On *I*-Convergence of Double Sequences in 2-Normed Spaces

Saeed Sarabadan

Department of Mathematics
Islamic Azad University, South Tehran Branch, Tehran, Iran
s.sarabadan@yahoo.com

Sorayya Talebi

Department of Mathematics Pnu University, Tehran, Iran talebi_s@pnu.ac.ir

Abstract

The concept of I-convergence was introduced by Kostyrko et al (2001). It seems therefore reasonable to investigate the concept of I-convergence for the double sequences in 2-normed spaces. In this article we define and investigate ideal analogue of convergence for double sequences in 2-normed space and so we extend this concepts to I_2 -limit points and I_2 -cluster points in this spaces. We prove some basic properties.

Mathematics Subject Classification: 40A05, 40C99, 40A99, 46A70

Keywords: I- convergence, Double sequences, Double natural density, I_2 -limit points, I_2 -cluster points, 2-normed spaces

1. Introduction

The notion of statistical convergence was introduced first by Fast[7]. The idea of I-convergence was introduced by Kostyrko et al (2001) and also independently by Nuray and Ruckle (2000), as a generalization of statistical convergence

(Fast (1951), Schoenberg(1959)).

Very recently some works on I-convergence of double sequences have also been done (see [5,6,21,27]). The concept of linear 2-normed spaces has been investigated by Gâhler in1960's [11,12] and has been developed extensively in different subjects by others [3,14,23,25]. Note that the notion of the statistical convergence for the double sequences in 2-normed spaces was introduced in papers [24]. It seems therefore reasonable to investigate the concept of I-convergence for the double sequences in 2-normed spaces.

Throughout this paper \mathbb{N} will denote the set of positive integers. Let $(X, \|.\|)$ be a normed space. Let E be subset of positive integers \mathbb{N} and $j \in \mathbb{N}$. The quotient $d_j(E) = card(E \cap \{1, ..., j\})/j$ is called the j'th partial density of K.Note that d_j is a probability measure on $\mathcal{P}(\mathbb{N})$, with support $\{1, ..., j\}[2,4,7,24]$.

The limit $d(E)=\lim_{j\to\infty}d_j(K)$ is called the *natural density* of $E\subseteq\mathbb{N}$ (if exists). Clearly, finite subsets have natural density zero and $d(E^c)=1-d(E)$ where $E^c=E-\mathbb{N}$, i.e., the complement of E [2,27].

Recall that a sequence $(x_n)_{n\in\mathbb{N}}$ of elements of X is said to be statistically convergent to $l \in X$ if the set $A(\epsilon) = \{n \in \mathbb{N} : ||x_n - l|| \ge \epsilon\}$ has natural density zero for each $\epsilon > 0$ in other words for each $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} card(\{k \le n : |x_k - l| \ge \varepsilon\}) = 0$$

and $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ is called to be statistically Cauchy sequence if for each $\varepsilon > 0$ there exists a number $N = N(\varepsilon)$ such that

$$\lim_{n} \frac{1}{n} card(\{k \le n : |x_k - x_N| \ge \varepsilon\}) = 0$$

The convergence of a double sequence introduce by many manner [4,21,22]. By the convergence of a double sequence we mean the convergence in Pringsheim's sense [22]. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ is called to be *convergent in the Pringsheim's sense* if for each $\varepsilon>0$ there exist a positive integer $N=N(\varepsilon)$ such that for all $j,k\geq N$ implies $|x_{jk}-l|<\varepsilon$. L is called the Pringsheim limit of x.

Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be a set of positive integers and let A(n, m) be the numbers of (j, k) in A such that $j \leq n$ and $k \leq m$. Then the two-dimensional concept of *natural density* can be defined as follows.

The lower asymptotic density of a set $A \subseteq \mathbb{N} \times \mathbb{N}$ is defined as

$$\underline{d_2}(A) = \liminf_{n,m} \frac{A(n,m)}{nm}$$

If the sequence $(\frac{A(n,m)}{nm})_{n,m\in\mathbb{N}}$ has a limit in Pringsheim's sense then we say that A has a double natural density and is defined as

$$d_2(A) = \lim_{n,m} \frac{A(n,m)}{nm}$$

Next we recall the following definition ,where Y represents an arbitrary set.

Definition 1.1. A family $\mathcal{I} \subseteq \mathcal{P}(Y)$ of subsets a nonempty set Y is said to be an ideal in Y if:

- i) $\emptyset \in \mathcal{I}$
- ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$
- iii) $A \in \mathcal{I}, B \subseteq A$ implies $B \in \mathcal{I}$

 \mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$.

Definition 1.2. Let $Y \neq \emptyset$. Anon empty family F of subsets of Y is said to be a *filter* in Y provided:

- i) $\emptyset \in F$.
- ii) $A, B \in F$ implies $A \cap B \in F$.
- iii) $A \in F, A \subseteq B$ implies $B \in F$.

If \mathcal{I} is a nontrivial ideal in $Y,Y \neq \emptyset$, then the class

$$F(\mathcal{I}) = \{ M \subset Y : (\exists A \in \mathcal{I})(M = Y - A) \}$$

is a filter on Y ,called the *filter associated* with \mathcal{I} .

Definition 1.3. A nontrivial ideal \mathcal{I} in Y is called *admissible* if $\{x\} \in \mathcal{I}$ for each $x \in Y$.

Definition 1.4. A nontrivial ideal \mathcal{I} in $\mathbb{N} \times \mathbb{N}$ is called *strongly admissible* if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I} for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

Let
$$\mathcal{I}_0 = \{ A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \in \mathbb{N} \times \mathbb{N} - A) \}.$$

Then \mathcal{I}_0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I} is strongly admissible if and only if $\mathcal{I}_0 \subseteq \mathcal{I}$.[5]

Let $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ be a nontrivial ideal in \mathbb{N} . The sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be \mathcal{I} -convergent to $x \in X$, if

for each $\epsilon > 0$ the set $A(\epsilon) = \{n \in \mathbb{N} : ||x_n - x|| \ge \epsilon\}$ belongs to \mathcal{I} [1,17,19].

2. Preliminary Notes

The concept of \mathcal{I} -convergence of double sequences in metric spaces X is defined as follow.

Definition 2.1. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ of elements of X is said to be \mathcal{I} -convergent to $l\in X$ if for every $\varepsilon>0$ we have $A(\varepsilon)\in I$, where $A(\varepsilon)=\{(m,n)\in\mathbb{N}\times\mathbb{N}: \rho(x_{mn},l)\geq\varepsilon\}$ and we write it as

$$\mathcal{I} - \lim_{m,n} x_{mn} = l$$

The notion of linear 2-normed spaces has been investigated by $G\hat{a}$ hler in 1960's [11,12] and has been developed extensively in different subjects by others [3,14,23]. Let X be a real linear space of dimension greater than 1, and $\|.,.\|$ be a nonnegative real-valued function on $X \times X$ satisfying the following conditions:

- G1)||x,y|| = 0 if and only if x and y are linearly dependent vectors.
- G2) ||x,y|| = ||y,x|| for all x, y in X.
- G3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ where α is real
- G4) $||x + y, z|| \le ||x, z|| + ||y, z||$ for all x, y, z in X

 $\|.,.\|$ is called a 2-norm on X and the pair $(X,\|.,.\|)$ is called a linear 2-normed space. In addition, for all scalars α and all x,y,z in X, we have the following properties:

- $1)\|.,.\|$ is nonnegative.
- $||x,y|| = ||x,y + \alpha x||$
- 3)||x y, y z|| = ||x y, x z||

Some of the basic properties of 2-norm introduce in [23].

As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x,y|| := the area of the parallelogram spanned by the vectors x and y, which may be given clearly by the formula

$$(2.1) ||x,y|| = |x_1y_2 - x_2y_1| , x = (x_1, x_2) y = (y_1, y_2)$$

Given a 2-normed space $(X, \|., .\|)$, one can derive a topology for it via the following definition of the limit of a sequence: a sequence $(x_n)_{n\in\mathbb{N}}$ in X is said to be convergent to x in X if $\lim_{n\to\infty} \|x_n-x,z\|=0$ for every $z\in X$. This can be written by the formula:

$$(\forall z \in Y)(\forall \epsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \qquad ||x_n - x, z|| < \epsilon$$

We write it as

$$x_n \xrightarrow{\|.,.\|_X} x$$

Definition 2.2. A sequence $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in a 2-normed space $(X, \|., .\|)$ if $\lim_{n,m} \|x_n - x_m, z\| = 0$ for every $z \in X$.

Recall that $(X, \|., .\|)$ is a 2-Banach space, if every Cauchy sequence in X is convergence to some $x \in X$.

Definition 2.3. Let $(X, \|., .\|)$ be 2-normed space and $x \in X$. We say that x is an accumulation point of X if there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of distinct elements of X such that $x_k \neq x$ (for any k) and $x_n \xrightarrow{\|...\|_X} x$

Lemma 2.4. [15]Let $v = \{v_1, ..., v_k\}$ be a basis of X. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is convergent to x in X if and only if $\lim_{n\to\infty} \|x_n - x, v_i\| = 0$ for every i = 1, ..., k. We can define the norm $\|.\|_{\infty}$ on X by

$$||x||_{\infty} := \max\{||x, v_i|| : i = 1, ..., d = k\}$$

Associated to the derived norm $\|.\|_{\infty}$, we can define the (open) balls $B_{v_1,v_2,...,v_n}(\boldsymbol{x},r) = B_v(\boldsymbol{x},r)$ centered at \boldsymbol{x} having radius r by

$$B_v(\mathbf{x}, r) := \{ y : \|\mathbf{x} - y\|_{\infty} < r \}$$

Lemma 2.5. [15]A sequence $(x_n)_{n\in\mathbb{N}}$ in X is convergent to x in X if and only if $\lim_{n\to\infty} ||x_n-x||_{\infty} = 0$

Example 2.6. Let $X = \mathbb{R}^2$ be equipped with the 2-norm ||x,y||:= the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|$$
 , $x = (x_1, x_2)$ $y = (y_1, y_2)$

Take the standard basis $\{i, j\}$ for \mathbb{R}^2 .

Then, $||x,i|| = |x_2|$ and $||x,j|| = |x_1|$, and so the derived norm $||.||_{\infty}$ with respect to $\{i,j\}$ is

$$||x||_{\infty} = \max\{|x_1|, |x_1|\}, \qquad x = (x_1, x_2)$$

Thus, here the derived norm $\|.\|_{\infty}$ is exactly the same as the uniform norm on \mathbb{R}^2 . Since the derived norm is norm, it is equivalent to Euclidean norm on \mathbb{R}^2 .

3. I_2 -limit points and I_2 -cluster points in 2-normed spaces

In [13], the concepts of an ordinary limit points and I-limit points for a single sequences was generalized in 2-normed spaces.

In this section ,we define I_2 -convergence for double sequence in 2-normed spaces and so we extend this concepts to I_2 -limit points and I_2 -cluster points in this spaces. For the following definition we were inspired by Pringsheims [22]

Definition 3.1. Let $x=(x_{jk})_{j,k\in\mathbb{N}}$ be a double sequence in 2-normed space $(X, \|., .\|)$. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ is said to be *convergent to* $l \in X$ if

$$(\forall z \in X)(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall j, k \ge N)$$
 $||x_{jk} - l, z|| < \varepsilon$
We write it as

$$x_{jk} \xrightarrow{\|.,.\|_X} l$$

A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ is said to be bounded if for each nonzero $z\in X$ and for each $j,k\in\mathbb{N}$ there exists M>0 such that $\|x_{jk},z\|< M$. Note that a convergent double sequence need not be bounded.

Now we define the I_2 and I_2^* -convergence for double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ as follows:

Definition 3.2. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ in 2-normed space $(X, \|., .\|)$ is said to be I_2 -convergence to $l \in X$, if for all $\varepsilon > 0$ and nonzero $z \in X$, the set

$$A(\varepsilon) = \{(j,k) : ||x_{jk} - l, z|| \ge \varepsilon\} \in I_2$$

In this case we write it as

$$I_2 - \lim_{j,k} x_{jk} = l$$

Remark 3.3. Put $I_d = \{A \subset \mathbb{N} \times \mathbb{N} : d_2(A) = 0\}$. Then I_d is an admissible ideal in $\mathbb{N} \times \mathbb{N}$ and I_{d2} -convergence becomes statistical convergence[24].

Remark 3.4. Not that if I is the ideal I_0 then I_2 -convergence coincide with the usual convergence (Definition 3.1).

Remark 3.5. If $x=(x_{jk})_{j,k\in\mathbb{N}}$ is I_2 -convergent, then $(x_{jk})_{j,k\in\mathbb{N}}$ need not be convergent. Also it is not necessarily bounded. This actuality can be seen from the next example.

Example 3.6. Let $(X, \|., .\|)$ be 2-normed space introduced in Example 2.6 and the $x=(x_{jk})_{j,k\in\mathbb{N}}$ be defined as

(1,1) otherwise

and let
$$l = (1, 1)$$
.

Then for every $\varepsilon > 0$ and $z \in X$ $\{(j,k), j \le n, k \le m : ||x_{jk}-l,z|| \ge \varepsilon\} \subseteq \{1,4,9,16,...,j^2,...\} \times \{1,4,9,16,...,k^2,...\}$. Hence

the cardinality of the set $\{(j,k), j \leq n, k \leq m : ||x_{jk} - l, z|| \geq \varepsilon\} \leq \sqrt{j}\sqrt{k}$ for

each $\varepsilon > 0$.

This implies $d_2(\{(j,k), j \leq n, k \leq m : ||x_{jk} - l, z|| \geq \varepsilon\}) = 0$ for each $\varepsilon > 0$ and $z \in X$. We have

$$I_{d2} - \lim_{i,k} x_{jk} = l$$

.

But $x=(x_{jk})_{j,k\in\mathbb{N}}$ is neither convergent to l nor bounded.

Remark 3.7. The following corollary can be verifies that if $x=(x_{jk})_{j,k\in\mathbb{N}}$ be I_2 -convergent to $l\in X$, then l is determined uniquely.

Corollary 3.8. let $x = (x_{jk})_{j,k \in \mathbb{N}}$ is a convergent double sequence in 2-normed space $(X, \|., \|)$ and $l_1, l_2 \in X$. If I_2 - $\lim_{j,k} \|x_{jk} - l_1, z\| = 0$ and I_2 - $\lim_{j,k} \|x_{jk} - l_2, z\| = 0$ then $l_1 = l_2$.

proof:Let $l_1 \neq l_2$, hence there exists $z \in X$ such that $0 \neq l_1 - l_2$ and z are linearly independent. Put

$$||l_1 - l_2, z|| = 2\varepsilon, with \varepsilon > 0$$

Now

$$2\varepsilon = ||l_1 - x_{jk} + x_{jk} - l_2, z|| \le ||x_{jk} - l_1, z|| + ||x_{jk} - l_2, z||$$

Therefor

$$\{(j,k): ||x_{jk} - l_2, z|| < \varepsilon\} \subseteq \{(j,k): ||x_{jk} - l_1, z|| \ge \varepsilon\} \in I$$

Hence $\{(j,k): ||x_{jk}-l_2,z|| < \varepsilon\} \in I$ that is contradict with nontrivial I.

Corollary 3.9. If $(x_{jk})_{j,k\in\mathbb{N}}, (y_{jk})_{j,k\in\mathbb{N}}$ be double sequences in 2-normed space $(X, \|., .\|)$ and I_2 - $\lim_{j,k} x_{jk} = a, I_2$ - $\lim_{j,k} y_{jk} = b$ then

(i) I_2 - $\lim_{j,k} x_{jk} + y_{jk} = a + b$

(ii) I_2 - $\lim_{j,k} \alpha x_{jk} = \alpha a$, where $\alpha \in \mathbb{R}$

proof(i):Let $\varepsilon > 0$. For each nonzero $z \in X$ we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|(x_{mn}+y_{mn})-(a+b),z\|\geq\varepsilon\}\subseteq\left(\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|x_{mn}-a,z\|\geq\frac{\varepsilon}{2}\}\right)$$

$$\bigcup \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||y_{mn} - b, z|| \ge \frac{\varepsilon}{2}\} \} \in I$$

Hence $\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||(x_{mn} + y_{mn}) - (a+b), z|| \ge \varepsilon\} \in I$ and the statements is follows.

(ii) The statement is an easy consequence of (i)

Definition 3.10. Let $K \subseteq \mathbb{N} \times \mathbb{N}$ such that for each $(j,k) \in \mathbb{N} \times \mathbb{N}$ there exists $(m,n) \in K$ such that (m,n) > (j,k) with respect to the dictionary ordering. If $x = (x_{jk})_{j,k \in \mathbb{N}}$ is a double sequence in X, then we call $(x)_K = \{x_{mn} : (m,n) \in K\}$ as a subsequence of $(x_{jk})_{j,k \in \mathbb{N}}$.

Definition 3.11. An element $l \in X$ is said to be *limit point* of a double sequence $(x_{jk})_{j,k\in\mathbb{N}}$ in 2-normed space $(X,\|.,.\|)$ if there exists a subsequence of x which is convergent to l.

Example 3.12. Let $(X, \|., .\|)$ be 2-normed space introduced in Example 3.6 and the $x=(x_{jk})_{j,k\in\mathbb{N}}$ be defined as

(1,k) otherwise

and let
$$l = (1, 1)$$
.

We put $K = \{(m, m) : m \in \mathbb{N}\}$. Then $(x)_K$ is subsequence of $x = (x_{jk})_{j,k \in \mathbb{N}}$ and l = (1, 1) is a *limit point* of a double sequence $(x_{jk})_{j,k \in \mathbb{N}}$.

Definition 3.13. Let $x = (x_{jk})_{j,k \in \mathbb{N}}$ be adouble sequence in 2-normed space $(X, \|., .\|)$. An element $l \in X$ is said to be an I_2 -limit point of $(x_{jk})_{j,k \in \mathbb{N}}$ if there exists a set $M = \{(m_j, m_k) : j, k \in \mathbb{N}\} \subseteq \mathbb{N} \times \mathbb{N}$ such that $M \notin I$ and $\lim_{m_j, m_k} x_{m_j m_k} = l$

We now introduce the notations L_x^2 and $I(\Lambda_x^2)$ to denote the set of all *limit* points and *I-limit points* of $(x_{jk})_{j,k\in\mathbb{N}}$ respectively.

Example 3.14. If we consider double sequence $(x_{jk})_{j,k\in\mathbb{N}}$ introduced in Example (3.12) and $I = \{A \subset \mathbb{N} \times \mathbb{N} : d_2(A) = 0\}$ then $I(\Lambda_x^2) = \emptyset$. Otherwise, there exists $M = \{(m_j, m_k) \in \mathbb{N} \times \mathbb{N} : j, k \in \mathbb{N}\}$ such that $d_2(M) > 0$ By definition $x = (x_{jk})_{j,k\in\mathbb{N}}$ we have $m_j \neq m_k \Rightarrow x_{m_j m_k} = (1, m_k)$ and

$$\|x_{m_j,m_k}-\beta\|_{\infty}=\max\{|1-b_1|,|m_k-b_2|\} \text{ where }\beta=(b_1,b_2).$$
 If $m_j=m_k\Rightarrow x_{m_jm_k}=(1,1)$ and

$$||x_{m_i,m_k} - \beta||_{\infty} = \max\{|1 - b_1|, |1 - b_2|\}$$

On other word $d_2(M) = \lim_{m,n} \frac{M(m,n)}{mn} > 0$ Hence $\lim ||x_{m_i m_k} - \beta||_{\infty} \neq 0$.

We show in Example 3.12 and 3.14 that in general, L_x^2 and $I(\Lambda_x^2)$ may be quit deferent.

Definition 3.15. An element $\alpha \in X$ is said to be an I_2 -cluster point of a double sequence $x = (x_{jk})_{j,k \in \mathbb{N}}$ in 2-normed space $(X, \|., .\|)$ if for each $\varepsilon > 0$ and nonzero $z \in X$ the set $\{(j,k) : \|x_{jk} - \alpha, z\| < \varepsilon\} \notin I$. We denote the set of all I_2 -cluster points of x by $I(\Gamma_x^2)$.

Theorem 3.16: Let I be a strongly admissible ideal. Then for any double sequence $x = (x_{jk})_{j,k \in \mathbb{N}}$ in $(X, \|., .\|)$ we have $I(\Lambda_x^2) \subseteq I(\Gamma_x^2)$.

proof: Let $\alpha \in I(\Lambda_x^2)$. Then there exists a set

$$M = \{(m_i, m_i) \in \mathbb{N} \times \mathbb{N} : j, k \in \mathbb{N}\}$$

such that

$$\lim_{m_i,m_k} ||x_{m_im_k} - \alpha, z|| = 0$$
 for each $z \in X$. (1)

Let $\varepsilon > 0$.By(1)there exists $n_0 \in N$ such that:

for all $m_j, m_k \ge n_0$ we have $||x_{m_j m_k} - \alpha, z|| < \varepsilon$ for each nonzero $z \in X$.

So,
for each nonzero $z \in X$ we have

 $\{(j,k): ||x_{jk}-\alpha,z|| < \varepsilon\} \supseteq M \setminus \{(m_j,m_k): either \ m_j \le n_0 - 1 \ or \ m_k \le n_0 - 1\}.$ Since I is strongly admissible,so

$$\{(j,k): ||x_{jk} - \alpha, z|| < \varepsilon\} \notin I \text{ for each } z \in X$$

This implies $\alpha \in I(\Gamma_x^2)$,which completes the proof.

Corollary 3.17: Let $(X, \|., .\|)$ be finite dimensional 2-normed space and $I \subset \mathbb{N} \times \mathbb{N}$ be a admissible ideal. Then for each double sequence $x = (x_{jk})_{j,k \in \mathbb{N}}$ in $(X, \|., .\|)$ the set $I(\Gamma_x^2)$ is closed in X.

proof:Let $y \in \overline{I(\Gamma_x^2)}$. Put $\varepsilon > 0$ then there exists $l \in I(\Gamma_x^2) \cap B_v(y, \varepsilon)$. Choose $\delta > 0$ such that $B_v(l, \delta) \subseteq B_v(y, \varepsilon)$. Hence we have

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|y - x_{mn}, z\| < \varepsilon\} \supseteq \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|l - x_{mn}, z\| < \delta\} \notin I$$

Therefor $\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|y - x_{mn}, z\| < \varepsilon\} \notin I$ and $y \in I(\Gamma_x^2)$.

Corollary 3.18: Let $(X, \|., .\|)$ be 2-normed space and \mathcal{M}_2^2 be the set of all bounded double sequence of X with norm

$$||x|| = \sup_{m,n} ||x_{mn}, z||$$
 for each $z \in X$, where $x = (x_{mn})_{m,n \in \mathbb{N}}$

Then \mathcal{M}_2^2 is a norm linear space.

Theorem 3.19:Let $(X, \|., .\|)$ be a 2-Banach space. If I be a nontrivial admissible ideal of $\mathbb{N} \times \mathbb{N}$ and \mathcal{M}_I^2 denoted the set all bounded I_2 -convergent double sequences of X then the set \mathcal{M}_I^2 is a closed linear subspace of the norm linear space \mathcal{M}_2^2 .

proof: From Corollary(3.9) we see that \mathcal{M}_I^2 is a linear subspace of \mathcal{M}_2^2 . Therefor we only show that \mathcal{M}_I^2 is closed in \mathcal{M}_2^2 .

Let $x^p \in \mathcal{M}_I^2$ (p = 1.2, ...) and $\lim_p ||x^p - x, z|| = 0$ for each $z \in X$ and $x \in \mathcal{M}_2^2$. We clime that $x \in \mathcal{M}_I^2$.

Since $x^p \in \mathcal{M}_L^2$, for each p there exists an element $a_p \in X$ such that

$$I_2$$
- $\lim_{m,n} x_{mn}^p = a_p \ (p = 1, 2, ...)$, where $x^p = (x_{mn})_{m,n \in \mathbb{N}}$

We now prove the following statements:

(i) There exists $\mathbf{a} \in X$ such that $a_p \xrightarrow{\|\cdot,\cdot\|_X} \mathbf{a}$.

(ii)
$$I_2$$
- $\lim_{m,n} x_{mn} = \mathbf{a}$, where $x = (x_{mn})_{m,n \in \mathbb{N}}$.

The result will then follows from (i) and (ii).

Proof of (i):

We have $x^p \xrightarrow{\parallel ... \parallel_X} x \in m_2$. Hence, for each $\varepsilon > 0$ and $z \in X$, there exists $n_0 \in \mathbb{N}$ such that, for each $q \geq r \geq N_0$, we have,

$$||x^q - x^r, z|| < \frac{\varepsilon}{3}$$

Now since $x^q, x^r \in m_I^2$, so I_2 - $\lim_{m,n} x_{mn}^q = a_q$ and I_2 - $\lim_{m,n} x_{mn}^r = a_r$. Therefore

$$A_q = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||x^q - a_q, z|| < \frac{\varepsilon}{3}\} \in F(I) \text{ for each } z \in X$$
$$A_r = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||x^r - a_r, z|| < \frac{\varepsilon}{3}\} \in F(I) \text{ for each } z \in X$$

Then $A_r \cap A_q \in F(I)$. Since I is nontrivial and admissible so $A_r \cap A_q$ must be infinite set. Choose $(m_0, n_0) \in A_r \cap A_q$ and therefore, for each $z \in X$

$$||x_{m_0n_0}^q - a_q, z|| < \frac{\varepsilon}{3} \text{ and } ||x_{m_0n_0}^r - a_r, z|| < \frac{\varepsilon}{3}$$

Hence

for each $z \in X$ and $q \ge r \ge N_0$ we have,

$$||a_q - a_r, z|| \le ||a_q - x_{m_0 n_0}^q, z|| + ||x_{m_0 n_0}^q - x_{m_0 n_0}^r, z|| + ||x_{m_0 n_0}^r - a_r, z|| < \varepsilon$$

So $(a_p)_{p\in\mathbb{N}}$ is a Cauchy sequence in 2-Banach space X and so it must converge to an element $\mathbf{a}\in X$. Hence $a_p\xrightarrow{\|\cdot,\cdot\|_X}\mathbf{a}$.

Proof of (ii):

Let $\delta > 0$. Since $x^p \xrightarrow{\|...\|_X} x$ there exists $q \in \mathbb{N}$ such that

(3.1)
$$||x^q - x, z|| < \frac{\delta}{3} \quad \text{for each } z \in X$$

The number q can be chosen in such a way that together with (3.1) the inequality $||a_q - a, z|| < \frac{\delta}{3}$ for each $z \in X$ also holds.

Because I_2 - $\lim_{m,n} x_{mn}^{(q)} = a_q$, hence

$$A_q = \{(m, n) \in \mathbb{N} : ||x_{mn}^q - a_q, z|| < \frac{\delta}{3}\} \in F(I) \text{ for each } z \in X.$$

Now for each $(m, n) \in A_q$ we have:

$$||x_{mn} - \mathbf{a}, z|| \le ||x_{mn} - x_{mn}^{(q)}, z|| + ||x_{mn}^{(q)} - a_q, z|| + ||a_q - \mathbf{a}, z|| < \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} < \delta$$

Hence

$$A_q = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - \mathbf{a}, z|| < \delta\} \in F(I) \text{ for each } z \in X$$

This implies that:

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - \mathbf{a}, z|| \ge \delta\} \in I \text{ for each } z \in X$$

Therefore I_2 - $\lim_{m,n} x_{mn} = \mathbf{a}$. This completes the proof of the theorem.

ACKNOWLEDGEMENTS. The authors wish to express the deepest appreciation to the referee for his helpful comments on this paper.

References

- V.Baláž, J.Cervenansky, P.Kostyrko, T.Salat, I-convergence and I-continuity of real functions, In: Acta Mathematica 5, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, (2004) 43-50.
- 2. R.C.Buck, Generalized asymptotic density, Amer.J.Math, (1953) 335-336.
- 3. Y.J.Cho, P.C.S.Lin, S.S.Kim, A.Misiak, *Theory of 2-inner product spaces*, Nova Science, Huntington, NY, USA, (2001).
- 4. J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988) 74-63.
- P. Das, P.Kostyrko, W. Wilczyncki, P. Malik, I and I*-convergence of double sequence , Math. Slovaca, 58 (2008), No.5, 605-620.
- P. Das , P. Malik , On external I-limit points of double sequences , Tatra Mt.Math, 40 (2008), 91-102.
- 7. H. Fast, Sur la convergence statistique, Colloq. Math, 2 (1951) 241-244.
- 8. R. Freese and S. Gähler, Remarks on semi 2-normed spaces, Math. Nachr, 105 (1982) 151-161.
- 9. J.A.Fridy, On statistical convergence, Analysis, 105 (1985) 301-313.
- 10. J.A.Fridy, Statistical limit points, Proc. Amer. Math. Soc, 118 (1993) 1187-1192.
- 11. S.Gähler, 2-normed spaces, Math.Nachr, 28 (1964) 1-43.
- 12. S.Gähler, 2-metrische Räumm und ihre topologische struktur, Math. Nachr, **26** (1963) **115-148**.
- 13. M. Gürdal, On ideal convergent sequences in 2-normed Spaces, Thai. J. Math, 4(1) (2006) 85-91.
- 14. M. Gürdal and S. Pehlivan, *The statistical convergence in 2-Banach Spaces*, Thai. J. Math, **2(1)** (2004) **107-113**.

- 15. H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math, 27(3) (2001) 321-329.
- 16. E.Kolk, The statistical convergence in Banack spaces, Tartu ÜI.Toimetsed, **928** (1991) **41-52**.
- 17. P.Kostyrko, T.Salat, W.Wilczyncki , *I-convergence* , Real Anal. Exchange, **26** (2000/2001) **669-666**.
- P.Kostyrko, M.Macaj, T.Salat, M.Sleziak , *I-convergence and extremal I-limit points* ,Math. Slovaca, 55 (2005) 443-464.
- 19. B.Lahiri, P.Das, I and I*-convergence in topological spaces, Math. Bohem, 130 (2005) 153-160.
- F. Moricz, Tauberian theorems for Cesaro summable double sequences, Studia Math, 110 (1994) 83-96.
- 21. Mursaleen and Osama H.H. Edely, *Statistical convergence of double sequences*, J. Math. Anal. Appl, 288 (2003) 223-231.
- 22. A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann, 53 (1900) 289-321.
- 23. W. Raymond, Y. Freese, J. Cho, *Geometry of linear 2-normed spaces*, N.Y. Nova Science Publishers, Huntington, 2001.
- 24. S. Sarabadan, S. Talebi, Statistical convergence of double sequences in 2- normed spaces, Int. J. Contemp. Math. Sciences., 6 (2011) 373 380.
- 25. S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2- normed spaces, International Journal of Mathematics and Mathematical Sciences, hindawi Publishing Corporation. (vol(2011))
- 26. S. Sarabadan, S. Talebi, A condition for the equivalence of I- and I*-convergence in 2- normed spaces, Int. J. Contemp. Math. Sciences., 6(no.43) (2011) 2147 2159.
- 27. H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math, 2 (1953) 335-346.
- 28. C.Tripathy, B.C.Tripathy, On I-convergent double series, Soochow J. Math, 31 (2005) 549-560.

Received: October, 2011