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Abstract

In this note we solve problems of Buffon type for an arbitrary convex
body of resolution K in the euclidean space E3 and a particular lattice
R. As particular case we study the probability of intersection between
a random sphere and the sides of R.
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Problems of geometric probability for an arbitrary convex body of resolu-
tion in the euclidean space E3 has been investigated in [1]. In [9] Buffon’s prob-
lem is solved for a lattice of right-angled parallelepipeds in the 3-dimensional
space. In this note we want to use the results in [5] for to solve problems
of intersection for a particular lattice that we describe: the fundamental cell
C0 of the lattice R is a right-angled prism of height c and whose basis is the
following:
Let K be an arbitrary convex body of resolution with centroid G and oriented
axis of rotation r. The line r is determined by the angle ϑ between r and the
z-axis and by the angle ϕ between the projection of r on the xy-plane and the
x-axis. Hence r = r(ϑ, ϕ). Then the length L of the projection of K on the
z-axis is given by

L(ϑ, ϕ) = p(ϑ, ϕ) + p(π − ϑ, ϕ)

where p(ϑ, ϕ) is the distance from G to the xy-plane when K is tangent to
the xy-plane. Now let C0 be a fundamental cell of the lattice R and assume
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C0,π: Basis of the prism of the fundamental cell C0.

that the two 3-dimensional random variables defined by the coordinates of G
and by the triangle (ϑ, ϕ, ψ) are uniformly distributed in the cell C0 and in
[0, π] × [0, 2π] × [0, 2π] respectively.

We denote by MC0 the set of all test bodies K whose centroid G lies in C0

and by NC0 the set of bodies K that are completely contained in C0.

We want to compute the probability pK,R that the body K intersects the
lattice R. Denoting with μ the Lebesgue measure, the probability is given by

pK,R = 1 − μ(NC0)

μ(MC0)
. (1)

Consider for fixed (ϑ, ϕ) ∈ [0, π] × [0, 2π] the set of points P ∈ C0 for
with the body K with centroid P and rotation axis r does not intersect the
boundary ∂C0 and let C(ϑ, ϕ) the topological closure of this open subset of C0.
We will assume that the body K is small1 with respect to the lattice R.

Denoting with Diam(K) the diameter of the body K, using the general
result in [5], K, is said small (respect to R) iff

Diam(K) <
(
c,

3
√

3

8(3 +
√

3)
a
)
.

Using the kinematic measure (see:[9])

dK = dx ∧ dy ∧ dz ∧ dΩ ∧ dψ, (2)

1We say that the body K is small with respect to R, if the polyhedrons sides of C(ϑ,ϕ)
and C0 are pairwise parallel.
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where x, y, z are the coordinates of G, dΩ = sinϑdϑ ∧ dϕ, and ψ is angle of
rotation about r. If S ⊆ E3 is a measurable subset we denote with vol(S) the
Euclidean volume of S. We have (see:[5])

μ(MC0) = 8π2vol(C0), (3)

μ(NC0) = 2π

2π∫
0

⎛
⎝

π∫
0

vol(C(ϑ, ϕ)) · sinϑdϑ
⎞
⎠ dϕ. (4)

Hence

pK,R = 1 − 1

4πvol(C0)

2π∫
0

⎛
⎝

π∫
0

vol(C(ϑ, ϕ)) sinϑdϑ

⎞
⎠ dϕ. (5)

Theorem 1. If K is small with respect to R, the probability pK,R is given by

pK,R = 1 − Λ

8
√

3πa2c
. (6)

where:

Λ :=

2π∫
0

( π∫
0

(a− L(ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ)))·

(a
√

3 −L(ϑ2(ϑ, ϕ), ϕ2(ϑ, ϕ))) · (c−L(ϑ, ϕ))+
(
1 − L(ϑ, ϕ)

c

)
·
(
1 − 2p1

a
√

3
− 2p2

a
− 4p3

a
√

3

)2

· vol(C(2)
0 )

)
sinϑdϑ

)
dϕ.

and

ϑ1(ϑ, ϕ) := arccos(sinϑ cosϕ), ϕ1(ϑ, ϕ) := arctan
(cotϑ

sinϕ

)
,

ϑ2(ϑ, ϕ) := arccos
(

sinϑ sinϕ
)
, ϕ2(ϑ, ϕ) := arctan

(
tanϑ sin(ϕ+ π/2)

)
,

ϑ3(ϑ, ϕ) := arccos(− sinϑ sin(ϕ+π/6)), ϕ3(ϑ, ϕ) := arcctg(−tanϑ cos(ϕ2+π/6)),

with

p1 := p(ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ)), p2 := p(ϑ2(ϑ, ϕ), ϕ2(ϑ, ϕ)),

p3 := p(ϑ3(ϑ, ϕ), ϕ3(ϑ, ϕ)).
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Proof: We use the following notations:

• N1 the set of all test bodies of revolution K completely contained in the
prism whose base is the rectangle EHGF (we say this prism C(1)

0 );

• N2 the set of all test bodies of revolution K completely contained in the
prism triangle whose base is the triangle ALH (we say this prism C(2)

0 );

Consider for fixed (ϑ, ϕ) ∈ [0, π] × [0, 2π] the set of points P ∈ C0 for
with the body K with centroid P and rotation axis r does not intersect the
boundary ∂C(i)

0 (i = 1, 2) and let C(i)
0 (ϑ, ϕ) (i = 1, 2) the topological closures

of this open subsets of C(i)
0 .

Then formula (1) becomes

pK,R = 1 − μ(N1) + 8μ(N2)

μ(MC0)
, (7)

Now, let us consider the cell C(1)
0 with the coordinates ϑ1, ϕ1, ψ1. Follows

[5] we put:

ϑ
(1)
1 (ϑ1, ϕ1) := arccos(sinϑ1 cosϕ1),

ϕ
(1)
1 (ϑ1, ϕ1) := arctan

(cotgϑ1

sinϕ1

)
,

ϑ
(1)
2 (ϑ1, ϕ1) := arccos

(
sinϑ1 sinϕ1

)
,

ϕ
(1)
2 (ϑ1, ϕ1) := arctan

(
tanϑ1 sin(ϕ1 + π/2)

)
,

Hence we obtain the expression of the volume:

vol(C(1)
0 (ϑ1, ϕ1)) = (a− L(ϑ

(1)
1 (ϑ1, ϕ1), ϕ

(1)
1 (ϑ1, ϕ1)))·

(a
√

3 − L(ϑ
(1)
2 (ϑ1, ϕ1), ϕ

(1)
2 (ϑ1, ϕ1))) · (c− L(ϑ1, ϕ1)),

Let us consider the cell C(2)
0 with the coordinates ϑ2, ϕ2, ψ2. We denote:

ϑ
(2)
1 (ϑ2, ϕ2) := arccos(sinϑ2 cosϕ2),

ϕ
(2)
1 (ϑ2, ϕ2) := arctan

(cotgϑ2

sinϕ2

)
,

ϑ
(2)
2 (ϑ2, ϕ2) := arccos

(
sinϑ2 sinϕ2

)
,
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ϕ
(2)
2 (ϑ2, ϕ2) := arctan

(
tanϑ2 sin(ϕ2 + π/2)

)
,

ϑ
(2)
3 (ϑ2, ϕ2) := arccos(− sinϑ2 sin(ϕ2 + π/6)),

ϕ
(2)
3 (ϑ2, ϕ2) := arcctg(− tanϑ2 cos(ϕ2 + π/6)).

Hence we give the volume of C(2)
0 :

vol(C(2)
0 (ϑ2, ϕ2)) =

(
1 − L(ϑ2, ϕ2)

c

)
·

(
1 − 2p1

a
√

3
− 2p2

a
− 4p3

a
√

3

)2

· vol(C(2)
0 ).

After a changing of variables (ϑi, ϕi, ψi) → (ϑ, ϕ, ψ), for i = 1, 2 we compute:

pK,R = 1 − μ(N1) + 8μ(N2)

μ(MC0)
= (8)

= 1 − 1

4πvol(C0)

[2π∫
0

⎛
⎝

π∫
0

vol(C(1)
0 (ϑ1, ϕ1)) sinϑ1dϑ1

⎞
⎠ dϕ1+

+8

⎛
⎝

2π∫
0

(

π∫
0

vol(C(2)
0 (ϑ2, ϕ2)) sinϑ2dϑ2

⎞
⎠ dϕ2

]
.

With the following position:

Λ :=

2π∫
0

( π∫
0

(a− L(ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ)))·

(a
√

3 −L(ϑ2(ϑ, ϕ), ϕ2(ϑ, ϕ))) · (c−L(ϑ, ϕ))+(
1 − L(ϑ2, ϕ2)

c

)
·
(
1 − 2p1

a
√

3
− 2p2

a
− 4p3

a
√

3

)2

· vol(C(2)
0 )

)
sinϑdϑ

)
dϕ.

We obtain

pK,R = 1 − Λ

4πvol(C0)
. (9)

�

As application of the theorem we can compute the probability of intersec-
tion with a side of the lattice R when K is a random sphere Σ of constant
radius R and D as diameter.
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Corollary 2. If Σ is small with respect to R, the probability pΣ,R is given by

pΣ,R = 1 − 1

2
√

3a2c

{
(a−D)(a

√
3 −D)(c−D) + (10)

8
[a√3

2
− (3 +

√
3)R

][a
2
−

(
1 +

√
3
)
R

]
(c− R)

}
.

Remark 3. It is possible to obtain the result in Corollary 2 using theorems
of E.Bosetto in [3].
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