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Abstract

Let T be a bounded linear operator acting on a complex separable
infinite-dimensional Banach space X. Denote by T � the adjoint of T , We
say that T satisfies the property (ω) if : σa(T )\σuw(T ) = π00(T ) where
σa(T ), σuw(T ) π00(T ) are respectively the approximate point spectrum,
the upper semi-Weyl spectrum and the set of isolated eigenvalues of
finite multiplicities of T . In the present paper we show that if T is
supercyclic/hypercyclic then T satisfies the property(ω) if and only if
π00(T ) = π00(T �). Also if X is a separable Hilbert space and T satisfies
the property(ω), we give the necessary and sufficient conditions for T to
be in the norm-closure of the class of hypercyclic(supercyclic)operators.

Keywords: Weyl’s theorem, Browder’s theorem, property(ω)
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1 Introduction, Notation and Terminology

Throughout this paper B(X) denots the Banach algebra of all bounded op-

erators acting in an infinite-dimensional complex Banach space X. For an

operator T ∈ B(X), T is said to be cyclic if there is a vector x0 ∈ X, called

cyclic vector, such that the orbit Orb(T, x0) = (T kx0)k≥0 has dense linear span

V ect(Orb(T, x0)) = X. T is said supercyclic if there exists a vector x0 ∈ X

called supercyclic vector for T such that the set of scalar multiples of the orbit

is dense, in the case that Orb(T, x0) = X. T is said hypercyclic (x0 called

hypercyclic vector for T ), clearly if T is hypercyclic or supercyclic then X is

separable. We denote by HP (X) (resp SP (X)) the set of all hypercyclic (resp

supercyclic) operator in B(X) and HP (X) (rep SP (X)) the norm-closure of
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the class HP (X) (resp SP (X)), evidently HP (X) ⊂ SP (X). The first ex-

ample of a hypercyclic operator was constructed by Rolewicz [18], he showed

hat if T is the backword shift on l2(IN) then λT is hypercyclic if and only if

|λ| > 1, the first sufficient condition for hypercyclicity (hypercyclic criterion)

discovered independently by Kitai [13] and Gethner and Shopiro [9]. Recently

Salas[19] gave a characterization of supercyclic bilateral backword weighted

shifts via the supersyclicity criterion (ie a sufficient condition for supercyclic-

ity). Feldman, V. Miller and L.Miller [8] gave new supercyclicity criteria.

For T ∈ B(X) let N(T ), T (X), σ(T ) and T � denote respectively the ker-

nel, the range, the spectrum, and adjoint of T . Let α(T ) = dimN(T ) and

β(T ) = codimT (X) be the nullity and the deficiency of T respectively.

T ∈ B(X) is called a semi-Fredholm operator if T (X) is closed and α(T ) < ∞
or β(T ) < ∞, in the sequel ρsF (T ) will denote the semi-Fredholm resolvent

set and the index of T is defined by: ind(T ) = α(T )− β(T ), if both α(T ) and

β(T ) are finite then T is a Fredholm operator.

An operator T is called Weyl operator if it is Fredholm operator of index zero,

the descent q(T ) and the ascent p(T ) are given by q(T ) = inf{n : R(T n) =

R(T n+1} and p(T ) = inf{n : N(T n) = N(T n+1} where the infimum over the

empty set is taken ∞, it is well known that if p(T ) and q(T ) are both finite

then p(T ) = q(T ) [1], [14].

T ∈ B(X) is called Browder operator if it is Fredholm operator of finite ascent

and descent, the Weyl spectrum σw(T ) and Browder spectrum σb(T ) of T are

defined by [1]:

σw(T ) = {λ ∈ C : λI − T is not Weyl operator } and

σb(T ) = {λ ∈ C : λI − T is not Browder operator }
Evidently σw(T ) ⊆ σb(T ) ⊆ σ(T ). We denote by H(σ(T )) (resp Hc(σ(T )))the

set of all complex-valued functions which are analytic (resp analytic and non

constant) in a neighborhood of the spectrum σ(T ), for f ∈ H(σ(T )) the op-

erator f(T ) is defined by the classical functional calculus. Γ (resp Γr, r ≥ 0)

denote the unit circle (resp circle of radius r ). In the case that X is Hilbert

space the following simple spectral description of the HP (X) and SP (X) is

due to Herrero [11].

Theorem 1.1. [11, Theorem(2-1)].

HP (X) is the class of all those operators T ∈ B(X) satisfying the conditions:

1) σw(T )
⋃

Γ is connected

2) σ(T )\σb(T ) = ∅
3) ind(λI − T ) ≥ 0 for every λ ∈ ρsF (T )

Theorem 1.2. [11, Theorem(3-3)].

SP (X) is the class of all those operators T ∈ B(X) satisfying the conditions:
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1) σ(T )
⋃

Γr is connected ( for same r ≥ 0 )

2) σw(T )
⋃

Γr is connected (for same r ≥ 0)

2) either σ(T )\σb(T ) = ∅ or σ(T )\σb(T ) = {α} for same α �= 0

3) ind(λI − T ) ≥ 0 for every λ ∈ ρsF (T )

In [15] V.Miller and L.Miller proved the following corollary.

Corollary 1 [15, Corollary1]

Suppose that X is separable and T ∈ B(X), if λI − T is surjective and
⋃

k≥0 N(λI − T )k is dense for some λ, then ϕ(T ) is supercyclic whenever

ϕ ∈ Hc(σ(T )), if G is the component of ρsu(T ) containing λ, and if ϕ(G)
⋂

Γ �=
∅ then ϕ(T ) is hypercyclic, ρsu(T ) = {λ ∈ C : λI − T is surjectif }.

Denote the following classes of operators , see [1], [2], [3],

Φ+(X) := {T ∈ B(X) : α(T ) < ∞ and T (X) is closed } the class of all upper

semi-Fredholm operators,

Φ−(X) := {T ∈ B(X) : β(T ) < ∞} the class of all lower semi-Fredholm oper-

ators,

Φ±(X) := Φ+(X)
⋃

Φ−(X) the class of all semi-Fredholm operators,

Φ(X) := Φ+(X)
⋂

Φ−(X) the class of all Fredholm operators,

B+(X) := {T ∈ B(X) : p(T ) < ∞} the class of all upper semi-Browder

operators,

B−(X) := {T ∈ B(X) : q(T ) < ∞} the class of all lower semi-Browder

operators,

B0(X) := B+(X)
⋂B−(X) the class of all Browder operators,

W+(X) := {T ∈ Φ+(X) : ind(T ) ≤ 0} the class of all upper semi-Weyl opera-

tors,

W+(X) := {T ∈ Φ−(X) : ind(T ) ≥ 0} the class of all lower semi-Weyl opera-

tors,

W(X) := W+(X)
⋂W−(X) the class of all Weyl operators ,

These classes of operators motivate the following spectra :

σub(T ) = {λ ∈ C : λI − T �∈ B+(X)} the upper semi-Browder spectrum of T

σlb(T ) = {λ ∈ C : λI − T �∈ B−(X)} the lower semi-Browder spectrum of T

σb(T ) = {λ ∈ C : λI − T �∈ B0(X)} the Browder spectrum of T

σuw(T ) = {λ ∈ C : λI − T �∈ W+(X)} the upper semi-Weyl spectrum of T

σlw(T ) = {λ ∈ C : λI − T �∈ W−(X)} the lower semi-Weyl spectrum of T

σw(T ) = {λ ∈ C : λI − T �∈ W(X)} the Weyl spectrum of T

we have: σw(T ) = σw(T �); σb(T ) = σb(T
�) and σub(T ) = σlb(T

�),

σlb(T ) = σub(T
�), σuw(T ) ⊆ σub(T ), and σlw(T ) ⊆ σlb(T ).

Recall that T ∈ B(X) is said to be bounded below if T is injective and
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has closed range, the approximate point spectrum of T denoted by σa(T ),

σa(T ) = {λ ∈ C : λI − T is not bounded below }, we have, see [1] [14]:

σuw(T ) ⊆ σa(T ) and σlw(T ) ⊆ σa(T
�).

We say that T ∈ B(X) has the single-valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0 ) if for every open neighborhood U of λ0, the only

analytic function f : U −→ X which satisfies the equation (T − λI)f(λ) = 0

for all λ ∈ U is the function f = 0, we say that T has the SVEP if T has the

SVEP at every point λ ∈ C, the SVEP was introduced by Dunford, it plays

an important role in local spectral theory [1] [14].

Evidently T has the SVEP at every point of the resolvent ρ(T ) = C\σ(T ) and

both T , T � have the SVEP at the points of the topological boundary ∂σ(T ) of

the spectrum, in particular at every isolated point of σ(T ), (λ0 ∈ iso σ(T )).

We have the following implications [1]:

λ0 ∈ iso σa(T ) =⇒ T has SVEP at λ0 (1)

In particular if the point spectrum σp(T ) is empty then T satisfied the SVEP.

p(λ0I − T ) < ∞ =⇒ T has SVEP at λ0 (2)

Dually, q(λ0I − T ) < ∞ implies T � has SVEP at λ0 (3)

The implications (1), (2) and (3) are equivalences if we assume that

λ0I − T ) ∈ Φ±(X) [2].

For T ∈ B(X), let us consider the set of all Riesz points :

p00(T ) = σ(T )\σb(T ) = {λ ∈ σ(T ) : λI − T is Browder operator }
let as denote:

pa
00(T ) = σa(T )\σub(T ) = {λ ∈ σa(T ) : λI − T ∈ B+(X)}.

π00(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞} the set of isolated eigenvalues

of finite multiplicities, and πa
00(T ) = {λ ∈ iso σa(T ) : 0 < α(λI − T ) < ∞} It

should be noted that:

p00(T ) ⊆ pa
00(T ) ⊆ πa

00(T ), p00(T ) ⊆ π00(T ) ⊆ πa
00(T ) and p00(T ) = p00(T

�).

Harte and W.Y. Lee [10] was introduced the Browder’s theorem

and a-Browder’s theorem : T is said to be satisfying Browder’s theorem if

σw(T ) = σb(T ) or equivalently

σ(T )\σw(T ) = p00(T ), and T is said to be satisfy a-Browder’s theorem if

σuw(T ) = σub(T ) or equivalently σa(T )\σuw(T ) = pa
00(T ).

In [1] we have a-Browder’s theorem =⇒ Browder’s theorem

In [2] it is given that: T or T � has SVEP =⇒ a-Browder’s theorem hold for

both T , T �

Coburn [6] introduced the Weyl’s theorem : T is said to satisfy Weyl’s the-

orem if σ(T )\σw(T ) = π00(T ), this equality is the properly proved by Weyl

in the case where T is a hermitian operator acting on Hilbert space [20], and

after it has been extend to several classes of Hilbert spaces and Banach spaces

operators [16].
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Rakocevic [17] was introduced two variants of Weyl’s theorem, the so called

a-Weyl’s theorem and the property (ω) studied also by Aiena, Pena and Gillen

in [2], [3], [4]:

T ∈ B(X) is said to satisfy a-Weyl’s theorem if σa(T )\σuw(T ) = πa
00(T )

T ∈ B(X) is said to satisfy property (ω) if σa(T )\σuw(T ) = π00(T ).

We have [3]: property (ω) =⇒ a-Browder’s theorem .

a-Weyl’s theorem =⇒ Weyl’s theorem, and property (ω)) =⇒ Weyl’s

theorem.

The next theorem [2] establishes the precise relationship between property (ω)

and a-Browder’s theorem:

Theorem 1.3. [2, Theorem(2-7)].

If T ∈ B(X) the following statements are equivalent

1) T satisfies property(ω)

2) a-Browder’s theorem hold for T and pa
00(T ) = π00(T )

In presence of SVEP we have the equivalence between Weyl’s theorem and

property (ω).

Theorem 1.4. [2, Theorem(2-16)].

Let T ∈ B(X) then the following equivalences hold.

1) if T � has SVEP the property(w) holds for T if and only if Weyl’s theorem

holds for T , and this is the case if and only if a-Weyl’s theorem holds for T

2) If T has SVEP:

T � has property(ω) ⇐⇒ T � satisfies Weyl’s theorem ⇐⇒ T � satisfies a-weyl’s

theorem

A result of Cao [5] shows the relations between hypercyclic (supercyclic)

operators and the operators for which Weyl’s theorem holds . More recently

Duggel in[7] have given necessary and sufficient conditions for hypercyclic and

supercyclic operators to satisfy a-weyl’s theorem.

In this paper we study the property(ω) for hypercyclic/supercyclic operators,

we prove that if T ∈ HP (X)
⋃SP (X), then T obeys the property(ω) if and

only if π00(T ) = π00(T
�); Further if X is separable Hilbert space, in theorem (2-

1)(see below) we characterized the norm-closure of hypercyclicty /supercyclicty

for an operators which satisfies the property(ω).
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2 Main results

We begin by the example.

Example:

Consider X = �2(N) and let T : �2(N) −→ �2(N) where

x = (x1, x2, ...) −→ T (x) = (x2/2, x3/3, ..., xn/n, ...)

T is surjective quasi-nilpotent,
⋃

k≥1 N(T k) = X, σ(T ) = {0} and

π00(T ) = {0}, by corollary (1) T is supercyclic. Consider the Hilbert adjoint

T
′
we have T

′
(x) = T

′
(x1, x2, ...) = (0, x1/2, x2/3, ..., xn/n + 1, ...)

T
′
is injective quasi-nilpotent, σ(T

′
) = {0} and, π00(T

′
) = ∅.

Or π∞(T ′) = π∞(T �) where the barre design the conjugate complex (see proof

of [4;Th(2-4)] ), then π00(T
�) = ∅, consequently π00(T

�) �= π00(T ).

In the other hand T et T � has SVEP because σ(T ) = σ(T �) = {0}, by

[3,Theorem(1-5)] we have σ(T ) = σa(T ) and σw(T ) = σuw(T ), σ(T )\σuw(T ) =

∅ because σ(T ) = σuw(T ), and σa(T )\σuw(T ) = σ(T )\σw(T ) �= π00(T ).

Hence T does not satisfy property(ω).

In [11] Herrero proved that if T ∈ HP (X) then σp(T
�) = ∅, and if T ∈ SP (X)

then either σp(T
�) = ∅ or T = R⊕αI� where α ∈ C\{0} and (1/α)R ∈ HP (X)

(i.e σp(T
�) = ∅ or σp(T

�) = {α}, α �= 0).

We give now the necessary and sufficient conditions for hypercyclic/supercyclic

operators to have property (ω).

Proposition 2.1. Let T ∈ HP (X)
⋃SP (X) then the following statement are

equivalent.

1) the property (ω) holds for T

2) π00(T ) = π00(T
�)

Proof: We show first that T � satisfies weyl’s theorem .

In fact, if T ∈ HP (X)
⋃SP (X) we have σp(T

�) = ∅ or σp(T
�) = {α} for

α ∈ C\{0}, this implies that T � has SVEP, consequently T and T � satisfies

a-Browder’s theorem (in particulary Browder’s theorem).

-If σp(T
�) = ∅ we have π00(T

�) = ∅, and from p00(T
�) ⊆ π00(T

�) it then fol-

lows that p00(T
�) = π00(T

�) = ∅, since T � has Browder’s theorem it then by

[2-Theorem(2-16)] T � satisfies Weyl’s theorem.

-If σp(T
�) = {α} for some α �= 0 such that α �∈ σb(T

�) then π00(T
�) = {α} and

σ(T �)\σb(T
�) = p00(T

�) = {α}, consequently p00(T
�) = π00(T

�) = {α} then

either by [2-Th(2-16)] T � satisfies Weyl’s theorem.

It should be noted that p00(T ) = σ(T )\σb(T ) = σ(T )\σw(T ) because T sat-

isfies a-Browder’s theorem (σub(T ) = σuw(T ) and σb(T ) = σw(T )), since T �

have SVEP then by [3-Th(1-5)] σ(T ) = σa(T ) and σw(T ) = σuw(T ), we then

conclude that p00(T ) = σa(T )\σuw(T ) = pa
00(T ) (�).
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We prove 2)=⇒1). Suppose that π00(T ) = π00(T
�), since T � satisfies Weyl’s

theorem then p00(T
�) = π00(T

�) and by (�) π00(T
�) = p00(T

�) = p00(T ) =

pa
00(T ) therefore pa

00(T ) = π00(T ), and since T have a-Browder’s theorem we

conclude by theorem (1-3) that T satisfies property(ω).

To show the opposite implication 1)=⇒2): suppose that T satisfies

property(ω), then pa
00(T ) = π00(T ), since T � has Weyl’s theorem and (�) we

have π00(T
�) = p00(T

�) = p00(T ) = pa
00(T ) = π00(T ) �

Corollory 2:

Suppose that for T ∈ HP (X)
⋃SP (X), T have π00(T ) = π00(T

�)

then T satisfies a-Weyl’s theorem.

Proof: Since π00(T ) = π00(T
�) and T ∈ HP (X)

⋃SP (X) then

by proposition(2-1) T satisfies the property(ω), or T � have SVEP , then by

theorem(1-4) T satisfies a-Weyl’s theorem. �

Corollory 3:

Suppose that X is separable and T ∈ B(X), if λI − T is surjective and
⋃

k≥0 N(λI − T )k is dense for some λ, then f(T ) satisfies the property(ω)

whenever f ∈ Hc(σ(T )).

Proof:without loss of generality we assume λ = 0. We have :
⋃

k≥0 N(T k) = X and T is surjective, by corollary (1) f(T ) ∈ SP (X) for

f ∈ Hc(σ(T )), on the other hand by [12-proposition3] σ(T ) is connected, since

σ(f(T )�) = σ(f(T )) = f(σ(T )) then σ(f(T )) and σ(f(T )�) are connected.

This implies that π00(f(T )) = π00(f(T )�) = ∅, we conclude by proposition

(2-1) that f(T ) satisfies the property(ω). �

In the case that X is the separable Hilbert space then for T ∈ B(X)

satisfies the property(ω), we have the following result.

Theorem 2.1. .

Let T ∈ B(X) where X is separable Hilbert space, and suppose that T

satisfies property(ω), then the following statements are equivalent:

1) T ∈ HP (X) ⇐⇒ 2) σ(T )
⋃

Γ is connected

3) T ∈ SP (X) ⇐⇒ 4) σ(T )
⋃

Γr is connected for some r ≥ 0

Proof: 1)=⇒2) Suppose that T ∈ HP (X),by theorem(1-1) σw(T )
⋃

Γ
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is connected, σ(T ) = σb(T ) and ind(λI − T ) ≥ 0, ∀λ ∈ ρsF (T ). Since T

satisfies the property(ω), T satisfies Browder’s theorem. Hence

σb(T ) = σw(T ) and σ(T ) = σb(T ) = σw(T ) so σ(T )
⋃

Γ is connected.

2)=⇒1). Now suppose that σ(T )
⋃

Γ is connected . First we claim that

σ(T ) = σw(T ), to see this suppose that there is λ0 ∈ σ(T )\σw(T ).

Observe that T satisfies Browder’s theorem, consequently σw(T ) = σb(T ) and

σ(T )\σw(T ) = σ(T )\σb(T ) = p00(T ) ⊆ π00(T ).

Hence λ0 ∈ π00(T ) and λ0 ∈ iso σ(T ), this entails that there exists an open

disc D(λ0, ε) such that D(λ0, ε)
⋂

σ(T ) = {λ0}, we have two cases : |λ0| = 1

or |λ0| �= 1.

-If |λ0| �= 1 then (we can take ε small) we have D(λ0, ε)
⋂

Γ = ∅ and since

(D(λ0, ε)
⋂

σ(T ))
⋃

(D(λ0, ε)
⋂

Γ) = D(λ0, ε)
⋂

(σ(T )
⋃

Γ) = {λ0} and

σ(T )
⋃

Γ is connected, we have σ(T )
⋃

Γ) = {λ0}, this is impossible.

-If |λ0| = 1, then D(λ0, ε)
⋂

Γ = {z ∈ Γ : θ0 < arg(z) < θ1 , θ0, θ1 ∈ IR} =

Γθ0,θ1, we have:

(D(λ0, ε)
⋂

σ(T ))
⋃

(D(λ0, ε)
⋂

Γ) = D(λ0, ε)
⋂

(σ(T )
⋃

Γ) = {λ0}
⋃

Γθ0,θ1 =

Γθ0,θ1 ; Since σ(T )
⋃

Γ is connected we have σ(T )
⋃

Γ = Γθ0,θ1, and this is

contradiction because Γθ0,θ1 � Γ.

We then conclude that π00(T ) = ∅ , σ(T ) = σw(T ) and σw(T )
⋃

Γ

is connected.

We show that ind(λI − T ) ≥ 0 ∀λ ∈ ρsF (T ), in fact suppose there exists

λ0 ∈ ρsF (T ) such that ind(λ0I − T ) < 0, Hence λ0 ∈ σw(T ) = σb(T ) = σ(T )

From ind(λ0I − T ) < 0 and λ0 ∈ ρsF (T ), we have that

α(λ0I − T ) < β(λ0I − T ) and (λ0I − T ) ∈ Φ+(X), two cases are present:

α(λ0I − T ) = 0 or α(λ0I − T ) > 0.

-First case : if α(λ0I −T ) = 0, then λ0I −T is injective, since (λ0I −T )(X) is

closed, then λ0 �∈ σa(T ) and λ0 ∈ σ(T )\σa(T ). By [1-corollary(2-50)], T have

SVEP in λ0 and since (λ0I − T ) ∈ Φ+(X). This implies that

λ0 ∈ iso σa(T ) ⊆ σa(T ), a contradiction.

-Second case: 0 < α(λ0I − T ) < β(λ0I − T ), then λ0 ∈ σa(T ), on the other

hand T satisfies a-Browder’s theorem and pa
00(T ) = π00(T ), then

σuw(T ) = σub(T ) and σa(T )\σuw(T ) = σa(T )\σub(T ) = pa
00(T ) = π00(T ) = ∅.

From this it then follows that σa(T ) = σuw(T ), since λ0 ∈ σa(T ) then λ0 ∈
σuw(T ), this contradicts (λ0I − T ) ∈ Φ+(X) and ind(λ0I − T ) < 0.

We conclude that ind(λ0I − T ) ≥ 0, ∀λ ∈ ρsF (T ).

Finally, we have: σw(T )
⋃

Γ is connected , σ(T ) = σb(T ) = σw(T ) and

ind(λ0I − T ) ≥ 0 ∀λ ∈ ρsF (T ), by theorem(1-1) T ∈ HP (X).

Similarly by theorem(1-2) we can proved 3)⇐⇒4) �
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