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1 Introduction

The Mock theta functions appeared in Ramanujan’s last letter to G.H. Hardy
in January 1920 and he quoted ”I discovered very interesting functions recently
which I call ’Mock’ θ-functions. Unlike the ’false’ θ-functions they enter into
mathematics as beautifully as the ordinary θ-functions”. The first detailed
description of these functions was given by G.N. Watson [5] in 1935, in his
presidential address to the London mathematical society. Many facet of these
Mock theta functions are being investigated by the mathematicians working
in the field of basic hypergeometric functions, specially works of R.P. Agarwal
[13, 14], G.E. Andrews [6], R.Y. Denis and S.N. Singh [15], Remy Y. Denis,
S.N. Singh and S. Ahmad Ali [16], Remy Y. Denis, S.N. Singh and S.P. Singh
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[17, 18], A.K. Srivastava [1], B.Srivastava [2, 3], M. Pathak and P. Srivastava
[9], Pankaj Srivastava and Anwar Jahan Wahidi [10], and etc have shown that
the theory of Mock theta function can be best studied through the basic hy-
pergeometric functions.
Generating functions were first introduced by ’Abraham de moivre’ [4] in 1730.
According to Herbert Wilf [7] ”A generating function is a clothesline on which
we hang up a sequence of numbers for display”. Generating functions play an
important role in the investigation of various useful properties and can also be
used with good effect for the determination of asymptotic behavior.
Some q- generating functions connected with basic multiple hypergeometric se-
ries have been given by Themistocles M.Rassias, S.N.Singh and H.M.Srivastava
[20]. In view of the importance and usefulness of the generating functions, we
have extended the idea of generating functions for the Mock theta functions.
The generating functions for Mock theta functions will provide a new platform
for further investigation.
Recently, B. Srivastava [2, 3] has defined generalized functions for mock theta
functions of order two and order ten and authors [11] have also introduced
generalized function for mock theta function of order two given by Hikami.
In the present article, we have established certain generating functions for par-
tial mock theta functions of order two and order ten by making use of identity
due to Srivastava [1].

2 Definitions and Notations

We shall use the following q-symbols:
For |q| < 1 and |qr| < 1,

(a; q)n =
n−1∏
s=0

(1 − aqs), n ≥ 1.

(a; qr)n =
n−1∏
s=0

(1 − aqrs), n ≥ 1.

(a; q)0 = 1, (a; qr)0 = 1.

(a; qr)∞ =
∞∏

s=0

(1 − aqrs).

A generalized basic hypergeometric function with base q is defined as:

rφs

[
a1, a2, . . . , ar; q, z
b1, b2, . . . , bs; q

i

]
=

∞∑
n=0

(a1; q)n...(ar; q)n

(b1; q)n, ...(bs; q)n(q; q)n

qin(n−1)/2zn, (1)

and the series on the right hand side of (1) converges for |q| < 1, |z| <∞ and
|q| < 1, |z| < 1, when i = 0.
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Also,

rφs

[
a1, a2, . . . , ar; q, z
b1, b2, . . . , bs; q

i

]
m

=
m∑

n=0

(a1; q)n...(ar; q)n

(b1; q)n, ...(bs; q)n(q; q)n
qin(n−1)/2zn,

denotes partial sum of the generalized basic hypergeometric series.
Definitions and notations of mock theta functions that shall be used in our
analysis are as:
Mock theta function of order two:
McIntosh [12] defined following mock theta functions of order two:

A(q) =
∞∑

n=0

q(n+1)2(−q; q2)n

(q; q2)2
n+1

=
∞∑

n=0

q(n+1)(−q2; q2)n

(q; q2)n+1
,

B(q) =
∞∑

n=0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

=
∞∑

n=0

qn(−q; q2)n

(q; q2)n+1
,

μ(q) =
∞∑

n=0

(−1)nqn2
(q; q2)n

(−q2; q2)2
n

,

and Hikami [8] gave the following Mock theta function of order two:

D5(q) =
∞∑

n=0

qn(−q; q)n

(q; q2)n+1
.

Mock theta functions of order ten:
Mock theta functions of order ten defined by Ramanujan [19] as:

φ(q) =
∞∑

n=0

qn(n+1)/2

(q; q2)n+1

,

ψ(q) =
∞∑

n=0

q(n+1)(n+2)/2

(q; q2)n+1

,

X(q) =
∞∑

n=0

(−1)nqn2

(−q; q)2n

,

χ(q) =
∞∑

n=0

(−1)nq(n+1)2

(−q; q)2n+1
.

If F (q) =
∑∞

n=0 f(q;n) is a mock theta function, then the corresponding partial
mock theta function is denoted by the truncated series Fp(q) =

∑p
n=0 f(q;n).

3 Known Results

In order to establish our main results, we shall use the following known results:
Srivastava [1] has established the following identity:

n∑
r=0

αr

n∑
m=0

δm =
n∑

m=0

δm
m∑

r=0

αr +
n−1∑
r=0

αr+1

r∑
m=0

δm. (2)
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B. Srivastava [2] defined the following generalized functions for mock theta
functions of order two:

A(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(−q; q2)nq
n2+n(α+1)+1

(q; q2)2
n+1

. (3)

B(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(−q2; q2)nq
n2+nα

(q; q2)2
n+1

. (4)

μ(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(q; q2)n(−1)nqn2−n+nα

(−q2; q2)2
n

. (5)

Recently, authors [11] have introduced generalized function for mock theta
function of order two given by Hikami and developed its properties. The
generalized function is as:

D5(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(−q; q)nq
nα

(q; q2)n+1

. (6)

For k = 0 and α = 1, these functions reduce to mock theta functions of order
two viz. A(q), B(q), μ(q) and D5(q) respectively.
We have used the following generalized functions for mock theta functions of
order ten given by B. Srivastava [3] as:

φ(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)nq
n(n−1)/2+nα

(q; q2)n+1
. (7)

ψ(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)nq
n(n+1)/2+nα

(q; q2)n+1
. (8)

X(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(−1)nqn2−n+nα

(−q; q)2n
. (9)

χ(k, α) =
1

(k; q)∞

∞∑
n=0

(k; q)n(−1)nqn2+n+nα

(−q; q)2n+1
. (10)

For k = 0 and α = 1, these functions reduce to mock theta functions of order
ten viz. φ(q), ψ(q), X(q) and χ(q) respectively.
Taking the partial sum of the above functions from 0 to r, we get generalized
functions for partial mock theta functions of order twoAr(k, α), Br(k, α), μr(k, α), D5r(k, α)
and order ten φr(k, α), ψr(k, α), Xr(k, α), χr(k, α) respectively.
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4 Main Results

In this section, we shall establish the generating functions for the partial mock
theta functions of order two and order ten respectively.
The identity (2) has been used to develop our main results and for αr = zr,
identity (2) yields

zn
n∑

m=0

δm + (1 − z)
n−1∑
r=0

zr
r∑

m=0

δm =
n∑

m=0

δmz
m, |z| < 1. (11)

4.1 Generating function for partial mock theta func-
tions of order two:

(a) If we take δm = 1
(k;q)∞

(k;q)m(−q;q2)mqm2+m(α+1)+1

(q;q2)2m+1
in (11) and after simplifica-

tion, we get

znAn(k, α) + (1 − z)
n−1∑
r=0

Ar(k, α)zr =
q

(1 − q)2(k; q)∞

4φ4

[
k, i

√
q,−i√q, q; q, q(α+2)z

q3/2,−q3/2, q3/2,−q3/2; q2

]
n

. (12)

Taking the limit n → ∞, (12) yields the following generating function for
partial generalized mock theta function of order two Ar(k, α).

∞∑
r=0

Ar(k, α)zr =
q

(1 − q)2(k; q)∞
4φ4

[
k, i

√
q,−i√q, q; q, q(α+2)z

q3/2,−q3/2, q3/2,−q3/2; q2

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

Ar(q)z
r =

q

(1 − q)2 3φ4

[
i
√
q,−i√q, q; q, q3z

q3/2,−q3/2, q3/2,−q3/2; q2

] ∞∑
r=0

zr. (13)

Where Ar(q) is the partial mock theta function of order two and (13) is the
generating function for Ar(q).

(b) If we take δm = 1
(k;q)∞

(k;q)m(−q2;q2)mqm2+mα

(q;q2)2m+1
in (11) and after simplification,

we get

znBn(k, α) + (1 − z)
n−1∑
r=0

Br(k, α)zr =
1

(1 − q)2(k; q)∞

4φ4

[
k, iq,−iq, q; q, q(α+1)z

q3/2,−q3/2, q3/2,−q3/2; q2

]
n

. (14)
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Taking the limit n → ∞, (14) yields the following generating function for
partial generalized mock theta function of order two Br(k, α).

∞∑
r=0

Br(k, α)zr =
1

(1 − q)2(k; q)∞
4φ4

[
k, iq,−iq, q; q, q2z

q3/2,−q3/2, q3/2,−q3/2; q2

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

Br(q)z
r =

1

(1 − q)2 3φ4

[
iq,−iq, q; q, q2z

q3/2,−q3/2, q3/2,−q3/2; q2

] ∞∑
r=0

zr. (15)

Where Br(q) is the partial mock theta function of order two and (15) is the
generating function for Br(q).

(c) If we take δm = 1
(k;q)∞

(k;q)m(q;q2)m(−1)mqm2−m+mα

(−q2;q2)2m
in (11) and after simplifica-

tion, we get

znμn(k, α) + (1 − z)
n−1∑
r=0

μr(k, α)zr =
1

(k; q)∞

4φ4

[
k, i

√
q,−i√q, q; q,−qαz
iq,−iq, iq,−iq; q2

]
n

. (16)

Taking the limit n → ∞, (16) yields the following generating function for
partial generalized mock theta function of order two μr(k, α).

∞∑
r=0

μr(k, α)zr =
1

(k; q)∞
4φ4

[
k, i

√
q,−i√q, q; q,−qαz
iq,−iq, iq,−iq; q2

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

μr(q)z
r = 3φ4

[
i
√
q,−i√q, q; q,−qz
iq,−iq, iq,−iq; q2

] ∞∑
r=0

zr. (17)

Where μr(q) is the partial mock theta function of order two and (17) is the
generating function for μr(q).

(d) If we take δm = 1
(k;q)∞

(k;q)m(−q;q)mqmα

(q;q2)m+1
in (11) and after simplification, we

get

znD5n(k, α) + (1 − z)
n−1∑
r=0

D5r(k, α)zr =
1

(1 − q)(k; q)∞
3φ2

[
k, q,−q; q, qαz

q3/2,−q3/2

]
n

.(18)

Taking the limit n → ∞, (18) yields the following generating function for
partial generalized mock theta function of order two D5r(k, α).

∞∑
r=0

D5r(k, α)zr =
1

(1 − q)(k; q)∞
3φ2

[
k, q,−q; q, qαz

q3/2,−q3/2

] ∞∑
r=0

zr.
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Taking k = 0 and α = 1, we get

∞∑
r=0

D5r(q)z
r =

1

(1 − q)
2φ2

[
q,−q; q, qz
q3/2,−q3/2

] ∞∑
r=0

zr. (19)

Where D5r(q) is the partial mock theta function of order two and (19) is the
generating function for D5r(q).

4.2 Generating function for partial mock theta func-

tions of order ten:

(a) If we take δm = 1
(k;q)∞

(k;q)mqm(m−1)/2+mα

(q;q2)m+1
in (11) and after simplification, we

get

znφn(k, α) + (1 − z)
n−1∑
r=0

φr(k, α)zr =
1

(1 − q)(k; q)∞
2φ2

[
k, q; q, qαz

q3/2,−q3/2; q

]
n

.(20)

Taking the limit n → ∞, (20) yields the following generating function for
partial generalized mock theta function of order ten φr(k, α).

∞∑
r=0

φr(k, α)zr =
1

(1 − q)(k; q)∞
2φ2

[
k, q; q, qαz

q3/2,−q3/2; q

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

φr(q)z
r =

1

(1 − q)
1φ2

[
q; q, qz

q3/2,−q3/2; q

] ∞∑
r=0

zr. (21)

Where φr(q) is the partial mock theta function of order ten and (21) is the
generating function for φr(q).

(b) If we take δm = 1
(k;q)∞

(k;q)mqm(m+1)/2+mα

(q;q2)m+1
in (11) and after simplification, we

get

znψn(k, α) + (1 − z)
n−1∑
r=0

ψr(k, α)zr =
1

(1 − q)(k; q)∞
2φ2

[
k, q; q, q(α+1)z
q3/2,−q3/2; q

]
n

.(22)

Taking the limit n → ∞, (22) yields the following generating function for
partial generalized mock theta function of order ten ψr(k, α).

∞∑
r=0

ψr(k, α)zr =
1

(1 − q)(k; q)∞
2φ2

[
k, q; q, q(α+1)z
q3/2,−q3/2; q

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

ψr(q)z
r =

1

(1 − q)
1φ2

[
q; q, q2z

q3/2,−q3/2; q

] ∞∑
r=0

zr. (23)
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Where ψr(q) is the partial mock theta function of order ten and (23) is the
generating function for ψr(q).

(c) If we take δm = 1
(k;q)∞

(k;q)m(−1)mqm2−m+mα

(−q;q)2m
in (11) and after simplification,

we get

znXn(k, α) + (1 − z)
n−1∑
r=0

Xr(k, α)zr =
1

(k; q)∞
2φ4

[
k, q; q,−qαz

i
√
q,−i√q, iq,−iq; q2

]
n

.(24)

Taking the limit n → ∞, (24) yields the following generating function for
partial generalized mock theta function of order ten Xr(k, α).

∞∑
r=0

Xr(k, α)zr =
1

(k; q)∞
2φ4

[
k, q; q,−qαz

i
√
q,−i√q, iq,−iq; q2

] ∞∑
r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

Xr(q)z
r = 1φ4

[
q; q,−qz

i
√
q,−i√q, iq,−iq; q2

] ∞∑
r=0

zr. (25)

Where Xr(q) is the partial mock theta function of order ten and (25) is the
generating function for Xr(q).

(d) If we take δm = 1
(k;q)∞

(k;q)m(−1)mqm2+m+mα

(−q;q)2m+1
in (11) and after simplification,

we get

znχn(k, α) + (1 − z)
n−1∑
r=0

χr(k, α)zr =
1

(1 + q)(k; q)∞
2φ4

[
k, q; q,−q(α+2)z

i
√
q,−i√q, iq,−iq; q2

]
n

.(26)

Taking the limit n → ∞, (26) yields the following generating function for
partial generalized mock theta function of order ten χr(k, α).

∞∑
r=0

χr(k, α)zr =
1

(k; q)∞(1 + q)
2φ4

⎡
⎢⎣

k, q
; q,−q(α+2)z

i
√
q,−i√q, iq,−iq; q2

⎤
⎥⎦ ∞∑

r=0

zr.

Taking k = 0 and α = 1, we get

∞∑
r=0

χr(q)z
r =

1

(1 + q)
1φ4

[
q; q,−q3z

i
√
q,−i√q, iq,−iq; q2

] ∞∑
r=0

zr. (27)

Where χr(q) is the partial mock theta function of order ten and (27) is the
generating function for χr(q).
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