(ω) if and only if $\pi_{00}(T) = \pi_{00}(T^*)$; Further if X is separable Hilbert space, in theorem (2-1)(see below) we characterized the norm-closure of hypercyclicty /supercyclicty for an operators which satisfies the property(ω).

2 Main results

We begin by the example.

Example:

Consider $X = \ell^2(\mathbb{N})$ and let $T : \ell^2(\mathbb{N}) \longrightarrow \ell^2(\mathbb{N})$ where

$$x = (x_1, x_2, ...) \longrightarrow T(x) = (x_2/2, x_3/3, ..., x_n/n, ...)$$

T is surjective quasi-nilpotent, $\overline{\bigcup_{k>1} N(T^k)} = X$, $\sigma(T) = \{0\}$ and

 $\pi_{00}(T) = \{0\}$, by corollary (1) T is supercyclic. Consider the Hilbert adjoint T' we have $T'(x) = T'(x_1, x_2, ...) = (0, x_1/2, x_2/3, ..., x_n/n + 1, ...)$

T' is injective quasi-nilpotent, $\sigma(T') = \{0\}$ and, $\pi_{00}(T') = \emptyset$.

Or $\overline{\pi_{\infty}(T')} = \pi_{\infty}(T^{\star})$ where the barre design the conjugate complex (see proof of [4;Th(2-4)]), then $\pi_{00}(T^{\star}) = \emptyset$, consequently $\pi_{00}(T^{\star}) \neq \pi_{00}(T)$.

In the other hand T et T^* has SVEP because $\sigma(T) = \sigma(T^*) = \{0\}$, by [3, Theorem(1-5)] we have $\sigma(T) = \sigma_a(T)$ and $\sigma_w(T) = \sigma_{uw}(T)$, $\sigma(T) \setminus \sigma_{uw}(T) = \emptyset$ because $\sigma(T) = \sigma_{uw}(T)$, and $\sigma_a(T) \setminus \sigma_{uw}(T) = \sigma(T) \setminus \sigma_w(T) \neq \pi_{00}(T)$.

Hence T does not satisfy property(ω).

In [11] Herrero proved that if $T \in \mathcal{H}P(X)$ then $\sigma_p(T^*) = \emptyset$, and if $T \in \mathcal{S}P(X)$ then either $\sigma_p(T^*) = \emptyset$ or $T = R \oplus \alpha I_{\mathbb{C}}$ where $\alpha \in \mathbb{C} \setminus \{0\}$ and $(1/\alpha)R \in \mathcal{H}P(X)$ (i.e $\sigma_p(T^*) = \emptyset$ or $\sigma_p(T^*) = \{\alpha\}, \alpha \neq 0$).

We give now the necessary and sufficient conditions for hypercyclic/supercyclic operators to have property (ω) .

Proposition 2.1. Let $T \in \mathcal{H}P(X) \bigcup \mathcal{S}P(X)$ then the following statement are equivalent.

- 1) the property (ω) holds for T
- 2) $\pi_{00}(T) = \pi_{00}(T^*)$

Proof: We show first that T^* satisfies weyl's theorem.

In fact, if $T \in \mathcal{H}P(X) \bigcup \mathcal{S}P(X)$ we have $\sigma_p(T^*) = \emptyset$ or $\sigma_p(T^*) = \{\alpha\}$ for $\alpha \in \mathbb{C}\setminus\{0\}$, this implies that T^* has SVEP, consequently T and T^* satisfies a-Browder's theorem (in particulary Browder's theorem).

-If $\sigma_p(T^*) = \emptyset$ we have $\pi_{00}(T^*) = \emptyset$, and from $p_{00}(T^*) \subseteq \pi_{00}(T^*)$ it then follows that $p_{00}(T^*) = \pi_{00}(T^*) = \emptyset$, since T^* has Browder's theorem it then by [2-Theorem(2-16)] T^* satisfies Weyl's theorem.

-If $\sigma_p(T^*) = \{\alpha\}$ for some $\alpha \neq 0$ such that $\alpha \notin \sigma_b(T^*)$ then $\pi_{00}(T^*) = \{\alpha\}$ and $\sigma(T^*) \setminus \sigma_b(T^*) = p_{00}(T^*) = \{\alpha\}$, consequently $p_{00}(T^*) = \pi_{00}(T^*) = \{\alpha\}$ then either by [2-Th(2-16)] T^* satisfies Weyl's theorem.

It should be noted that $p_{00}(T) = \sigma(T) \setminus \sigma_b(T) = \sigma(T) \setminus \sigma_w(T)$ because T satisfies a-Browder's theorem $(\sigma_{ub}(T) = \sigma_{uw}(T))$ and $\sigma_b(T) = \sigma_w(T)$, since T^* have SVEP then by [3-Th(1-5)] $\sigma(T) = \sigma_a(T)$ and $\sigma_w(T) = \sigma_{uw}(T)$, we then conclude that $p_{00}(T) = \sigma_a(T) \setminus \sigma_{uw}(T) = p_{00}^a(T)$ (*).

We prove $2)\Longrightarrow 1$). Suppose that $\pi_{00}(T)=\pi_{00}(T^*)$, since T^* satisfies Weyl's theorem then $p_{00}(T^*)=\pi_{00}(T^*)$ and by (\star) $\pi_{00}(T^*)=p_{00}(T^*)=p_{00}(T)$ therefore $p_{00}^a(T)=\pi_{00}(T)$, and since T have a-Browder's theorem we conclude by theorem (1-3) that T satisfies property(ω). To show the opposite implication $1)\Longrightarrow 2$): suppose that T satisfies property(ω), then $p_{00}^a(T)=\pi_{00}(T)$, since T^* has Weyl's theorem and (\star) we have $\pi_{00}(T^*)=p_{00}(T^*)=p_{00}(T)=p_{00}(T)=\pi_{00}(T)$

Corollory 2:

Suppose that for $T \in \mathcal{H}P(X) \bigcup \mathcal{S}P(X)$, T have $\pi_{00}(T) = \pi_{00}(T^*)$ then T satisfies a-Weyl's theorem.

Proof: Since $\pi_{00}(T) = \pi_{00}(T^*)$ and $T \in \mathcal{H}P(X) \bigcup \mathcal{S}P(X)$ then by proposition(2-1) T satisfies the property(ω), or T^* have SVEP, then by theorem(1-4) T satisfies a-Weyl's theorem. \square

Corollory 3:

Suppose that X is separable and $T \in \mathcal{B}(X)$, if $\lambda I - T$ is surjective and $\bigcup_{k\geq 0} N(\lambda I - T)^k$ is dense for some λ , then f(T) satisfies the property(ω) whenever $f \in \mathcal{H}_c(\sigma(T))$.

Proof:without loss of generality we assume $\lambda = 0$. We have :

 $\overline{\bigcup_{k\geq 0} N(T^k)} = X$ and T is surjective, by corollary (1) $f(T) \in \mathcal{S}P(X)$ for $f \in \mathcal{H}_c(\sigma(T))$, on the other hand by [12-proposition3] $\sigma(T)$ is connected, since $\sigma(f(T)^*) = \sigma(f(T)) = f(\sigma(T))$ then $\sigma(f(T))$ and $\sigma(f(T)^*)$ are connected. This implies that $\pi_{00}(f(T)) = \pi_{00}(f(T)^*) = \emptyset$, we conclude by proposition (2-1) that f(T) satisfies the property (ω) . \square

In the case that X is the separable Hilbert space then for $T \in \mathcal{B}(X)$ satisfies the property(ω), we have the following result.

Theorem 2.1.

Let $T \in \mathcal{B}(X)$ where X is separable Hilbert space, and suppose that T satisfies $property(\omega)$, then the following statements are equivalent:

1) $T \in \overline{\mathcal{H}P(X)} \iff 2$) $\sigma(T) \bigcup \Gamma$ is connected 3) $T \in \overline{\mathcal{S}P(X)} \iff 4$) $\sigma(T) \bigcup \Gamma_r$ is connected for some $r \ge 0$

Proof: 1) \Longrightarrow 2) Suppose that $T \in \overline{\mathcal{H}P(X)}$, by theorem(1-1) $\sigma_w(T) \bigcup \Gamma$

```
is connected, \sigma(T) = \sigma_b(T) and ind(\lambda I - T) \geq 0, \forall \lambda \in \rho_{sF}(T). Since T
satisfies the property(\omega), T satisfies Browder's theorem. Hence
\sigma_b(T) = \sigma_w(T) and \sigma(T) = \sigma_b(T) = \sigma_w(T) so \sigma(T) \bigcup \Gamma is connected.
2)\Longrightarrow1). Now suppose that \sigma(T) \bigcup \Gamma is connected. First we claim that
\sigma(T) = \sigma_w(T), to see this suppose that there is \lambda_0 \in \sigma(T) \setminus \sigma_w(T).
Observe that T satisfies Browder's theorem, consequently \sigma_w(T) = \sigma_b(T) and
\sigma(T)\setminus \sigma_w(T) = \sigma(T)\setminus \sigma_b(T) = p_{00}(T) \subseteq \pi_{00}(T).
Hence \lambda_0 \in \pi_{00}(T) and \lambda_0 \in \text{iso } \sigma(T), this entails that there exists an open
disc \mathcal{D}(\lambda_0,\varepsilon) such that \mathcal{D}(\lambda_0,\varepsilon)\cap\sigma(T)=\{\lambda_0\}, we have two cases: |\lambda_0|=1
or |\lambda_0| \neq 1.
-If |\lambda_0| \neq 1 then (we can take \varepsilon small) we have \mathcal{D}(\lambda_0, \varepsilon) \cap \Gamma = \emptyset and since
(\mathcal{D}(\lambda_0,\varepsilon)\cap\sigma(T))\cup\mathcal{D}(\lambda_0,\varepsilon)\cap\Gamma = \mathcal{D}(\lambda_0,\varepsilon)\cap(\sigma(T)\cup\Gamma) = \{\lambda_0\} and
\sigma(T) \bigcup \Gamma is connected, we have \sigma(T) \bigcup \Gamma = \{\lambda_0\}, this is impossible.
-If |\lambda_0| = 1, then \mathcal{D}(\lambda_0, \varepsilon) \cap \Gamma = \{z \in \Gamma : \theta_0 < arg(z) < \theta_1, \theta_0, \theta_1 \in IR\} =
\Gamma_{\theta_0,\theta_1}, we have:
(\mathcal{D}(\lambda_0,\varepsilon)\cap\sigma(T))\cup(\mathcal{D}(\lambda_0,\varepsilon)\cap\Gamma) = \mathcal{D}(\lambda_0,\varepsilon)\cap(\sigma(T)\cup\Gamma) = \{\lambda_0\}\cup\Gamma_{\theta_0,\theta_1} = \{\lambda_0
\Gamma_{\theta_0,\theta_1}; Since \sigma(T) \bigcup \Gamma is connected we have \sigma(T) \bigcup \Gamma = \Gamma_{\theta_0,\theta_1}, and this is
contradiction because \Gamma_{\theta_0,\theta_1} \subsetneq \Gamma.
We then conclude that \pi_{00}(T)=\emptyset , \sigma(T)=\sigma_w(T) and \sigma_w(T)\, \mathsf{LJ}\Gamma
is connected.
We show that ind(\lambda I - T) \geq 0 \ \forall \lambda \in \rho_{sF}(T), in fact suppose there exists
\lambda_0 \in \rho_{sF}(T) such that ind(\lambda_0 I - T) < 0, Hence \lambda_0 \in \sigma_w(T) = \sigma_b(T) = \sigma(T)
From ind(\lambda_0 I - T) < 0 and \lambda_0 \in \rho_{sF}(T), we have that
\alpha(\lambda_0 I - T) < \beta(\lambda_0 I - T) and (\lambda_0 I - T) \in \Phi_+(X), two cases are present:
\alpha(\lambda_0 I - T) = 0 \text{ or } \alpha(\lambda_0 I - T) > 0.
-First case : if \alpha(\lambda_0 I - T) = 0, then \lambda_0 I - T is injective, since (\lambda_0 I - T)(X) is
closed, then \lambda_0 \notin \sigma_a(T) and \lambda_0 \in \sigma(T) \setminus \sigma_a(T). By [1-corollary(2-50)], T have
SVEP in \lambda_0 and since (\lambda_0 I - T) \in \Phi_+(X). This implies that
\lambda_0 \in \text{ iso } \sigma_a(T) \subseteq \sigma_a(T), \text{ a contradiction.}
-Second case: 0 < \alpha(\lambda_0 I - T) < \beta(\lambda_0 I - T), then \lambda_0 \in \sigma_a(T), on the other
hand T satisfies a-Browder's theorem and p_{00}^a(T) = \pi_{00}(T), then
\sigma_{uw}(T) = \sigma_{ub}(T) and \sigma_a(T) \setminus \sigma_{uw}(T) = \sigma_a(T) \setminus \sigma_{ub}(T) = p_{00}^a(T) = \pi_{00}(T) = \emptyset.
From this it then follows that \sigma_a(T) = \sigma_{uw}(T), since \lambda_0 \in \sigma_a(T) then \lambda_0 \in \sigma_a(T)
\sigma_{uw}(T), this contradicts (\lambda_0 I - T) \in \Phi_+(X) and ind(\lambda_0 I - T) < 0.
We conclude that ind(\lambda_0 I - T) \geq 0, \forall \lambda \in \rho_{sF}(T).
Finally, we have: \sigma_w(T) \bigcup \Gamma is connected, \sigma(T) = \sigma_b(T) = \sigma_w(T) and
ind(\lambda_0 I - T) \geq 0 \quad \forall \lambda \in \rho_{sF}(T), \text{ by theorem(1-1) } T \in \mathcal{H}P(X).
Similarly by theorem (1-2) we can proved 3) \iff 4
```

References

- [1] P.Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, Acad. Press, 2004.
- [2] P.AIENA, P.PENA Avariation On Weyl's theorem, J.Math.Anal.Appl324,(2006))566-579
- [3] P.AIENA Property(ω) and perturbation II J.Math.Anal.Appl 342,(2008)) 830-837.
- [4] P.AIENA, JR.GILLEN, P.PENA Property (ω) for perturbations of polaroid operator, linear Algebra and its Appl428,(2008))1791-1802.
- [5] X.CAO Weyl's type theorem and hypercyclic operators J.Math.Anal. Appl 323,(2006) 267-274.
- [6] L.A ,Coburn Wey's theorem for non normal operators, Michigan Math J 20 ,(1970), (529-544).
- [7] B P,Duggal Weyl's theorem and hypercyclic/supercyclic operators, J.Math.Anal.Appl 335, (2007) 990-995.
- [8] N. Feldmen, V. Millier, L. Miller Hypercyclic and supercylic cohyponormal operators Acta soc. Math. 68(2002) 303-328.
- [9] R. M. Gethner, J. Shapiro Universal vectors for operators on space of holomorphic factions, Proc.Amer.Math.soc.100 (1987),281-288.
- [10] R. E. HARTE, W.Y.LEE A nother not On Weyl's theorem.Trans.Amer.Math.soc.349 (1997), 2115-2124.
- [11] D E.HERRERO .Limits of hypercyclic operators, J.Funct.Anal 99 (1991) 179-190
- [12] G.Herzog , C Schmoeger, On operators T such that f(T) is hypercyclic, Sdudia. Math 108 (1994) 209-216.
- [13] C.Kitai Invariant closed set for linear operators Thesis. Univ Torondto (1982).
- [14] K.B.Laursen, M.M.Neumann, Introduction to Local Spectral Theory, Clarendon Press Oxford, 2000.
- [15] T.L MILLER ,V.G MILLER Local spectral theory and orbits of operators.Proc.Amer.Math.soc.127 (1999),1029-1037

- [16] M, Oudghiri Weyl's and Browder's theorem for operators satisfing the SVEP, Sdudia.Math 108 (1994) 209-216.
- [17] V. Rakočevič, Operators obeying a-Weyl's theorem, Rev Roumaine Math Pures Appl 34 (1989), n 10, 915-919.
- [18] S.Rolewicz, On orbits of elements, Sdudia.Math 33 (1969) 17-22.
- [19] H.Salas, Supercyclicity and weighted shifts , Sdudia.Math 108 (1994) 209-216.
- [20] H.WEYL. Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ.Mat. Palermo 27(1909) 373-392

Received: November, 2011