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1. Introduction

Let D be the open unit disk in the complex plane C. Denote by H(D), the
space of holomorphic functions on D. For a holomorphic map ϕ of D such that
ϕ(D) ⊂ D, we can define linear operators

CϕDf = (f ′ ◦ ϕ) and DCϕf = (f ◦ ϕ)′, (f ∈ H(D)),

where Cϕ and D are composition and differentiation operators respectively.
For general background on composition operators, we refer [2] and [7] and ref-
erences therein. Recently, several authors have studied CϕD and DCϕ on some
spaces of analytic functions. For more information on these operators, one can
refer to [4] and [8]. The main theme of this paper is to study these operators
between α-Bloch spaces and the little α-Bloch spaces. The plan of the rest of
the paper is as follows. In the next section we introduce α-Bloch spaces and
the little α-Bloch spaces. Section 3 is devoted to characterise boundedness and
compactness of CϕD and DCϕ between α-Bloch spaces whereas boundedness
and compactness of CϕD and DCϕ between little α-Bloch spaces is tackled in
section 4.
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2 Preliminaries

In this section we will concentrate on those aspects of the α-Bloch spaces and
little α-Bloch spaces that will be needed throughout this paper.
Let 0 < α < ∞. A function f holomorphic in D is said to belong to the α-Bloch
space Bα if

sup
z∈�

(1 − |z|2)α|f ′(z)| < ∞

and to the little α-Bloch space Bα
0 if

lim
|z|→1

(1 − |z|2)α|f ′(z)| = 0.

It is well known that Bα is a Banach space under the norm

||f ||Bα = |f(0)| + sup
z∈�

(1 − |z|2)α|f ′(z)| = |f(0)| + s(f)

and Bα
0 is a closed subspace of Bα. Note that B1 = B and B1

0 = B0 are the
usual Bloch space and the usual little Bloch space respectively.
Two quantities a and b are said to be comparable, denoted by a ≈ b, if there
exist two positive constants C1 and C2 such that C1a ≤ b ≤ C2a.
Next result is an alternate characterisation of the α-Bloch spaces and little
α-Bloch spaces (see [1]).
Theorem 2.1. [1] Let 1 ≤ α < ∞. Then for f ∈ H(D) following are equiva-
lent:

s(f) ≈ |f ′(0)| + sup
z∈�

(1 − |z|2)α+1|f ′′(z)|.

Further f ∈ Bα
0 (α ≥ 1) if and only if

lim
|z|→1

(1 − |z|2)α+1|f ′′(z)| = 0.

To be precise, the above theorem is shown in [1] for the case α = 1, however
the same proof given there works for α > 1.
The following Lemma describes the compact subsets of Bα

0 .
Lemma 2.2 [6] Let K ⊂ Bα

0 . Then K is compact if and only if K is closed,
bounded and satisfies

lim
|z|→1

sup
z∈K

(1 − |z|2)α|f ′(z)| = 0.

For general background on Bloch spaces and little Bloch spaces, one may
consult [1] [3] [9] [10] and references therein. Madigan and Matheson [5]
characterised the boundedness and compactness of composition operators on
B and B0.

3 Boundedness and Compactness of CϕD and DCϕ

between α-Bloch spaces
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Theorem 3.1. Let α ≥ 1 and β > 0 be two real numbers and ϕ be a
holomorphic self-map of D. Then CϕD maps Bα boundedly into Bβ if and only
if

sup
z∈�

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| < ∞. (3.1)

Proof. First suppose that (3.1) holds. Then for arbitrary z ∈ D, we have

(1 − |z|2)β|(CϕDf)′(z)| = (1 − |z|2)β|f ′′(ϕ(z))||ϕ′(z)|

≤ Cα
(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| ‖ f ‖Bα,

and consequently, CϕD maps Bα boundedly into Bβ . Conversely, suppose that
CϕD maps Bα boundedly into Bβ . Fix a point z0 ∈ D and let w = ϕ(z0).
Consider the function fw given by fw(z) = (1 − |w|2)/2α+1(1 − wz)α. Then
fw ∈ Bα and ‖ fw ‖Bα≤ 1. Moreover

f ′
w(z) =

1 − |w|2
2α+1(1 − wz)α+1

(αw) and f ′′
w(z) =

α(α + 1)(w)2(1 − |w|2)
2α+1(1 − wz)α+2

.

Since CϕD maps Bα boundedly into Bβ, so there exists a constant C > 0 such
that ‖ CϕDfw ‖Bβ≤ C ‖ fw ‖Bα≤ C, for all w ∈ D. Hence for all z ∈ D, we
have (1 − |z|2)β|f ′′

w(ϕ(z))||ϕ′(z)| ≤ C. In particular, when z = z0 , we have

(1 − |z0|2)β α(α + 1)|ϕ(z0)|2(1 − |ϕ(z0)|2)
2α+1(1 − |ϕ(z0)|2)α+2

|ϕ′(z0)| ≤ C.

Thus
(1 − |z0|2)β

2α+1(1 − |ϕ(z0)|2)α+1
|ϕ(z0)|2|ϕ′(z0)| ≤ C

α(α + 1)
. (3.2)

Let K = {z0 ∈ D : |ϕ(z0)| ≤ r}. With K as defined above the equation (3.2)
gives

sup
z �∈K

[ (1 − |z0|2)β

(1 − |ϕ(z0)|2)α+1
|ϕ′(z0)|

]
≤ 2α+1C

α(α + 1)r2
,

whence supz �∈K{
[
· · ·

]
: z 
∈ K} is bounded, and supz∈K{

[
· · ·

]
: z 
∈ K} is

certainly bounded, whence (3.1). This completes the proof.
Theorem 3.2 Let α ≥ 1 and β > 0 be two real numbers. Let ϕ be a holo-
morphic self-map of D such that CϕD maps Bα boundedly into Bβ . Then CϕD
maps Bα compactly into Bβ if and only if

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| = 0. (3.3)

Proof. Let {fn} be a bounded sequence in Bα that converges to zero uniformly
on compact subsets of D. Then we have to show that‖ CϕDfn ‖Bβ→ 0 as
n → ∞. Let M = supn ‖ fn ‖Bα< ∞. Given ε > 0, there exist an r ∈ (0, 1)
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such that if |ϕ(z)| > r, then ((1 − |z|2)β/(1 − |ϕ(z)|2)α+1)|ϕ′(z)| < ε. Using
Theorem 2.1, we have for |ϕ(z)| > r,

(1 − |z|2)β|(CϕDfn)′(z)| = (1 − |z|2)β|f ′′
n(ϕ(z))||ϕ′(z)|

≤ Cα(1 − |z|2)β ‖ fn ‖Bα

(1 − |ϕ(z)|2)α+1
|ϕ′(z)|

< εMCα.

for all n. On the other hand since f ′′
n → 0 uniformly on {w : |w| ≤ r}, there

exists an n0 such that if |ϕ(z)| ≤ r and n ≥ n0, then |f ′′
n(ϕ(z))| < ε. Moreover,

by (3.1), we have A = supz∈� (1 − |z|2)β|ϕ′(z)| < ∞. Thus

(1 − |z|2)β|(CϕDf ′
n(z)| ≤ (1 − |z|2)β|ϕ′(z)||f ′′

n(ϕ(z))| < εA.

The above arguments, together with the fact that CϕDfn(0) = f ′
n(ϕ(0)) →

0 as n → ∞, yields that ‖ CϕDfn ‖Bβ→ 0 as n → ∞. Hence CϕD maps Bα

compactly into Bβ.
Conversely, suppose that (3.3) does not hold. Then there exists a positive
number λ and a sequence {zm} in D such that |ϕ(zm)| → 1 and

(1 − |zm|2)β

(1 − |ϕ(zm)|2)α+1
|ϕ′(zm)| ≥ λ,

for all m. For each m define fm(z) = (1 − |ϕ(zm)|2)/2α+1(1 − ϕ(zm)z)α. Then
fm ∈ Bα and ‖ fm ‖Bα≤ 1. Since CϕD maps Bα compactly into Bβ and fn is a
norm bounded sequence that converges to zero uniformly on compact subsets
of D, it follows that a subsequence of {CϕDfm} tends to zero in Bβ . On the
other hand

‖ CϕDfm ‖Bβ ≥ (1 − |zm|2)β|(CϕDfm)′(zm)|
= (1 − |zm|2)β|f ′′

m(zm)||ϕ′(zm)|
=

α(α + 1)|ϕ(zm)|2(1 − |zm|2)β

(1 − |ϕ(zm)|2)α+1
|ϕ′(zm)|

≥ α(α + 1)|ϕ(zm)|2λ,

which is absurd and hence we are done.
Theorem 3.3 Let α ≥ 1 and β > 0 be two real numbers and ϕ be a holomorphic
self-map of D. Then DCϕ maps Bα boundedly into Bβ if and only if

(i) sup
z∈�

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

< ∞ and (ii) sup
z∈�

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

< ∞.

Proof. First suppose that

M = sup
z∈�

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

< ∞ and N = sup
z∈�

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

< ∞.
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For arbitrary z ∈ D, we have

(1 − |z|2)β|(DCϕf)′(z)| = (1 − |z|2)β|(f ◦ ϕ)′′(z)|
= (1 − |z|2)β[|ϕ′(z)|2|f ′′(ϕ(z))| + |f ′(ϕ(z))||ϕ′′(z)|]
≤

(
Cα

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

+
(1 − |z|2)β|ϕ′′(z)|

(1 − |ϕ(z)|2)α

)
‖ f ‖Bα

≤ (CαM + N) ‖ f ‖Bα

and consequently, DCϕf maps Bα boundedly into Bβ .
Conversely, suppose that DCϕ maps Bα boundedly into Bβ. Then taking
f(z) = z in Bα, we get ϕ′ ∈ Bβ. Again taking f(z) = z2/2 in Bα, we get
(1 − |z|2)β|(ϕ′(z))2 + ϕ(z)ϕ′′(z)| ≤ M. Since ϕ′ ∈ Bβ and |ϕ(z)| < 1, we get
supz∈� (1− |z|2)β|ϕ′(z)|2 < ∞. Fix λ ∈ D and consider the function fλ defined
by

fλ(z) =
{ (1 − |ϕ(λ)|2)2

(1 − ϕ(λ)z)α+1
− (α + 1)(1 − |ϕ(λ)|2)

α(1 − ϕ(λ)z)α

}
(z ∈ D).

Then

f ′
λ(z) = ϕ(λ)

{(α + 1)(1 − |ϕ(λ)|2)2

(1 − ϕ(λ)z)α+2
− (α + 1)(1 − |ϕ(λ)|2)

(1 − ϕ(λ)z)α+1

}
.

An easy calculation yields that (1− |z|2)α|f ′
λ(z)| ≤ 3(α + 1)2α+1 and |fλ(0)| ≤

1 + (α + 1)/α. Thus we have M = sup{‖ fλ ‖Bα: λ ∈ D} ≤ (1 + (α + 1)/α +
3(α + 1)2α+1. Moreover f ′

λ(ϕ(λ)) = 0. Again

f ′′
λ (z) =

((α + 1)(α + 2)(1 − |ϕ(λ)|2)2

(1 − ϕ(λ)z)α+3
− (α + 1)2(1 − |ϕ(λ)|2)

(1 − ϕ(λ)z)α+2

)
(ϕ(λ))

2
.

and so

f ′′
λ (ϕ(λ)) =

(α + 1)

(1 − |ϕ(λ)|2)α+1
(ϕ(λ))2

Since DCϕ maps Bα boundedly into Bβ , so we can find a constant C > 0 such
that ‖ DCϕfλ ‖Bβ≤ C ‖ fλ ‖Bα≤ CM. Hence

(1 − |z|2)β|f ′′
λ (ϕ(z))(ϕ′(z))2 + f ′

λ(ϕ(z))ϕ′′(z)| ≤ CM

for all z ∈ D. In particular

(1 − |λ|2)β|f ′′
λ (ϕ(λ))(ϕ′(λ))2 + f ′

λ(ϕ(λ))ϕ′′(λ)| ≤ CM

and so

(α + 1)
(1 − |λ|2)β

(1 − |ϕ(λ)|2)α+1
|ϕ(λ)|2|ϕ′(λ)|2 ≤ CM.

Thus for fixed δ1, 0 < δ1 < 1, we have

sup
{ (1 − |λ|2)β

(1 − |ϕ(λ)|2)α+1
|ϕ′(λ)|2 : λ ∈ D, |ϕ(λ)| > δ1

}
< ∞. (3.4)
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For λ ∈ D such that |ϕ(λ)| ≤ δ1, we have

1 − |λ|2)β

(1 − |ϕ(λ)|2)α+1
|ϕ′(λ)|2 ≤ 1

(1 − δ2
1)

α+1
(1 − |λ|2)β|ϕ′(λ)|2.

Since ϕ′ ∈ Bβ , we have

sup
(1 − |λ|2)β

(1 − |ϕ(λ)|2)α+1
|ϕ′(λ)|2 : λ ∈ D, |ϕ(λ)| ≤ δ1 < ∞. (3.5)

Consequently, by (3.4) and (3.5), we have

sup
λ∈�

{ (1 − |λ|2)β

(1 − |ϕ(λ)|2)α+1
|ϕ′(λ)|2

}
< ∞.

Next for fixed λ ∈ D, consider the function

fλ(z) =
(α + 1)(1 − |ϕ(λ)|2)3

(α + 3)(1 − ϕ(λ)z)α+2
− 1 − |ϕ(λ)|2

(1 − ϕ(λ)z)α+1

Then

f ′
λ(z) =

((α + 1)(α + 2)(1 − |ϕ(λ)|2)3

(α + 3)(1 − ϕ(λ)z)α+3
− (α + 1)(1 − |ϕ(λ)|2)2

(1 − ϕ(λ)z)α+2

)
ϕ(λ)

Thus an easy calculation yields that (1− |z|2)α|f ′
λ(z)| ≤ (α + 1)(5α + 11)2α+1

and |fλ(0)| ≤ 4(3α + 5)/(α + 3) and so, we have M = sup{‖ fλ ‖Bα: λ ∈ D} ≤
4(3α + 5)/(α + 3) + (α + 1)(5α + 11)2α+1. Also

f ′′
λ (z) = (α + 1)(α + 2)

( (1 − |ϕ(λ)|2)3

(1 − ϕ(λ)z)α+4
− (1 − |ϕ(λ)|2)2

(1 − ϕ(λ)z)α+3

)
(ϕ(λ))2.

Thus

f ′′(ϕ(λ)) = 0 and f ′
λ(ϕ(λ)) = − (α + 1)

(α + 3)(1 − |ϕ(λ)|2)α
ϕ(λ).

Now we can find a constant C > 0 such that

C ≥ (1 − |λ|2)β |f ′′
λ(ϕ(λ))(ϕ′(λ))2 + f ′

λ(ϕ(λ))ϕ′′(λ)|
and hence

(α + 1)(1 − |λ|2)β

(α + 3)(1 − |ϕ(λ)|2)α
|ϕ(λ)||ϕ′′(λ)| ≤ C ′.

Thus for fixed δ2, 0 < δ2 < 1, we have

sup
{ (1 − |λ|2)β

(1 − |ϕ(λ)|2)α
|ϕ′′(λ)| : λ ∈ D, |ϕ(λ)| > δ2

}
< ∞. (3.6)

For λ ∈ D such that |ϕ(λ)| ≤ δ2, we have

(1 − |λ|2)β

(1 − |ϕ(λ)|2)α
|ϕ′′(λ)| ≤ 1

(1 − δ2
2)α

(1 − |λ|2)β|ϕ′′(λ)|



Composition followed and proceeded by differentiation 1685

Since ϕ′ ∈ Bβ
0 , we have

sup
{ (1 − |λ|2)β

(1 − |ϕ(λ)|2)α
|ϕ′′(λ)| : λ ∈ D, |ϕ(λ)| ≤ δ2

}
< ∞. (3.7)

Consequently, by (3.6) and (3.7) we have

sup
λ∈�

(1 − |λ|2)β

(1 − |ϕ(λ)|2)α
|ϕ′′(λ)| < ∞.

This completes the proof.
Theorem 3.4. Let α ≥ 1, β > 0 be two real numbers and ϕ be a holomorphic
self map of D such that DCϕ maps Bα boundedly into Bβ. Then DCϕ maps
Bα compactly into Bβ if and only if

(i) lim
|ϕ(z)|→1

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

= 0 and (ii) lim
|ϕ(z)|→1

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

= 0.

Proof. Let {fn} be a bounded sequence in Bα that converges to zero uniformly
on compact subsets of D. Then ‖ DCϕfn ‖Bβ→ 0 as n → ∞. Let M = supn ‖
fn ‖Bα< ∞. Given ε > 0, there exist an r ∈ (0, 1) such that if |ϕ(z)| > r, then

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)|2 < ε and

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′′(z)|2 < ε.

Thus for z ∈ D such that |ϕ(z)| > r we have

(1 − |z|2)β|(DCϕfn)′(z)| = (1 − |z|2)β(|ϕ′(z)|2|f ′′
n(ϕ(z))| + |f ′

n(ϕ(z))||ϕ′′(z)|)
≤

(
Cα

(1 − |z|2)β |ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

+
(1 − |z|2)β|ϕ′′(z)|

(1 − |ϕ(z)|2)α

)
‖ fn ‖Bα

< εM(Cα + 1)

for all n. On the other hand since f ′
n and f ′′

n converges uniformly on {w : |w| ≤
r}, there exist an n0 such that if |ϕ(z)| ≤ r and n ≥ n0, then |f ′

n(ϕ(z))| < r
and |f ′′

n(ϕ(z))| < ε. Also conditions (1) and (2) of Theorem 3.3 implies that

A = sup
z∈�

(1 − |z|2)β|ϕ′(z)|2 < ∞ and B = sup
z∈�

(1 − |z|2)β|ϕ′′(z)| < ∞.

Thus we deduce that

(1 − |z|2)β|(DCϕfn)′(z)| ≤ (1 − |z|2)β(|ϕ′(z)|2|f ′′
n(ϕ(z))| + |f ′

n(ϕ(z))||ϕ′′(z)|)
≤ (A + B)ε.

The above arguments together with the fact that DCϕfn(0) = f ′
n(ϕ(0)) → 0

as n → ∞ yields that ‖ DCϕfn ‖Bβ→ 0 as n → ∞.
Conversely, suppose that DCϕ maps Bα compactly into Bβ. Let {zn} be a
sequence in D such that |ϕ(zn)| → 1 as n → ∞. Let

fn(z) =
(1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+1
− (α + 1)(1 − |ϕ(zn)|2)

α(1 − ϕ(zn)z)α



1686 R. Kumari and A. Sharma

for z ∈ D. Then as in Theorem 3.3, fn ∈ Bα, fn is norm bounded in Bα and
fn → 0 uniformly on compact subsets of D. Moreover

f ′
n(z) = ϕ(zn)

{(α + 1)(1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+2
− (α + 1)(1 − |ϕ(zn)|2)

(1 − ϕ(zn)z)α+1

}

f ′′
n(z) =

{(α + 1)(α + 2)(1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+3
− (α + 1)2(1 − |ϕ(zn)|2)

(1 − ϕ(zn)z)α+2

}
(ϕ(zn))2.

Note that

f ′
n(ϕ(zn)) = 0 and f ′′

n(ϕ(zn)) =
(α + 1)

(1 − |ϕ(zn)|2)α+1
(ϕ(zn))2.

Since DCϕ maps Bα compactly into Bβ , it follows that ‖ DCϕfn ‖Bβ→ 0 as
n → ∞. Thus

‖ DCϕfn ‖Bβ≥ (1 − |zn|2)β(α + 1)|ϕ(zn)|2|ϕ′(zn)|2
(1 − |ϕ(zn)|2)α+1

implies that

lim
|ϕ(zn)|→1

(1 − |zn|2)β

(1 − |ϕ(zn)|2)α+1
|ϕ′(zn)|2 = 0.

Next for {zn} ∈ D such that |ϕ(zn)| → 1 consider the function

gn(z) =
(α + 1)(1 − |ϕ(zn)|2)3

(α + 3)(1 − ϕ(zn)z)α+2
− (1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+1
.

Again as in Theorem 3.3, gn ∈ Bα, gn is norm bounded in Bα and gn → 0
uniformly on compact subsets of D. Moreover

g′
n(z) =

{(α + 1)(α + 2)

α + 3

(1 − |ϕ(zn)|2)3

(1 − ϕ(zn)z)α+3
− (α + 1)(1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+3

}
ϕ(zn)

and

g′′
n(z) = (α + 1)(α + 2)

{ (1 − |ϕ(zn)|2)3

(1 − ϕ(zn)z)α+4
− (1 − |ϕ(zn)|2)2

(1 − ϕ(zn)z)α+3

}
(ϕ(zn))2.

Thus

g′
n(ϕ(zn)) = −(α + 1)

(α + 3)

1

(1 − |ϕ(zn)|2)α
ϕ(zn) and g′′

n(ϕ(zn)) = 0.

Since DCϕ maps Bα compactly into Bβ , so

‖ DCϕgn ‖Bβ≥ (α + 1)

(α + 3)

(1 − |zn|2)β

(1 − |ϕ(zn)|2)α
|ϕ′′(zn)|

and hence

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′′(z)| = 0

This completes the proof.
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4 Boundedness and Compactness of CϕD and DCϕ

between little α-Bloch spaces
In this section, we consider the operators CϕD and DCϕ acting between little

α-Bloch spaces Bα
0 and Bβ

0 .
Theorem 4.1. Let α ≥ 1, β > 0 be two real numbers and ϕ be a holomorphic
self map of D. Then CϕD maps Bα

0 boundedly into Bβ
0 if and only if the fol-

lowing conditions are satisfied

(i) sup
z∈�

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| < ∞ and (ii) ϕ ∈ Bβ

0 .

Proof. First suppose that CϕD maps Bα
0 boundedly into Bβ

0 . Then (i) can be
proved exactly in the same way as in the proof of the Theorem 3.1. By taking
f(z) = z2/2 in Bα

0 , we get ϕ ∈ Bβ
0 which is (ii).

Next, suppose that (i) and (ii) are satisfied. Take any ε > 0. Let f ∈ Bα
0 .

Then by Theorem 2.1, there is δ1 ∈ (0, 1) such that for any z ∈ D, |z| > δ1,
we have |f ′′(z)| < ε/(1 − |z|2)α+1. Thus for |ϕ(z)| > δ1, by (i), we can find a
constant M > 0 such that

(1 − |z|2)β|f ′′(ϕ(z))ϕ′(z)| < ε|ϕ′(z)| (1 − |z|2)β

(1 − |ϕ(z)|2)α+1
≤ εM. (4.1)

On the other hand, since by (ii) ϕ ∈ Bβ
0 , so for above ε, there is δ2 ∈ (0, 1)

such that |z| > δ2 implies that (1 − |z|2)β|ϕ′(z)| < ε. Thus for |ϕ(z)| ≤ δ1, if
|z| > δ2, we have a constant N > 0 such that

(1 − |z|2)β|ϕ′(z)f ′′(ϕ(z))| < Cα||f ||Bα|ϕ′(z)| (1 − |z|2)β

(1 − δ2
1)

α+1
≤ εN. (4.2)

By combining (4.1) and (4.2), we see that whenever |z| > δ2, we have

(1 − |z|2)β |ϕ′(z)f ′′(ϕ(z))| ≤ max(M, N)ε

which means

lim
|z|→1

(1 − |z|2)β|(CϕDf)′(z)| = 0.

Thus CϕDf ∈ Bβ
0 . By Closed Graph Theorem DCϕ maps Bα

0 boundedly into

Bβ
0 .

Theorem 4.2 Let α ≥ 1, β > 0 be two real numbers and ϕ be a holomorphic
self map of D. Then CϕD maps Bα

0 compactly into Bβ
0 if and only if

lim
|z|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| = 0. (4.3)

Proof. By Lemma 2.2, the set {CϕDf : f ∈ Bα
0 , ||f ||Bα ≤ 1} has compact

closure in Bβ
0 if and only if

lim
|z|→1

sup{(1 − |z|2)β|(CϕDf)′(z)| : f ∈ Bα
0 , ||f ||Bα ≤ 1} = 0. (4.4)
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Suppose that f ∈ Bα
0 is such that ||f ||Bα ≤ 1, and (4.3) is satisfied. Then

(1 − |z|2)β|(CϕDf)′(z)| = (1 − |z|2)β |ϕ′(z)f ′′(ϕ(z))|
≤ (1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)|.

By (4.2) above inequality implies (4.4). Hence CϕD maps Bα
0 compactly into

Bβ
0 .

Conversely, suppose that CϕD maps Bα
0 compactly into Bβ

0 . Using the same
test as in the proof of Theorem 3.2, we see that

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α+1
|ϕ′(z)| = 0. (4.5)

Since CϕD maps Bα
0 boundedly into Bβ

0 , Theorem 4.1 implies that ϕ ∈ Bβ
0 . It

is easy to show that ϕ ∈ Bβ
0 and (4.5) is equivalent to (4.4).

Remark. The conditions in Theorem 4.2 include the necessary and sufficient
conditions for boundedness of CϕD from Bα

0 into Bβ
0 .

Theorem 4.3. Let α ≥ 1 and β > 0 be two real numbers. Then DCϕ maps
Bα

0 boundedly into Bβ
0 if and only if the following conditions are satisfied.

(i) sup
z∈�

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

< ∞, (ii) sup
z∈�

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

< ∞,

(iii) ϕ′ ∈ Bβ
0 and (iv) lim

|z|→1
(1 − |z|2)β|ϕ′(z)|2 = 0.

Proof. First suppose that DCϕ maps Bα
0 boundedly into Bβ

0 . Then (i) and
(ii) can be proved exactly in the same way as in the proof of the Theorem

3.1. By taking f(z) = z in Bα
0 , we get ϕ′ ∈ Bβ

0 which is (ii). Again by taking
f(z) = z2/2 in Bα

0 , we get lim
|z|→1

(1 − |z|2)β(|(ϕ′(z))2 + ϕ(z)ϕ′′(z)|) = 0. Since

ϕ′ ∈ Bβ
0 and |ϕ(z)| < 1, we get lim

|z|→1
(1 − |z|2)β|ϕ′(z)|2 = 0, which is (iv).

Next, suppose that (i) − (iv) are satisfied. Take any ε > 0. Let f ∈ Bα
0 .

Then by (2.2) there is δ1 ∈ (0, 1) such that for any z ∈ D, |z| > δ1, we have
|f ′′(z)| < ε/(1 − |z|2)α+1 Thus for |ϕ(z)| > δ1, by (i), we can find a constant
C1 > 0 such that

(1 − |z|2)β|(ϕ′(z))2f ′′(ϕ(z))| < ε|ϕ′(z)|2 (1 − |z|2)β

(1 − |ϕ(z)|2)α+1
≤ C1ε (4.6)

On the other hand, by (iv) there is δ2 ∈ (0, 1) such that (1−|z|2)β|ϕ′(z)|2 < ε.
Thus for |ϕ(z)| ≤ δ1, if |z| > δ2, we have a constant C2 > 0 such that

(1 − |z|2)β|(ϕ′(z))2f ′′(ϕ(z))| < Cα||f ||Bα|ϕ′(z)|2 (1 − |z|2)β

(1 − δ1
2)α+1

≤ C2ε (4.7)
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By combining (4.6) and (4.7), we see that whenever |z| > δ2, we have

(1 − |z|2)β|(ϕ′(z))2f ′′(ϕ(z))| ≤ max(C1, C2)ε. (4.8)

Again, since f ∈ Bα
0 , there is δ3 ∈ (0, 1) such that |z| > δ3 implies that

|f ′(z)| < ε/(1 − |z|2)α Thus for |ϕ(z)| > δ3, by (ii), we can find a constant
C3 > 0 such that

(1 − |z|2)β|ϕ′′(z)f ′(ϕ(z)| < ε|ϕ′′(z)| (1 − |z|2)β

(1 − |ϕ(z)|2)α
≤ C3ε (4.9)

On the other hand, by (iii) ϕ′ ∈ Bβ
0 , so for above ε, there is δ4 ∈ (0, 1) such that

|z| > δ4 implies that (1 − |z|2)β|ϕ′′(z)| < ε. Thus for |ϕ(z)| ≤ δ3, if |z| > δ4,
we have a constant C4 > 0 such that

(1 − |z|2)β|ϕ′′(z)f ′(ϕ(z))| < ||f ||Bα|ϕ′′(z)|(1 − |z|2)β

(1 − δ2
3)

α
≤ C4ε (4.10)

By combining (4.9) and (4.10), we see that whenever |z| > δ4, we have

(1 − |z|2)β|ϕ′′(z)f ′(ϕ(z))| ≤ max(C3, C4)ε. (4.11)

By combining (4.8) and (4.11), we have for δ = max(δ2, δ4), if |z| > δ, there is
a constant C > 0 such that

(1 − |z|2)β(|ϕ′(z)|2|f ′′(ϕ(z))| + |f ′(ϕ(z))||ϕ′′(z)|) < εC

which means that

lim
|z|→1

(1 − |z|2)β|(DCϕf)′(z)| = 0.

Thus DCϕ ∈ Bβ
0 . The proof is complete.

Theorem 4.4. Let α ≥ 1 and β > 0 be two real numbers. Then DCϕ maps

Bα
0 compactly into Bβ

0 if and only if

(i) lim
|z|→1

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

= 0 and (ii) lim
|z|→1

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

= 0.

Proof. By Lemma 2.2, the set {DCϕf : f ∈ Bβ
0 , ||f ||Bα ≤ 1} has compact

closure in Bβ
0 if and only if

lim
|z|→1

sup{(1 − |z|2)β |(DCϕf)′(z)| : f ∈ Bα
0 , ||f ||Bα ≤ 1} = 0. (4.12)

Suppose that f ∈ Bα
0 is such that ||f ||Bα ≤ 1, and ϕ satisfies (i) and (ii). Then

(1 − |z|2)β|(DCϕf)′(z)| ≤ (1 − |z|2)β[|ϕ′(z)|2|f ′′(ϕ(z))| + |f ′(ϕ(z))||ϕ′′(z)|]
≤ Cα

((1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

+
(1 − |z|2)β|ϕ′′(z)|

(1 − |ϕ(z)|2)α

)
‖ f ‖Bα

By (i) and (ii) above inequality implies (4.12). Hence DCϕ maps Bα
0 compactly

into Bβ
0 .
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Conversely, suppose that DCϕ maps Bα
0 compactly into Bβ

0 . Using the same
test function as in the proof of Theorem 3.4, we see that

lim
|ϕ(z)|→1

(1 − |z|2)β|ϕ′(z)|2
(1 − |ϕ(z)|2)α+1

= 0 (4.13)

and

lim
|ϕ(z)|→1

(1 − |z|2)β|ϕ′′(z)|
(1 − |ϕ(z)|2)α

= 0. (4.14)

Since DCϕ maps Bα
0 boundedly into Bβ

0 , Theorem 4.3 implies that ϕ′ ∈ Bβ
0 and

lim
|z|→1

(1 − |z|2)β|ϕ′(z)|2 = 0 (4.15)

It is easy to show that ϕ′ ∈ Bβ
0 and (4.14) is equivalent to (i) and (4.13) and

(4.15) is equivalent to (ii).
Remark. The conditions in Theorem 4.4 include the necessary and sufficient
conditions for boundedness of DCϕ from Bα

0 into Bβ
0 .

In the trivial case that ϕ(z) = z, our theorems give necessary and sufficient
conditions for boundedness and compactness of the differentiation operator
between α-Bloch spaces. It seems that the results for the boundedness and
compactness of the differentiation operator between α-Bloch spaces has not
appeared in the literature. Therefore we single these results as corollaries.
Corollary 1. Let α ≥ 1 and β > 0 be two real numbers. Then the following
are equivalent:

(i) D maps Bα boundedly into Bβ;

(ii) D maps Bα
0 boundedly into Bβ

0 ;
(iii) α + 1 ≤ β.

Corollary 2. Let α ≥ 1 and β > 0 be two real numbers. Then the following
are equivalent:

(i) D maps Bα compactly into Bβ;

(ii) D maps Bα
0 compactly into Bβ

0 ;
(iii) α + 1 < β.

Before we give some examples, we state characterisations of boundedness and
compactness of the Cϕ between α-Bloch spaces, obtained by Ohno, Stroethoff
and Zhao in [6], (see Corollaries 2.4 and 3.2).
Theorem 4.5. [6] Let α ≥ 1 and β > 0 be two real numbers. Then Cϕ maps
Bα compactly into Bβ if and only if

sup
z∈�

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)| < ∞.

Further, if Cϕ maps Bα boundedly into Bβ, then Cϕ maps Bα compactly into
Bβ if and only if

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)| = 0.
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Example 1. Let ϕ(z) = (1 − z)/2. Then 1 − |ϕ(z)|2 ≥ (1 − |z|2)/4. Thus by
Theorem 4.5, we obtain that Cϕ maps Bα boundedly (respectively compactly
)into Bβ , when α ≤ β (respectively α < β).
Furthermore CϕD and DCϕ maps Bα boundedly (respectively compactly ) into
Bβ , when α + 1 ≤ β (respectively α + 1 < β).
Example 2. Let ϕγ(z) = 1 − (1 − z)γ , 0 < γ < 1. Then ϕ′

γ(z) = γ(1 − z)γ−1.

Again for z near to 1, 1−|ϕ(z)|2 ≈ (1−z)γ . Thus by Theorem 4.5, Cϕ maps Bα

boundedly (respectively compactly )into Bβ , when α− γ +1 ≤ β (respectively
α − γ + 1 < β).
CϕD maps Bα boundedly (respectively compactly )into Bβ, when α− γ + 2 ≤
β (respectively α − γ + 2 < β) and DCϕ maps Bα boundedly (respectively
compactly ) into Bβ , when α − γ + 3 ≤ β (respectively α − γ + 3 < β).
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