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Abstract

A subset Q ⊆ V (G) is a dominating set of a graph G if each vertex
in V (G) is either in Q or is adjacent to a vertex in Q. A minimal
dominating set Q of a graph G is a dominating set that contains no
dominating set of G as a proper subset. In this paper we study the
number of all minimal dominating sets in trees including the set of
leaves. We determine the smallest number and the largest number of
minimal dominating sets including the set of leaves among n-vertex
trees. Corresponding trees with those numbers are characterized.
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1 Introduction

In general we use the standard terminology and notation of graph theory, see
[2]. Only simple undirected graphs are considered. By Pn, n ≥ 2, we mean
graph with the vertex set V (Pn) = {x1, . . . , xn} and the edge set E(Pn) =
{{xi, xi+1}; i = 1, . . . , n − 1}. Moreover, P1 is a graph with one vertex and
P0 is a graph with V (P0) = ∅. By the subdivision of an edge e = {x, y} of
G we mean inserting a new vertex of degree 2 into the edge e. We denote it
by sub {x,y}(G). By p-th subdivision, p ≥ 1, of the star K1,n−1 we mean a
graph obtained by subdivision of p arbitrary edges of K1,n−1 and we denote
it by sub p(K1,n−1). If {x, y} ∈ E(G) then we say that x is a neighbor of
y. The set of all neighbors of x is called the open neighborhood of x and is
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denoted by N(x). The closed neighborhood of x is N [x] = N(x) ∪ {x}. For a
subset X ⊆ V (G) we put N(X) and N [X] instead of

⋃
x∈X

N(x) and
⋃

x∈X

N [x],

respectively. Let X ⊂ V (G) ∪ E(G). The notation G \ X means the graph
obtained from G by deleting the set X. A subset Q ⊆ V (G) is a dominating
set of G if for every vertex x ∈ V (G), |N [x]∩Q| ≥ 1. We will say with respect
to the vertex x; Q dominates x in G or x is dominated by Q. Moreover,
V (G) is a dominating set of G. A minimal dominating set Q of a graph G
is a dominating set that contains no dominating set of G as a proper subset.
Throughout this paper for convenience we will write a md-set of G instead of
a minimal dominating set of G. Let us denote by NMD(G) the total number
of md-sets in the graph G. Let x be an arbitrary vertex of V (G). We denote
by Qx the family of all md-sets Q of G such that x ∈ Q. By Q−x we denote
the family of all md-sets Q of G such that x 	∈ Q. Of course, Q = Q−x ∪ Qx

is the family of all md-sets of G and NMD(G) = |Q| = |Q−x| + |Qx|.
The concept of domination in graphs has existed in literature for a long

time, it is now well studied in graph theory and the literature on this subject
has been surveyed and detailed in the two books [4, 5]. In particular, charac-
terization of trees with some extremal domination properties has recently been
considered in a number of papers, for instance [1, 3, 6, 7, 8].

In what follows T stands for a tree with the vertex set V (T ), |V (T )| denotes
the cardinality of V (T ). Recall that a vertex of degree 1 is called a leaf. For
x ∈ V (T ), denote by L(x) the set of leaves attached to the vertex x. If
|L(x)| ≥ 1 then the vertex x we call a support vertex. If |L(x)| = 1 (resp.
|L(x)| ≥ 2) then the support vertex x we call a weak support vertex (resp. a
strong support vertex). If L(x) = {z} then the we say that z is a single leaf.
Let V ∗ ⊂ V (T ). Then L(V ∗) =

⋃
x∈V ∗

L(x). If V ∗ is the set of support vertices

of the tree T then L(V ∗) is the set of leaves in T . We will use the symbol L
to denote the set of leaves in T .

Proposition 1 If Q is a md-set of T and there exists a support vertex x ∈
V (T ) such that Q ∩ L(x) 	= ∅ then L(x) ⊆ Q.

P R O O F: If |L(x)| = 1 then the Proposition is obvious. Assume that
L(x) = {z1, . . . , zt}, t ≥ 2. Let Q be a md-set of T and assume that there is
a support vertex x ∈ V (T ) such that Q ∩ L(x) 	= ∅ and L(x) \ Q 	= ∅. This
implies that there is zp ∈ L(x) and zp 	∈ Q. Since Q ∩ L(x) 	= ∅, we see that
there is zk ∈ L(x), k 	= p, and zk ∈ Q. Consequently, by the minimality of Q,
we have that x 	∈ Q. Hence Q does not dominate the vertex zp in T , which
contradicts the fact that Q is dominating set of T . Thus the proof is complete.
�



On the number of minimal dominating sets 1741

In this paper we consider md-sets Q of T such that for every support vertex
x ∈ V (T ), Q∩L(x) 	= ∅. Then Proposition 1 implies that L ⊆ Q. In the other
words we consider md-sets including L. It is clear that every n-vertex tree
with n ≥ 3 has a md-set including the set L. Let us denote by NMDL(T )
the total number of all md-sets of T including the set of leaves. In this paper
we study the number NMDL(T ). In particular, we characterize trees with the
smallest number and the largest number of these sets.

It is easily seen that NMDL(T ) = NMD(T \N [L]). Let QL be the family of
all md-sets of T including the set L. Then |QL| = |Q′|, where Q′ is the family
of all md-sets of T \ N [L].

Let x be an arbitrary vertex of V (T ). We will denote by QL,x the family
of all md-sets Q of T including the set of leaves L and such that x ∈ Q. Let
QL,−x denote the family of all md-sets Q of T including the set of leaves L and
such that x 	∈ Q. Evidently, QL,x ∪ QL,−x = QL is the family of all md-sets
including L. Then the basic rule for counting of md-sets including the set of
leaves L in a tree T is as follows NMDL(T ) = |QL| = |QL,x| + |QL,−x|.

Consider now a collection of n computers which are linked in a network with
a structure of a tree. Assume that Q is the subset of the set of computers which
control doing some computational problem. The control is possible if there
exists direct link of a computer not being in Q to at least one of computer from
the set Q. Moreover, it is desired that every computer which is linked to exactly
one another computer is the element of the set Q and the set Q is minimal
with respect to set inclusion. In this process of the control every computer of
the set Q, which is linked to exactly one another computer (not being in Q),
piles data from other computers. The question is: what is the smallest number
and the largest number of possibilities that we choose computers from the set
of n computers to the set Q and what is the structure of the network with such
chosen computers. We can reformulate this problem as follows. Let T = (V, E)
be a tree with V representing the set of computers, |V (T )| = n, and with E
representing links between these computers. Therefore every md-set containing
all leaves of the tree T represents the set Q of computers which fulfills above
mentioned conditions. The total number of all md-sets of T including the set
of leaves is equal to the number of all possibilities of the choice such sets Q.

2 Trees with the smallest number of md-sets

including L

It is clear that if |V (T )| = 2 then NMDL(T ) = 0. We consider n-vertex trees
with n ≥ 3.
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Theorem 2 Let T be an n-vertex tree with n ≥ 3. Then NMDL(T ) ≥ 1 with
equality if and only if for every two adjacent vertices of T at least one of them
is a support vertex.

P R O O F: Let T be an n-vertex tree with n ≥ 3 and L ⊂ V (T ) be the set of
leaves. The inequality is obvious. Denote T ′ = T \ N [L]. Let x, y ∈ V (T ) be
arbitrary adjacent vertices of T . Assume that at least one of them, say x, is a
support vertex, i.e. L(x) 	= ∅. We shall prove that NMDL(T ) = 1. Let Q be
an arbitrary md-set of T including the set L. Then L ⊆ Q. Moreover, by the
minimality of the set Q, we have that N(L) ∩ Q = ∅. From the assumption
of T and the vertex x we deduce that x ∈ N(L). This means that T ′ is
totally disconnected. Consequently, Q = L ∪ V (T ′) is the unique md-set of T
including the set L. Conversely, assume now that NMDL(T ) = 1 and let Q be
the unique md-set of T including L. Of course, Q = L ∪ Q∗, where Q∗ is the
unique md-set of T ′. On the contrary, suppose that there are adjacent vertices
x, y ∈ V (T ) and L(x) = L(y) = ∅. This implies that N [L] ∩ {x, y} = ∅.
Clearly, {x, y} ∈ E(T ′). Let Q′ be a family of all md-sets of T ′. Then, by the
basic rule for counting md-sets, we have that |Q′| = |Qx| + |Q−x|. Evidently,
|Qx| ≥ 1 and |Q−x| ≥ 1, so NMD(T ′) = |Qx| + |Q−x| ≥ 2. This contradicts
the fact that Q is the unique md-set of T ′ including L. �

Theorem 3 Let T be an n-vertex tree with n ≥ 3. Then NMDL(T ) = 2 if and
only if the unique maximal connected subtree T � of T such that L(V (T �)) = ∅
is a star K1,p, p ≥ 1.

P R O O F: Let T be an n-vertex tree with n ≥ 3 and L ⊂ V (T ) be the set
of leaves of T . Let K1,p, p ≥ 1, be the unique maximal connected subtree of T
such that L(V (K1,p)) = ∅. Assume that Q is an arbitrary md-set of T including
L. Of course, L ⊆ Q. By the general rule for counting the number NMDL(T )
we have that NMDL(T ) = NMD(T \ N [L]). Denote T ′ = T \ N [L]. It is
clear that T ′ is the union of the star K1,p, p ≥ 1, and of totally disconnected
graph. Consequently, Q = L∪Q′ where Q′ is an arbitrary md-set of T ′. Since
NMD(K1,p) = 2, we have exactly two sets Q′ which gives that NMD(T ′) = 2 =
NMDL(T ). Conversely, suppose that NMDL(T ) = 2. Let Q be an arbitrary
md-set of T including L. Of course, L ⊆ Q, hence N(L)∩Q = ∅. By the basic
rule for counting sets Q we have that Q = L ∪ Q′ where Q′ is a md-set of the
graph T ′ and NMDL(T ) = NMD(T ′) = 2. Let T̃ be a subgraph of T ′ such that
T ′ \ T̃ is totally disconnected. Then NMD(T̃ ) = NMD(T ′) = NMDL(T ) = 2.
We shall prove that T̃ = K1,p, p ≥ 1. If T̃ is connected then, by Theorem

??, we obtain that T̃ = K1,p, p ≥ 1. Assume now that T̃ is disconnected

and T̃ 	= K1,p, p ≥ 1. Let T̃1, T̃2 be connected components of T̃ . Under

the above assumptions about T̃ , let {x, y} ∈ E(T̃1) and {u, v} ∈ E(T̃2). Let
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Q1 and Q2 be families of all md-sets of T̃1 and T̃2, respectively. Evidently,
|Q1| = |Qx|+ |Q−x| ≥ 2 and |Q2| = |Qu|+ |Q−u| ≥ 2. Hence, by fundamental
combinatorial statements, NMD(T̃ ) ≥ 4. Consequently, NMDL(T̃ ) ≥ 4, which
contradicts the assumption.

Finally from the above it follows that the unique maximal connected subtree
T � of T such that L(V (T �)) = ∅ is a star K1,p, p ≥ 1.

Thus the Theorem is proved. �

It is easy to observe

Theorem 4 For an arbitrary n ≥ 3 there is no an n-vertex tree T with
NMDL(T ) = 3. �

3 Trees with the largest number of md-sets

including the set of leaves

In this section we determine the largest number of md-sets including the set of
leaves in trees. We also characterize trees with the largest number of md-sets
including the set L.

A vertex x ∈ V (T ) is penultimate if x is not a leaf and x is adjacent to at
least degT x − 1 leaves. Note that x is adjacent to degT x leaves if and only if
x is the center of a star K1,n−1.

Theorem 5 [9] Every n-vertex tree T with n ≥ 3 has a penultimate vertex.

Theorem 6 Let x be a strong support vertex of T . Assume that L(x) is the
set of leaves attached to the vertex x and L′(x) is an arbitrary proper subset of
L(x). Then

NMDL(T ) = NMDL(T \ L′(x)).

P R O O F: Let x ∈ V (T ) be a strong support vertex and L(x) = {z1, . . . , zk},
k ≥ 2. Let L′(x) ⊂ L(x). Denote T ′ = T \ L′(x). Since L′(x) is a proper
subset of L(x), we see that there is a subset L′′(x) = L(x) \ L′(x) being the
set of leaves in T and T ′, simultaneously. Hence x is the neighbor of every
zp ∈ L′′(x), p ∈ I ⊂ {1, . . . , k}. Assume that QL and Q′

L are families of all
md-sets in T and T ′ including the set L, respectively. It is easily seen that for
every Q ∈ QL holds x /∈ Q. Hence |QL| = |QL,−x|. Since L(x) ⊆ Q, it follows
that L′(x) ⊂ Q. This means that Q \ L′(x) ∈ Q′

L. From the above we have
that |QL| ≤ |Q′

L|. Conversely, assume that Q′ ∈ Q′
L is a md-set of T ′ including

the set L. Of course, L′′(x) ⊂ Q′ and x 	∈ Q′. Hence |Q′
L| = |Q′

L,−x|. Since
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L′(x) is a proper subset of L(x), we conclude that zp ∈ Q′ for every p ∈ I,
and Q′ ∪ L′(x) ∈ QL. Consequently, |Q′

L| ≤ |QL|. All this together gives that
|QL| = |Q′

L|, so NMDL(T ) = NMDL(T \L′(x)), which completes the proof. �

Theorem 7 Let x ∈ V (T ) be a weak support vertex of T with L(x) = {z}.
Assume that x is not a penultimate vertex. Then NMDL(T ) ≤ NMDL(T \{z}).

P R O O F: Let x ∈ V (T ) be a weak support vertex of T and z be the
single leaf attached to the vertex x. Denote T ′ = T \ {z}. Assume that QL

and Q′
L are families of all md-sets including the set of leaves in T and T ′,

respectively. It is clear that for every Q ∈ QL we have that x 	∈ Q. Hence
|QL| = |QL,−x|. Since x is not a penultimate vertex of T , it follows that x is
not a leaf in T ′. By assumptions we have that for every Q ∈ QL, Q\{z} ∈ Q′

L

or Q \ {z} ∪ {x} ∈ Q′
L. Hence |QL| ≤ |Q′

L|, which ends the proof. �

Theorem 8 Let T be an n-vertex tree, n ≥ 5, T 	= K1,n−1. Let x ∈ V (T )
be a strong support vertex with L(x) = {z1, . . . , zp}, p ≥ 2. Assume that
u is a penultimate vertex of T and v ∈ N(u) \ L(u). Then NMDL(T ) ≤
NMDL(sub {u,v}(T \ {zi})) for an arbitrary 1 ≤ i ≤ p.

P R O O F: Let x ∈ V (T ) be a strong support vertex and L(x) = {z1, . . . , zp},
p ≥ 2. Assume that zi, 1 ≤ i ≤ p, is a fixed vertex of L(x). Then, by
Theorem 6, we have that NMDL(T ) = NMDL(T \ {zi}) for 1 ≤ i ≤ p. Let
u be a penultimate vertex of T and v ∈ N(u) \ L(u). The existence of the
vertex v gives the fact that T 	= K1,n−1. Denote T ′ = sub {u,v}(T \ {zi}). Let
QL and Q′

L be families of all md-sets including the set of leaves in T and T ′,
respectively. By the basic rule for counting md-sets including L we have that
NMDL(T ′) = |Q′

L,u| + |Q′
L,−u|. Since u is the penultimate vertex of T , hence

by the definition of subdivision of edge, it follows that u is the penultimate
vertex in T ′, too. Let Q′ ∈ Q′

L be an arbitrary md-set of T ′ including L. Then
it is obvious that u 	∈ Q′. Hence NMDL(T ′) = |Q′

L,−u|. Let w be a vertex
inserting into the edge {u, v}. Of course, |Q′

L,−u| = |Q′
L,−w|+ |Q′

L,w|. Consider
two cases.
(1) w 	∈ Q′

Then it is clear that v ∈ Q, so |Q′
L,−w| = |Q′

L,v| = |QL,v|.
(2) w ∈ Q′

Since degT ′ w = 2, we have v 	∈ Q′. Therefore, by the definition of subdivision
of edge {u, v}, we obtain that |Q′

L,w| = |Q′
L,−v| ≥ |QL,−v|.

Consequently from the above we have that
NMDL(T ′) = |Q′

L,−u| = |Q′
L,−w| + |Q′

L,w| ≥ |QL,v| + |QL,−v| = NMDL(T ),
which ends the proof. �
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Proving analogously as in Theorem 8 we obtain.

Theorem 9 Let T be an n-vertex tree, n ≥ 5, and T 	= K1,n−1. Assume
that x ∈ V (T ) is a weak support vertex of T with L(x) = {z} and x is not
penultimate. Let u be a penultimate vertex of T and v ∈ N(u) \ L(u). Then
NMDL(T ) ≤ NMDL(sub {u,v}(T \ {z})). �

Let T̃ be an arbitrary tree. From now on for a tree T with |V (T )| ≥ 3 by T̃ -
addition we mean a local augmentation which is the operation T �→ ad

�T (x,y)(T )

of adding to the vertex x ∈ V (T ) a graph T̃ so that a vertex x is identified
with a fixed vertex y ∈ V (T̃ ).

Theorem 10 Let T be an n-vertex tree with x ∈ V (T ) and let Pt, Pm, t, m ≥
3, be subtrees of T attached to the vertex x. Then NMDL(T ) ≤ NMDL(adPt(u,x)(T\
(Pt \ {x}))) where u is the leaf of Pm which is identified with the initial vertex
x of Pt.

P R O O F: Let T be as in the statements of the Theorem. Denote T ′ =
adPt(u,x)(T \(Pt\{x})). Let QL and Q′

L be families of all md-sets including L in
T and T ′, respectively. By the general rule for counting of minimal dominating
sets including L we have that NMDL(T ) = |QL,x| + |QL,−x|. Let Q ∈ QL.
Denote Q∗ = Q ∩ V (T \ (Pt ∪ Pm)), Q1 = Q ∩ V (Pm) and Q2 = Q ∩ V (Pt).
Clearly, if x ∈ Q then x ∈ Q1 ∩ Q2. Consider the following cases.
(1) x ∈ Q
Then m, t ≥ 3. Otherwise, since L ⊆ Q, we have that Q is not minimal.
Identifying vertex x of Pt with the leaf u of Pm we obtain that Q = Q∗∪Q1∪Q2

is a md-set of T ′ including the set L. Hence |QL,x| ≤ |Q′
L,x|.

(2) x 	∈ Q
Let v ∈ N(x) ∩ V (Pt) and consider two possibilities.
(2.1) v ∈ Q
In this case the following set Q∗ ∪ Q1 ∪ (Q2 \ {v}) or Q∗ ∪ Q1 ∪ (Q2 \ {u}) or
Q∗ ∪ Q1 ∪ Q2 is a md-set including the set of leaves in T ′.
(2.2) v 	∈ Q
Then Q = Q∗ ∪ Q1 ∪ Q2 is a md-set including L in T ′.

Consequently, from the above and by fundamental combinatorial statements
we have that |QL,−x| ≤ |Q′

L,−x|.
Finally, NMDL(T ) = |QL,x| + |QL,−x| ≤ |Q′

L,x| + |Q′
L,−x| = NMDL(T ′). Thus

the Theorem is proved. �

The main results of this section follows.
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Theorem 11 Let T be an n-vertex tree with n ≥ 3. Then NMDL(T ) ≤
NMDL(Pn).

P R O O F: If T = K1,p, p ≥ 2, then the Theorem is obvious. Assume that
T 	= K1,p, p ≥ 2. To avoid trivialities, suppose that n ≥ 5 and T 	= Pn.
Let X ⊂ V (T ) be the set of strong support vertices in T . Theorem 8 now
shows that there is an n-vertex tree T̃ such that NMDL(T̃ ) ≥ NMDL(T ) and
for every x ∈ V (T̃ ), |L(x)| ≤ 1. Let Y ⊂ V (T̃ ) be the set of weak support
vertices y such that y is not penultimate. Then Theorem 9 gives that we can
construct an n-vertex tree T � with NMDL(T �) ≥ NMDL(T̃ ) ≥ NMDL(T ) such
that T � does not have strong support vertices and every weak support vertex
is penultimate. Moreover, using Theorem 10 step by step, we obtain that
NMDL(Pn) ≥ NMDL(T �) ≥ NMDL(T ), which ends the proof. �

At the end we calculate the number NMDL(Pn) being the largest number of
md-sets including L among all n-vertex trees. We describe this number using
the recurrence relations.
Let Pn be a graph with the vertex set V (Pn) = {x1, . . . , xn}, n ≥ 1, numbered
in the natural fashion. We denote by f(n), n ≥ 8, the total number of md-sets
of Pn containing vertices x1, xn−4, xn−3 and xn.

Theorem 12 Let n ≥ 0 be an integer. Then for n ≥ 9

NMDL(Pn) = NMDL(Pn−2) + NMDL(Pn−3) + f(n)

and f(n) = NMDL(Pn−7) + f(n − 4)

with initial conditions

NMDL(P0) = NMDL(P2) = 0,

NMDL(Pn) = 1 for n = 1, 3, 4, 5,

NMDL(P6) = NMDL(P7) = 2, NMDL(P8) = 4 and f(n) = 0 for n =, 5, 6, 7, f(8) = 1.

P R O O F: The initial conditions for NMDL(Pn) are obvious. Let QL be the
family of all md-sets of Pn including the set {x1, xn}. Assume that Q ∈ QL.
This means that xn−1 	∈ Q. Consider the following cases.

(1) xn−2 ∈ Q
Let Q1 ∈ QL be a subfamily of QL such that for Q ∈ Q1 we have that
{x1, xn−2, xn} ⊂ Q. Then xn−3 	∈ Q and Q = Q∗ ∪ {xn}, where Q∗ is an
arbitrary md-set of graph Pn \{xn, xn−1} including vertices x1 and xn−2. Since
Pn \ {xn, xn−1} is isomorphic to Pn−2, we have |Q1| = NMDL(Pn−2).
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(2) xn−2 	∈ Q
Let Q2 ⊂ QL and for arbitrary Q ∈ Q2, xn−2 	∈ Q. Then it is easily seen that
xn−3 ∈ Q and two possibilities should be considered.

(2.1) xn−4 ∈ Q
Let Q′

2 ⊂ Q2 and Q ∈ Q′
2. Under our assumptions x1, xn−3, xn−4, xn ∈ Q,

so |Q′
2| = f(n). The initial conditions for f(n) are obvious. Let n ≥ 9. To

calculate the number f(n), consider two possibilities.

(2.1.1) xn−8 ∈ Q
In this case Q has the form Q = Q∗ ∪ {xn, xn−3}, where Q∗ is an arbitrary
md-set of Pn \ {xn−i; i = 0, . . . , 3}, isomorphic to Pn−4, and contains vertices
x1, xn−4, xn−7, xn−8. Therefore, due to the definition of the number f(n), we
have f(n − 4) sets Q in this case.

(2.1.2) xn−8 	∈ Q
Then Q = Q∗∗ ∪ {xn, xn−3, xn−4}, where Q∗∗ is an arbitrary md-set of Pn \
{xn−i; i = 0, . . . , 6}, which is isomorphic to Pn−7 and x1, xn−7 ∈ Q∗∗. Hence
we have NMDL(Pn−7) sets in this case.

Consequently, for n ≥ 9 we have that f(n) = f(n − 4) + NMDL(Pn−7).

(2.2) xn−4 	∈ Q
In this case Q = Q′′ ∪ {xn}, where Q′′ is an arbitrary md-set of graph Pn \
{xn, xn−1, xn−2} and x1, xn−3 ∈ Q′′. Since Pn \ {xn, xn−1, xn−2} is isomorphic
to Pn−3, it follows that we have NMDL(Pn−3) sets Q in this case.
Therefore from the above cases we obtain |Q2| = f(n) + NMDL(Pn−3) and
f(n) = NMDL(Pn−7) + f(n − 4), n ≥ 9.

Finally for n ≥ 9, NMDL(Pn) = |Q1|+ |Q2| = NMDL(Pn−2)+NMDL(Pn−3)+
f(n) and f(n) = NMDL(Pn−7) + f(n − 4). This ends the proof. �
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