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Abstract

The aim of this paper is to obtain a common fixed point theorem in
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point of discontinuity.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy metric
space, pointwise R-weakly commuting, reciprocally continuous, non-compatible,
Integral type

1 Introduction

Atanassov [3] introduced the concept of intuitionistic fuzzy sets as a gener-
alization of fuzzy sets [21] and later there has been much progress in the
study of intuitionistic fuzzy sets by many authors [4, 7]. In 2004, Park [16]
introduced a notion of intuitionistic fuzzy metric spaces with the help of con-
tinuous t-norms and continuous t-conorms as a generalization of fuzzy metric
space due to Kramosil and Michalek [12]. Fixed point theory has important
applications in diverse disciplines of mathematics, statistics, engineering and
economics in dealing with problems arising in : Approximation theory, po-
tential theory, game theory, mathematical economics, etc. Several authors
9, 10, 12, 13, 18] proved some fixed point theorems for various generalizations
of contraction mappings in probabilistic and fuzzy metric space. Branciari [6]
obtained a fixed point theorem for a single mapping satisfying an analogue of
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Banach’s contraction principle for an integral type inequality. Sedghi.at.el [19]
established a common fixed point theorem for weakly compatible mappings in
intuitionistic fuzzy metric space satisfying a contractive condition of integral
type.

In this paper, we prove a common fixed point theorem in an intuitionistic fuzzy
metric space for pointwise R-weakly commuting mappings using contractive
condition of integral type and to establish a situation in which a collection of
maps has a fixed point which is a point of discontinuity.

2 Preliminaries

Definition 2.1. [21] Let X be any set. A fuzzy set A in X is a function with
domain X and values in [0, 1].

Definition 2.2. [3] Let a set E be fized. An intuitionistic fuzzy set (IFS) A
of E is an object having the form,

A={<z,pa(x),Va(z) > Jx € E}
where the function py : E — [0,1], V4 1 E — [0,1] define respectively, the
degree of membership and degree of non-membership of the element x € E to

the set A, which is a subset of E, and for everyx € E, 0 < pa(z)+Va(x) < 1.

Definition 2.3. [18] A binary operation x : [0,1] x [0,1] — [0,1] is a contin-
uwous t-norm if it satisfies the following conditions:

(a) * is commutative and associative;

(b) * is continuous;

(c) ax1=a for all a € 0,1];

(d) axb < cxd whenever a < c and b <d, for each a,b,c,d € [0,1].

Definition 2.4. [18] A binary operation $ : [0, 1] x [0,1] — [0, 1] is a contin-
uous t-conorm if it satisfies the following conditions:

(a) & is commutative and associative;
(b) & is continuous;
(c) a0 = a for all a € [0,1];

(d) adb < cpd whenever a < ¢ and b < d, for each a,b,c,d € [0,1].
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Definition 2.5. [1] A 5-tuple (X, M, N,*,<) is said to be an intuitionistic
fuzzy metric space (shortly IFM-Space) if X is an arbitrary set, % is a continu-
ous

t-norm, < is a continuous t-conorm and M, N are fuzzy sets on X? x (0, 00)
satisfying the following conditions: for all x,y,z € X and s,t > 0;

(IFM-1) M(x,y,
(IFM-2) M(x,y,
(IFM-3) M(x,y,
(IFM-4) M (z,y,
(IFM-5) M(x,y,
(IFM-6) M(x,y,
(IFM-7) limy—o
(IFM-8) N(z,y,
(IFM-9) N(z,y,
(IFM-10) N(z,y,
(IFM-11) N(z,y,
(IFM-12) N(z,y,
(IFM-13) limy..

t)+ N(z,y,t) <1;
0) = 0;
t) =1 if and only if x = y;

t) =My, z,t);

t)x M(y,z,8) < M(z,z,t+ s);

) 2 [0,00) — [0,1] is left continuous;
M(z,y,t) =1;

—1;

=0 if and only if x = y;

0)
t)
t) = N(y,x,t);

t)ON(y, z,8) > N(z,z,t+s) ;
) 2 [0,00) — [0,1] is right continuous;

N(x7 y? t) = 07’

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions
M(z,y,t) and N(z,y,t) denote the degree of nearness and degree of non-
nearness between x and y with respect to t, respectively.

Remark 2.6. Every fuzzy metric space (X, M,*) is an intuitionistic fuzzy
metric space if X of the form (X, M,1 — M, *,<{) such that t- norm * and t-
conorm <y are associated, that is, xOy = 1—((1—xz)*(1—y)) for any z,y € X.
But the converse is not true.

Example 2.7. [16] Let (X,d) be a metric space. Denote a x b = ab and
ab =min{l,a+ b} forall a,b € [0,1] and let My and Ny be fuzzy sets on
X? % (0,00) defined as follows;

d(z,y)

My(z,y,t) = ttdxy)

=— N t
t—i—d(l’,y)’ d(xaya )

Then (Mg, Ng) is an intuitionistic fuzzy metric on X. We call this intuitionis-
tic fuzzy metric induced by a metric d the standard intuitionistic fuzzy metric.
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Remark 2.8. Note the above example holds even with the t-norm a x b =
min{a, b} and the t-conorm a{)b = max{a, b} and hence (Mg, Ny) is an intu-
ittonistic fuzzy metric with respect to any continuous t-norm and continuous
t-conorm.

Example 2.9. Let X = N. Define axb = mazx{0,a +b— 1} and adb =
at+b—ab forall a,b€0,1] and let M and N be fuzzy sets on X* x (0, 00)
defined as follows;

, fr=uy,
M(xayat):

2 oafy <,

Eoifr <y,
N(xayvt):

= ify <,

for all x,y,z € X andt > 0. Then (X, M, N,*,<) is an intuitionistic fuzzy
metric space.

Remark 2.10. Note that, in the above example, t-norm x and t-conorm <
are not associated. And there exists no metricd on X satisfying

d(z,y)
=———— N(x,y,t) = ———.
t+d(z,y) (z.9,1) t+d(x,y)
where M(z,y,t) and N(x,y,t) are as defined in above example. Also note the
above function (M, N) is not an intuitionistic fuzzy metric with the t-norm
and t-conorm defined as a x b = min{a, b} and a)b = max{a,b}.

Definition 2.11. [1] Let (X, M, N, *,<>) be an intuitionistic fuzzy metric space.

(a) A sequence {z,} in X is called cauchy sequence if for each t > 0 and
P >0, lim, oo M(Zpip, Tn,t) = 1 and lim,,oo N(Tpip, Tn, t) = 0.

(b) A sequence {x,} in X is convergent to x € X if lim, oo M(x,,x,t) =1
and lim, o, N(x,,z,t) =0 for each t > 0.

(c) An intuitionistic fuzzy metric space is said to be complete if every
Cauchy sequence is convergent.

M(z,y,t)

Lemma 2.12. [16] In an intuitionistic fuzzy metric spaceX, M(x,y, .) is
non-decreasing and N(x, y, .) is non-increasing for all x, y € X.

Lemma 2.13. [20] Let (X, M, N, x,<>) be an intuitionistic fuzzy metric space.
If there exists a constant k € (0,1) such that

M(yn+27 Yn+1, kt) Z M(yn-i-la Yn, t)7

N(yn+27 Yn+1, kt) < N(yn-‘rh Yn, t)
Vt>0 and n=1,2,.. then {y,} is a cauchy sequence in X.
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Lemma 2.14. [20] Let (X, M, N, x,<>) be an intuitionistic fuzzy metric space.
If there exists a constant k € (0,1) such that

M(z,y, kt) > M(x,y,t), N(z,y, kt) < N(z,y,t),
forx,y e X. Then x =y.

Definition 2.15. [14] Let (X, d) be a metric space. Two self mappings f and
g of X are said to be R-weakly commuting if there exists a positive real number
R > 0 such that

d(fg(z),9f(x)) < Rd(f(x), g(z))
forallz € X.

Definition 2.16. Let (X, M, N,*,{) be an intuitionistic fuzzy metric space.
Two self mappings f and g of X are said to be pointwise R-weakly commuting
on X if given x € X there exists a positive real number R > 0 such that

M(fg(x),9f(x),t) = M(f(x),9(x),t/R)

N(fg(x),gf(x),t) < N(f(x),g(x),t/R)
and t > 0.

Definition 2.17. Let A and S be mappings from an intuitionistic fuzzy metric
space (X, M, N, x,$) into itself. Then the mappings are said to be compatible
of

lim M(ASxz,,SAz,,t) =1,

n—oo

lim N(ASz,, SAx,,t) =0,

for every t > 0, whenever {x,} is a sequence in X such that

lim Az, = lim Sz, = z,

n—oo n—oo

for some z € X.

Definition 2.18. Let A and S be mappings from an intuitionistic fuzzy met-
ric space (X, M, N,*, <) into itself. Then the mappings are said to be non-
compatible if whenever {x,} is a sequence in X such that

lim Az, = lim Sz, = z,

n—oo n—oo

for some z € X. But
lim M(ASx,,SAx,,t) #1

n—oo

or non-existent,
lim N(ASz,, SAx,,t) #0

n—oo

or non-existent.
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Definition 2.19. Let A and S be mappings from an intuitionistic fuzzy metric
space (X, M, N, *, <) into itself. Then the mappings are said to be reciprocally
continuous if

lim ASx,, = Az, and lim SAx, =Sz,

n—oo n—oo

whenever {z,} is a sequence in X such that

lim Az, = lim Sz, = z,

n—oo n—oo

for some z € X.

Remark 2.20. If A and S are both continuous then they are obviously recip-
rocally continuous. But the converse need not be true.

3 Main Results

Theorem 3.1. Let (A,S) and (B,T) be a pointwise R-weakly commuting
pairs of selfmappings of a complete intuitionistic fuzzy metric space (X, M, N, *, )
with continuous t-norm x and continuous t-corm < defined by t xt > t and
(1—=6)O(1 —t) < (1—1t) forallt € [0,1] such that,

(i) AX CTX,BX C SX

(ii) there exists a constant k € (0,1) such that

M (Az,By,kt) m(z,y,t)
/ ez ([ ear), (31)
0 0

N(Az,By,kt) n(z,y,t)
/ o< ([ ear), (3.2)
0 0

where ¢ : Rt — RY is a Lebesque-integrable mapping which is summable,
nonnegative, and such that

/ o(t)dt >0 for each € >0,
0

where

m(x,y,t) :mln{M(Ty7 Byat)7 M(SI‘,AZL’,t), M(SI’, By, at)7
M(Tyana (2 - Oé)t), M(Ty7 SZE,t)}
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n(x,y,t) =max{N(Ty, By,t), N(Sz, Az, t), N(Sz, By, at),
N(Ty, Az, (2 — a)t), N(Ty, Sx,t)}

for all z,y € X, « € (0,2) and t > 0. Suppose that (A, S) or (B,T) is a
compatible pair of reciprocally continuous mappings. Then A, B, S and T have
a unique common fixed point.

Proof. Let xo be any point in X. we construct a sequence {y,} in X such that
forn=0,1,2...

Yo = Azop = TT9n4
Yont1 = DBroyir = STonyo. (3.3)

We show that {y,} is a Cauchy sequence. By (3.1) and (3.2), for all £ > 0 and
a=1—p with § € (0,1), we have

M (y2n+1,Y2n+2,kt) M (Bzany1,AT2n42,kt)
/ ea — [ pl0t
0

M (Az2p42,Bxan11,kt)
/ p(t)dt,
0

m(x2n+42,22n+1,t)
> / o(t)dt,
0

N(y2n+1,Y2n+2,kt) N(Bzan+1,AT2n42,kt)
/ o = [ p(t)d,
0 0

N(Azan+2,Bran+1,kt)
0
n(T2n+2,22n+1,t)
< / p(t)dt.
0
m(Tont2, T2nt1,t) = min{M(Tx2p11, Bront1,t), M(Azant2, Sxant2,t), M(Szont2, Brant1, at),

M (Tzon+1, Azant2, (2 — a)t), M(Txan+1, STon+2,t)}
= min{M(y2n,Y2n+1,1), M(Y2n+1,Y2n+2,1), M(y2n+1,Y2n+1, at),
M(y2n, y2n+2, (1 + B)1)), M (y2n, y2n+1,1)}
> min{M(y2n, y2n+1,t), M (y2n+1, Y2n+2,1), 1,
M (y2n; Y2n+1,1), M(y2n+1, Y2n+2, 6t), M(Y2n, Y2n+1,t)}
> min{M(y2n, y2n+1,t), M (Y2n+1,Y2n+2, 1),
M (y2n+1,y2n+2, B)}

n(zan+2, an+1,t) = max{N(Tzan+1, Brant1,t), N(Azant2, Stont2,t), N(Szant2, Bront1, at),
N(Tzon+1,Azon+2, (2 — a)t), N(Tz2n+1, STan+2,t)}
= max{N(y2n, y2n+1,t), N(Y2n+1,Y20+2, 1), N(Y2n+1, Y2n+1, at),
N(yzn, y2n+2, (1 + 6)1)), N(y2n, Y2n+1,t)}
max{N(y2n; y2n+1,t), N(y2n+1, y2nt2,1), 1,
N(y2n, y2n+1,t)s N(Y2n+1:Y2n+2, 6t); N(Y2n, Y2n+1,1)}
max{N(y2n; Y2n+1,t), N(Y2n+1, Y2n+2,1),
N(y2n+1,Y2n+2,5t)}

IN

IN
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since t-norm * t-conorm <, M(x,y,.) and N(zx,y,.) is continuous. Letting
£ — 1, we have

mM(Tont2, Tont1,t) > min{ M (Yan, Yont1, t), M (Yont1, Yoni2, t)

n(Tont2, Tont1,t) < max{N(yan, Yont1,t), N(Y2nt1, Yonto, )}
Therefore,

M (y2n+1,y2n+2,kt) min{M (y2n,Y2n+1,t),M (y2n+1,Yy2n+2,t) }
/ e(t)dt > / o(t)dt,
0 0

N(y2n+1,Y2n+2,kt) max{N (yan,y2n+1,t),N (y2n+1,y2n+2,t) }
/ p(t)dt < / o(t)dt.
0 0

Similarly, we can obtain

M (y2n+2,y2n+3,kt) min{M (y2n+1,¥2n+2,t),M (y2n+2,y2n+3,t)}
/ p(t)dt > / o(t)dt,
0

N(y2n+2,y2n+3,kt) max{N (Y2n+1,Y2n+2:t),N (Y2n+2,Y2n+3:t)}
/ ol)dt < / (1)t
0 0

In general,

M (yYn+1,yn+2,kt) min{ M (yn,Yn+1,t), M (Yn+1,Yyn+2,t)}
/ p(t)dt > / o(t)dt,
0

0

N(Yn+1,yn+2;kt) max{N (Yn,Yn+1:t),N (Yn+1,Yyn+2,t)}
/ e(t)dt < / (t)dt.
0 0

and, for every positive integer p,

M (Yn+1,Yn+2,kt) min{M (yn,Yn+1,t),M (Yn+1,yn+2,¢t/kP)}
/ e(t)dt > / o(t)dt,
0 0

N(Yn+1,Ynt2,kt) max{N (Yn,Yyn+1,t),N (Yn+1,yn+2,t/kP)}
/ p(t)dt < / o(t)dt.
0 0

since M (Yni1, Ynt2,t/k?) — 1 as p — 00, N(Yni1,Ynt2,t/kP) — 0 as p — oo,

M (Yn+1,Yn+2,kt) M (yn,yn+1,t)
/ e(t)dt > / o(t)dt.
0 0
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N(Yn+1,Yynt2,kt) N (Yn,yn+1,t)
/ o < | olt)d.
0 0

By Lemma 2.13, {y,} is Cauchy sequence in X. Since X is a complete,
there is a point z in X such that y, — 2z € X. Hence from (3.3), we have

Yon = Az, = TfE2n+1 — Z,

Yon+1 = B$2n+1 = S$2n+2 — Z.

Since A and S are compatible and reciprocally continuous mappings, then
ASxy, — Az and SAx,, — Sz as n — oo. The compatibility of the pair
(A, S) yields

lim M(ASza,, SAza,, t) =1

That is,
M(Az,Sz,t) =1. Hence Az = Sz.

The compatibility of the pair (A,.S) yields

lim N(AS.CI?Qn, SA.I'Qn, t) =0

n—oo

That is,
N(Az,Sz,t) =0. Hence Az = Sz.

Since AX C TX, there exist w € X such that Az = T'w. Using (ii), we get

M(Az,Bw,kt) m(szvt)
/ pt)dt > / p(t)dt,
0 0

N(Az,Bw,kt) n(z,w,t)
/ p(t)dt < / p(t)dt,
0 0

Take a =1,

m(z,w,t) = min{M(Tw, Bw,t), M(Sz, Az,t), M(Sz, Bw,t),
M(Tw, Az, t), M(Tw, Sz,t)}
= min{M(Az, Bw,t),1, M(Az, Bw,t),1,1}
= min{M(Az, Bw,t),1},

n(z,w,t) = max{N(Tw, Bw,t), N(Sz, Az,t), N(Sz, Bw,t),
N(Tw, Az, t), N(Tw, Sz, t)}
= max{N(Az, Bw,t),1, N(Az, Bw,t),1,1}
= max{N(Az, Bw,t),1}.
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M (Az,Bw,kt) M(Az,Bw,t)
/ e(t)dt > / o(t)dt,
0 0

N(Az,Bw,kt) N(Az,Bw,t)
/ ea < [ olt)it
0 0

By using Lemma 2.14, we get Az = Bw. Thus,
Sz = Az = Bw =Tw.

Pointwise R-weakly commuting of A and S implies that there exists R > 0
such that
M(ASz,SAz,t) > M(Az,Sz,t/R) =1,

N(ASz,SAz t) < N(Az, Sz, t/R) = 0.

That is,
ASz=5Az and AAz = ASz=S5Az=55z.

Similarly, Pointwise R-weakly commuting of B and T  implies that there exists
R > 0 such that

M(BTw,TBw,t) > M(Bw,Tw,t/R) =1,

N(BTw,TBw,t) < N(Bw,Tw,t/R) = 0.

That is,
BTw=TBw and BBw = BTw=TBw=TTw.

Using (ii), we get

M(Az,AAz kt) M(AAz,Buw,kt)
/ ot)dt = / o(t)dt,
0

0
m(Az,w,t)

> o(t)dt,

M(Az,AAzt)
p(t)dt,

1
S— >—

N(AAz,Bw,kt)

N(Az,AAz,kt)
/ ot)dt = o(t)dt,
0

n(Az,w,t)
p(t)dt,

N(Az,AAzt)
o(t)dt.

[A
S— — S—



Common fixed point theorem 515

By using Lemma 2.14, we get Az = AAz and Az = AAz = SAz. Thus, Az is
a common fixed point of A and S. Similarly, by using (ii), we get Bw (=Az)
is a common fixed point of B and 7. Uniqueness of the common fixed point
follows easily and the proof is similar when B and 7" are assumed compatible
and reciprocally continuous. O

Example 3.2. Let X = [2,20] and (X, M, N,*,{) be a intuitionistic fuzzy
metric. Define mappings A, B, S, T : X — X by

2 ifr =2,

Alz) =
{3 if © > 2.
2 ifx =2,
S(x) =
6

if © > 2.

2 ifx=2o0r >05,

B(x) =
6 if2<az<5.
2 if v = 2,
T(x)= 12 if2<ax <5,
r—3 if £ > 5.
Also, we Define,
t [z — |
M(Az, By,t) = ——  N(Axz, By,t) = —————,
e B0 = ey YA P = =D

forall z,y € X, t>0. Then A, B,S and T satisfy all the conditions of the
above Theorem with k = (0,1) and ¢(t) = 1 and have a unique common fized
point x = 2. Here, A and S are reciprocally continuous compatible maps. But
neither A nor S is continuous, even at the common fized point x = 2. The
mapping B and T are non-compatible but pointwise R-weakly commuting. B
and T are pointwise R-weakly commuting since they commute at their coin-
ctdence points. To see that B and T are non-compatible, let us consider the
sequence {x,} defined by

r, =5+1/n,n>1. Then Tx, — 2, Bx, = 2,TBx, = 2, BTz, = 6.

Hence B and T are noncompatible.
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Remark 3.3. All the mappings involved in this example are discontinuous at
the common fixzed point.

Remark 3.4. Compatible maps are necessarily pointwise R weakly commut-
g since compatible maps commute at their coincidence points. However, as
shown in the above example for the mappings B and T, pointwise R- weakly
commuting maps need not be compatible.

Remark 3.5. In this remark we demonstrate that pointwise R-weak commu-
tativity is a necessary condition for the existence of common fixed points of
contractive mapping pairs. So, let us assume that the self mappings A and S
of an intuitionistic fuzzy metric space (X, M, N,*,<) satisfy the contractive

condition
M (Az, Ay, kt) m(z,y,t)
/ o(t)dt > / p(t)dt,
0 0

where

m(z,y,t) = min{M(Sz, Sy,t), M(Az,Sx,t), M(Ay, Sy, 1),
M(Ax7 Sy7 t)? M(Ay7 Sx? t)}?

N(Az,Ay,kt) n(z,y,t)
/ o(t)dt < / o(t)dt,
0 0

where

n(z,y,t) = max{N(Sz,Sy,t), N(Az, Sz,t), N(Ay, Sy,t),
N(Az, Sy, t), N(Ay, Sz,1)}.

which is one of the general contractive definitions for a pair of mappings. If
possible, suppose that A and S fail to be pointwise R-weakly commuting and
yet have a common fixed point z. Then z = Az = Sz and there exists v in X

such that Ar = Sx but ASx # SAz. clearly, z # = since ASz = SAz = 2.
Moreover, Ax # Az. But then we have

M (Ax,Az,kt) m(z,z,t)
/ eie > [ el
0 0

where
m(z,z,t) = min{M(Sxz, Sz, t), M(Ax,Sx,t), M(Ay, Sz,t),

M(Az, Sz, t), M(Az, Sz,t)}
= M(Azx, Az, t)
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N(Az,Ay,kt) n(z,y,t)
/ o(t)dt < / p(t)dt,
0 0

where

n(x,z,t) = max{N(Sz,Szt), N(Azx,Sz,t), N(Az, Sz,1),
N(Az,Sz,t), N(Ay, Sz, t)}
= N(Azx, Az,t)

M (Ax,Az,kt) M(Az,Az,t)
/ oit > [ p(b)dt,
0 0

N(Ax,Az kt) N(Az,Az,t)
/ p(t)dt < / p(t)dt,
0

0

a contradiction. Hence the assertion.
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