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Abstract

We show that a simplicial isomorphism of boundary polyhedra of
simplicial polytopes extends to an equivalence of polytopes. Using this
result we present another proof of the well known result that there are
exactly five platonic solids.
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1 Introduction and Definitions

This article is an attempt to present a yet another simple proof of the well
known classical theorem about classification of Platonic solids. Five geometri-
cal objects, namely, the Tetrahedra, the Cube, the Octahedra, the Dodecahedra
and the Icosahedra are called Platonic solids [2]. Extending continuous func-
tions of spheres to the balls which they bound is a common exercise in a
Topology graduate curriculum. But, whether such a result exists in the case
of Combinatorial Topological category is not known to the author. We present
such a result for the case of equivalence of simplicial polytopes here and use
it to establish the result about classification. The existence is addressed by
standard technique of constructing combinatorial 2-manifolds. We begin with
some definitions.

An abstract n-simplex σ is a finite set {v1, v2, . . . , vn+1}. An abstract n-
simplex is also referred to as a n simplex. An abstract simplicial complex K is
a finite collection of abstract n-simplices for some positive integers n, together
with all of their subsets. The greatest integer d such that K has a d simplex
is called the dimension of K. In this article we will be mainly dealing with
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simplicial complexes of dimension 2. In such a case the elements of sizes 0, 1
and 2 are called vertices, edges and faces, respectively.

Let σ be an abstract n-simplex, i.e. σ = {v1, v2, . . . , vn+1}. Let {x1, x2,
. . . , xn+1} be a set of geometrically independent (i.e. the set {xi −x1 : 2 ≤ i ≤
n+1} is linearly independent) points in some Euclidean space RN . Then, the
convex hull |σ| of {x1, x2, . . . , xn+1} is known as geometric realization of σ or
geometric simplex corresponding to σ. Henceforth in this article we will omit
the term abstract from abstract n-simplex and abstract simplicial complexes.

Let K be a simplicial complex with the set of 0 simplices as V = {a1, a2, . . . ,
am}. We can choose a positive integer N sufficiently large and a set of points
U = {b1, b2, . . . , bm} in RN which is in one - to - one correspondence with
V such that the convex hull of {bi1 , bi2 , . . . , bir+1} ⊆ U is a r - simplex in
RN if {ai1 , ai2 , . . . , air+1} ⊆ V is a r - simplex in K. Then, the union of all
the geometric simplices in RN corresponding to simplices in K is called the
geometric carrier of K and is denoted by |K|.

A simplicial map between two simplicial complexes K1 and K2 is a map T
of the vertex set V (K1) of K1 into vertex set V (K2) of K2 such that σ ∈ K1

implies T (σ) ∈ K2. The map T is an isomorphism if T : V (K1) −→ V (K2) is
a bijective map such that T (σ) is a simplex if and only if σ is a simplex. One
may refer to [5] and [6] for further details about simplicial complexes.

A graph without loops and double edges is an example of 1- dimensional
simplicial complex. The number of edges incident with a vertex v in a simplicial
complex is called the degree of v. A connected finite graph is called a cycle if
the degree of each vertex is 2. An n-cycle is a cycle on n vertices. It is denoted
by Cn(v1, v2, . . . , vn) if the edges are v1v2, v2v3, . . . , vn−1vn and vnv1.

If v is a vertex of a simplicial complex K then the link of v in K is the
simplicial complex lk(v) = {σ ∈ K : v �∈ σ, {v} ∪ σ ∈ K}. A finite 2-
dimensional simplicial complex K is called a combinatorial 2-manifold if |K|
is a topological 2-manifold. It is easy to see that a simplicial complex K is a
combinatorial 2-manifold if and only if lk(v) is a cycle for each vertex v of K.

For an n−vertex combinatorial 2-manifold M let v, e and f denote the
numbers of vertices, edges and faces respectively. Then, the integer χ(M) =
v − e + f is called the Euler characteristics of M . If the degree of each vertex
in M is same then it is called degree-regular. In following section we present
some examples of degree-regular combinatorial 2-manifolds.

2 Examples

In this section we give pictorial examples of some orientable equivelar combi-
natorial 2-manifolds of Euler characteristics 2 :
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3 Results

Let P be a convex subset of R3. A point x ∈ P is called a vertex point (see
[4], pp. 17) of P if y, z ∈ P, 0 < λ < 1 and x = λ y +(1−λ) z imply x = y = z.
The set of all vertex points of P is called the vertex set of P and is denoted as
vertP . A compact convex set P ⊂ R3 is called a polytope if vertP is a finite
set. Thus, the platonic solids are examples of polytopes.

We say that a hyperplane H = {x ∈ R3 : 〈x, u〉 = a, ||u|| = 1 and a �= 0},
supports P if H does not intersect P but the distance δ(H, P ) between P and
H is 0, where δ(H, P ) = inf{||b − a|| : a ∈ H, b ∈ P}. A set F ⊆ P is called
a face of P if either F = ∅ or F = P or there exists a supporting hyperplane
H of P such that F = P ∩ H (see [4], pp. 17). The faces other than ∅ and K
are called proper faces of P . If all the proper faces of P are simplices then P
is called a simplicial polytope.

An equivalence of two polytopes P1 and P2 (see [4], pp. 38) is a one - to -
one map T between the sets {F} and {F ′} of faces of P1 and P2 respectively,
which preserves inclusions. i.e. if F1 ⊂ F2 then T (F1) ⊂ T (F2).

In Theorem 1 we show that a simplicial isomorphism of boundary polyhedra
of a simplicial polytope extends to an equivalence of polytopes.

Theorem 1. Let P1 and P2 be two simplicial polytopes. Let T : Bd(P1) −→
Bd(P2) be an isomorphism of the boundary polyhedra Bd(P1) and Bd(P2) of
P1 and P2 respectively. Then T extends to an equivalence T̃ : P1 −→ P2.

Proof. By definition of T , T (F ) is a face of P2 if and only if F is a face of
P1, for all proper faces of P1 and all the proper faces of P2 are of this type.
Now, extend T by defining T̃ as T̃ (F ) = T (F ) for all proper faces F of P1 and
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T̃ (∅) = ∅, T̃ (P1) = P2. T̃ is a well defined map and is a bijection of set of faces
of P1 onto the set of faces of P2.

Now, consider two faces F1 and F2 of P1 for which F1 ⊆ F2. If F2 = P1 or
F1 = ∅ then T̃ (F1) ⊆ T̃ (F2) is true. Otherwise, let us assume that there exists a
z ∈ T̃ (F1) = T (F1) such that z �∈ T̃ (F2) = T (F2). Then, T−1(z) ∈ T−1(T (F1))
but T−1(z) �∈ T−1(T (F2)). In other words, T−1(z) ∈ F1 but T−1(z) �∈ F2. This
is not possible. Hence, T̃ (F1) ⊆ T̃ (F2). Thus, T̃ is an equivalence.

For an n−vertex combinatorial 2-manifold M , if the degree of each vertex
is d then nd = 2e = 3f . So, nd is divisible by 6. Also, χ(M) = n − e +

f = n − nd
2

+ nd
3

= n(6−d)
6

. Now, if M is connected and χ(M) is positive
then χ(M) = 1 or 2. In that case (n, d) = (4, 3), (6, 4), (6, 5) or (12, 5). For
each (n, d) ∈ {(4, 3), (6, 4), (6, 5)} there exists unique (see [3]) combinatorial
2-manifold, namely the 4-vertex 2-sphere, the boundary of the Octahedron and
the 6 vertex real projective plane. In Lemma 1 we present a simple proof of
the fact that the combinatorial 2-manifold corresponding to the boundary of
Icosahedron is the unique degree-regular 12-vertex combinatorial 2-manifold
of Euler characteristics 2.

Lemma 1. Let M be a combinatorial 2−manifold on 12 vertices. If the degree
of each vertex in M is 5, then M is isomorphic to I given in section 2 above.

Proof. Let the vertex set V of M be {0, 1, . . . , 11}. Assume without loss of
generality that lk(0) = C5(1, 2, 3, 4, 5). So, lk(1) has the form C5(5, 0, 2, x, y),
for some x, y ∈ V . Clearly, x �∈ {0, 1, 2, 3, 5}.

If x = 4 then y �∈ {0, 1, 2, 4, 5}. If y �= 3, then lk(4) contains 6 vertices,
which is not possible. Hence y = 3. Then lk(1) = C5(5, 0, 2, 4, 3) and so lk(4) =
C5(5, 0, 3, 1, 2). This implies lk(3) = C5(2, 0, 4, 1, 5), lk(2) = C5(3, 0, 1, 4, 5)
and lk(5) = C5(1, 0, 4, 2, 3). Then M is disconnected. Thus x �= 4. So, we may
assume that x = 6.

Now, y �∈ {0, 1, 2, 4, 5, 6}. If y = 3, then lk(3) contains 6 vertices, a con-
tradiction. So, we may assume y = 7. Then lk(1) = C5(2, 0, 5, 7, 6) and
lk(2) has the form C5(3, 0, 1, 6, z) for some z ∈ V . It is easy to see that
z ∈ {5, 7, 8, 9, 10, 11}. If z = 5 then lk(5) has > 5 vertices. If z = 7 then
C3(7, 2, 1) ⊆ lk(6), a contradiction. So, we may assume that z = 8.

Thus lk(2) = C5(3, 0, 1, 6, 8) and lk(3) has the form C5(4, 0, 2, 8, w), for
some w ∈ V . It is easy to see that w ∈ {6, 7, 9, 10, 11}. If w = 6 then
C3(2, 3, 6) ⊆ lk(8), a contradiction. If w = 7 then lk(7) has > 5 vertices. So,
we may assume w = 9.

Thus lk(3) = C5(4, 0, 2, 8, 9) and lk(4) has the form C5(5, 0, 3, 9, u). A sim-
ilar argument as in the previous case, shows that u = 10 or 11, say u = 10. So,
lk(4) = C5(5, 0, 3, 9, 10) and hence lk(5) = C5(7, 1, 0, 4, 10). Now, lk(6) has the
form C5(7, 1, 2, 8, v) for some v ∈ V . Since the vertices 0, 1, 2, 3, 4, 5 �∈ lk(11),
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it follows that 6 ∈ lk(11), i.e., v = 11. Hence lk(6) = C5(7, 1, 2, 8, 11).
This implies lk(7) = C5(11, 6, 1, 5, 10), lk(10) = C5(9, 4, 5, 7, 11), lk(8) =
C5(6, 2, 3, 9, 11), lk(9) = C5(11, 8, 3, 4, 10) and lk(11) = C5(7, 6, 8, 9, 10).

This is isomorphic to I by the map T : M −→ I given by T (0) = 0,
T (1) = 7, T (2) = 8, T (3) = 9, T (4) = 10, T (5) = 11, T (6) = 4, T (7) = 3,
T (8) = 5, T (9) = 1, T (10) = 2 and T (11) = 6.

Of all the five polyhedra (see [1] for definitions and details of polyhedra)
corresponding to boundary of platonic solids, three are simplicial, namely, the
Tetrahedron, the Octahedron and the Icosahedron. It is well known that the
Cube and Dodecahedron are dual polyhedron of Octahedron and Icosahedron
respectively. Since, the Tetrahedron, the Octahedron and the Icosahedron
are the only orientable simplicial degree-regular polyhedron (i.e. orientable
combinatorial 2-manifolds) of Euler characteristic 2, it follows that up to iso-
morphism :

Theorem 2. There are exactly five orientable degree-regular polyhedra of Eu-
ler characteristic 2. These are, namely, the Tetrahedron, the Octahedron, the
Cube, the Dodecahedron and the Icosahedron.

It follows from Theorem 1 and Theorem 2 that there are exactly five pla-
tonic solids.
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