Composition Followed and Proceeded by Differentiation between α -Bloch Spaces

Rekha Kumari and Anshu Sharma

Department of Mathematics University of Jammu, Jammu-180006, India rekha_ju@yahoo.co.in

Abstract. In this paper, we consider linear operators $C_{\varphi}D$ and DC_{φ} acting between α -Bloch spaces and little α -Bloch spaces, where C_{φ} and D are composition and differentiation operators respectively. In fact we characterise those holomorphic self-maps of \mathbb{D} , that induce bounded and compact $C_{\varphi}D$ and DC_{φ} between Bloch-type spaces.

Mathematics Subject Classification: Primary 47B38; Secondary 30H05, 30D45

Keywords: composition operator, differentiation operator, Bloch-type spaces, Hardy spaces

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Denote by $H(\mathbb{D})$, the space of holomorphic functions on \mathbb{D} . For a holomorphic map φ of \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$, we can define linear operators

$$C_{\varphi}Df = (f' \circ \varphi)$$
 and $DC_{\varphi}f = (f \circ \varphi)', \quad (f \in H(\mathbb{D})),$

where C_{φ} and D are composition and differentiation operators respectively. For general background on composition operators, we refer [2] and [7] and references therein. Recently, several authors have studied $C_{\varphi}D$ and DC_{φ} on some spaces of analytic functions. For more information on these operators, one can refer to [4] and [8]. The main theme of this paper is to study these operators between α -Bloch spaces and the little α -Bloch spaces. The plan of the rest of the paper is as follows. In the next section we introduce α -Bloch spaces and the little α -Bloch spaces. Section 3 is devoted to characterise boundedness and compactness of $C_{\varphi}D$ and DC_{φ} between α -Bloch spaces whereas boundedness and compactness of $C_{\varphi}D$ and DC_{φ} between little α -Bloch spaces is tackled in section 4.

2 Preliminaries

In this section we will concentrate on those aspects of the α -Bloch spaces and little α -Bloch spaces that will be needed throughout this paper.

Let $0 < \alpha < \infty$. A function f holomorphic in \mathbb{D} is said to belong to the α -Bloch space \mathcal{B}^{α} if

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty$$

and to the little α -Bloch space \mathcal{B}_0^{α} if

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |f'(z)| = 0.$$

It is well known that \mathcal{B}^{α} is a Banach space under the norm

$$||f||_{\mathcal{B}^{\alpha}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| = |f(0)| + s(f)$$

and \mathcal{B}_0^{α} is a closed subspace of \mathcal{B}^{α} . Note that $\mathcal{B}^1 = \mathcal{B}$ and $\mathcal{B}_0^1 = \mathcal{B}_0$ are the usual Bloch space and the usual little Bloch space respectively.

Two quantities a and b are said to be comparable, denoted by $a \approx b$, if there exist two positive constants C_1 and C_2 such that $C_1a \leq b \leq C_2a$.

Next result is an alternate characterisation of the α -Bloch spaces and little α -Bloch spaces (see [1]).

Theorem 2.1. [1] Let $1 \leq \alpha < \infty$. Then for $f \in H(\mathbb{D})$ following are equivalent:

$$s(f) \approx |f'(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha + 1} |f''(z)|.$$

Further $f \in \mathcal{B}_0^{\alpha}$ $(\alpha \geq 1)$ if and only if

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha + 1} |f''(z)| = 0.$$

To be precise, the above theorem is shown in [1] for the case $\alpha = 1$, however the same proof given there works for $\alpha > 1$.

The following Lemma describes the compact subsets of \mathcal{B}_0^{α} .

Lemma 2.2 [6] Let $K \subset \mathcal{B}_0^{\alpha}$. Then K is compact if and only if K is closed, bounded and satisfies

$$\lim_{|z| \to 1} \sup_{z \in K} (1 - |z|^2)^{\alpha} |f'(z)| = 0.$$

For general background on Bloch spaces and little Bloch spaces, one may consult [1] [3] [9] [10] and references therein. Madigan and Matheson [5] characterised the boundedness and compactness of composition operators on \mathcal{B} and \mathcal{B}_0 .

3 Boundedness and Compactness of $C_{\varphi}D$ and DC_{φ} between $\alpha ext{-Bloch spaces}$

Theorem 3.1. Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers and φ be a holomorphic self-map of \mathbb{D} . Then $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} if and only if

$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} |\varphi'(z)| < \infty. \tag{3.1}$$

Proof. First suppose that (3.1) holds. Then for arbitrary $z \in \mathbb{D}$, we have

$$(1 - |z|^{2})^{\beta} |(C_{\varphi}Df)'(z)| = (1 - |z|^{2})^{\beta} |f''(\varphi(z))| |\varphi'(z)|$$

$$\leq C_{\alpha} \frac{(1 - |z|^{2})^{\beta}}{(1 - |\varphi(z)|^{2})^{\alpha + 1}} |\varphi'(z)| \| f \|_{\mathcal{B}^{\alpha}},$$

and consequently, $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} . Conversely, suppose that $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} . Fix a point $z_0 \in \mathbb{D}$ and let $w = \varphi(z_0)$. Consider the function f_w given by $f_w(z) = (1 - |w|^2)/2^{\alpha+1}(1 - \overline{w}z)^{\alpha}$. Then $f_w \in \mathcal{B}^{\alpha}$ and $||f_w||_{\mathcal{B}^{\alpha}} \leq 1$. Moreover

$$f'_w(z) = \frac{1 - |w|^2}{2^{\alpha + 1}(1 - \overline{w}z)^{\alpha + 1}}(\alpha \overline{w}) \quad \text{and} \quad f''_w(z) = \frac{\alpha(\alpha + 1)(\overline{w})^2(1 - |w|^2)}{2^{\alpha + 1}(1 - \overline{w}z)^{\alpha + 2}}.$$

Since $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} , so there exists a constant C > 0 such that $\|C_{\varphi}Df_w\|_{\mathcal{B}^{\beta}} \leq C \|f_w\|_{\mathcal{B}^{\alpha}} \leq C$, for all $w \in \mathbb{D}$. Hence for all $z \in \mathbb{D}$, we have $(1-|z|^2)^{\beta}|f''_w(\varphi(z))||\varphi'(z)| \leq C$. In particular, when $z=z_0$, we have

$$(1-|z_0|^2)^{\beta} \frac{\alpha(\alpha+1)|\varphi(z_0)|^2(1-|\varphi(z_0)|^2)}{2^{\alpha+1}(1-|\varphi(z_0)|^2)^{\alpha+2}} |\varphi'(z_0)| \le C.$$

Thus

$$\frac{(1-|z_0|^2)^{\beta}}{2^{\alpha+1}(1-|\varphi(z_0)|^2)^{\alpha+1}}|\varphi(z_0)|^2|\varphi'(z_0)| \le \frac{C}{\alpha(\alpha+1)}.$$
 (3.2)

Let $K = \{z_0 \in \mathbb{D} : |\varphi(z_0)| \le r\}$. With K as defined above the equation (3.2) gives

$$\sup_{z \notin K} \left[\frac{(1 - |z_0|^2)^{\beta}}{(1 - |\varphi(z_0)|^2)^{\alpha + 1}} |\varphi'(z_0)| \right] \le \frac{2^{\alpha + 1} C}{\alpha(\alpha + 1)r^2},$$

whence $\sup_{z \notin K} \{ [\cdots] : z \notin K \}$ is bounded, and $\sup_{z \in K} \{ [\cdots] : z \notin K \}$ is certainly bounded, whence (3.1). This completes the proof.

Theorem 3.2 Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Let φ be a holomorphic self-map of \mathbb{D} such that $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} . Then $C_{\varphi}D$ maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} if and only if

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} |\varphi'(z)| = 0.$$
(3.3)

Proof. Let $\{f_n\}$ be a bounded sequence in \mathcal{B}^{α} that converges to zero uniformly on compact subsets of \mathbb{D} . Then we have to show that $\|C_{\varphi}Df_n\|_{\mathcal{B}^{\beta}}\to 0$ as $n\to\infty$. Let $M=\sup_n\|f_n\|_{\mathcal{B}^{\alpha}}<\infty$. Given $\epsilon>0$, there exist an $r\in(0,1)$

such that if $|\varphi(z)| > r$, then $((1-|z|^2)^{\beta}/(1-|\varphi(z)|^2)^{\alpha+1})|\varphi'(z)| < \epsilon$. Using Theorem 2.1, we have for $|\varphi(z)| > r$,

$$(1 - |z|^{2})^{\beta} |(C_{\varphi}Df_{n})'(z)| = (1 - |z|^{2})^{\beta} |f_{n}''(\varphi(z))||\varphi'(z)|$$

$$\leq C_{\alpha} (1 - |z|^{2})^{\beta} \frac{\|f_{n}\|_{\mathcal{B}^{\alpha}}}{(1 - |\varphi(z)|^{2})^{\alpha + 1}} |\varphi'(z)|$$

$$< \epsilon MC_{\alpha}.$$

for all n. On the other hand since $f_n'' \to 0$ uniformly on $\{w : |w| \le r\}$, there exists an n_0 such that if $|\varphi(z)| \le r$ and $n \ge n_0$, then $|f_n''(\varphi(z))| < \epsilon$. Moreover, by (3.1), we have $A = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |\varphi'(z)| < \infty$. Thus

$$(1 - |z|^2)^{\beta} |(C_{\varphi} Df'_n(z))| \le (1 - |z|^2)^{\beta} |\varphi'(z)| |f''_n(\varphi(z))| < \epsilon A.$$

The above arguments, together with the fact that $C_{\varphi}Df_n(0) = f'_n(\varphi(0)) \to 0$ as $n \to \infty$, yields that $\|C_{\varphi}Df_n\|_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$. Hence $C_{\varphi}D$ maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} .

Conversely, suppose that (3.3) does not hold. Then there exists a positive number λ and a sequence $\{z_m\}$ in $\mathbb D$ such that $|\varphi(z_m)| \to 1$ and

$$\frac{(1 - |z_m|^2)^{\beta}}{(1 - |\varphi(z_m)|^2)^{\alpha + 1}} |\varphi'(z_m)| \ge \lambda,$$

for all m. For each m define $f_m(z) = (1 - |\varphi(z_m)|^2)/2^{\alpha+1}(1 - \overline{\varphi(z_m)}z)^{\alpha}$. Then $f_m \in \mathcal{B}^{\alpha}$ and $||f_m||_{\mathcal{B}^{\alpha}} \leq 1$. Since $C_{\varphi}D$ maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} and f_n is a norm bounded sequence that converges to zero uniformly on compact subsets of \mathbb{D} , it follows that a subsequence of $\{C_{\varphi}Df_m\}$ tends to zero in \mathcal{B}^{β} . On the other hand

$$|| C_{\varphi} Df_{m} ||_{\mathcal{B}^{\beta}} \geq (1 - |z_{m}|^{2})^{\beta} |(C_{\varphi} Df_{m})'(z_{m})|$$

$$= (1 - |z_{m}|^{2})^{\beta} |f''_{m}(z_{m})| |\varphi'(z_{m})|$$

$$= \frac{\alpha(\alpha + 1)|\varphi(z_{m})|^{2}(1 - |z_{m}|^{2})^{\beta}}{(1 - |\varphi(z_{m})|^{2})^{\alpha + 1}} |\varphi'(z_{m})|$$

$$\geq \alpha(\alpha + 1)|\varphi(z_{m})|^{2} \lambda,$$

which is absurd and hence we are done.

Theorem 3.3 Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers and φ be a holomorphic self-map of \mathbb{D} . Then DC_{φ} maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} if and only if

$$(i) \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} < \infty \quad and \quad (ii) \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} < \infty.$$

Proof. First suppose that

$$M = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} < \infty \quad \text{and} \quad N = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} < \infty.$$

For arbitrary $z \in \mathbb{D}$, we have

$$(1 - |z|^{2})^{\beta} |(DC_{\varphi}f)'(z)| = (1 - |z|^{2})^{\beta} |(f \circ \varphi)''(z)|$$

$$= (1 - |z|^{2})^{\beta} [|\varphi'(z)|^{2} |f''(\varphi(z))| + |f'(\varphi(z))| |\varphi''(z)|]$$

$$\leq \left(C_{\alpha} \frac{(1 - |z|^{2})^{\beta} |\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{\alpha+1}} + \frac{(1 - |z|^{2})^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{\alpha}} \right) \| f \|_{\mathcal{B}^{\alpha}}$$

$$\leq (C_{\alpha}M + N) \| f \|_{\mathcal{B}^{\alpha}}$$

and consequently, $DC_{\varphi}f$ maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} .

Conversely, suppose that DC_{φ} maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} . Then taking f(z) = z in \mathcal{B}^{α} , we get $\varphi' \in \mathcal{B}^{\beta}$. Again taking $f(z) = z^2/2$ in \mathcal{B}^{α} , we get $(1 - |z|^2)^{\beta} |(\varphi'(z))^2 + \varphi(z)\varphi''(z)| \leq M$. Since $\varphi' \in \mathcal{B}^{\beta}$ and $|\varphi(z)| < 1$, we get $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |\varphi'(z)|^2 < \infty$. Fix $\lambda \in \mathbb{D}$ and consider the function f_{λ} defined by

$$f_{\lambda}(z) = \left\{ \frac{(1 - |\varphi(\lambda)|^2)^2}{(1 - \overline{\varphi(\lambda)}z)^{\alpha + 1}} - \frac{(\alpha + 1)(1 - |\varphi(\lambda)|^2)}{\alpha(1 - \overline{\varphi(\lambda)}z)^{\alpha}} \right\} \qquad (z \in \mathbb{D}).$$

Then

$$f_{\lambda}'(z) = \overline{\varphi(\lambda)} \Big\{ \frac{(\alpha+1)(1-|\varphi(\lambda)|^2)^2}{(1-\overline{\varphi(\lambda)}z)^{\alpha+2}} - \frac{(\alpha+1)(1-|\varphi(\lambda)|^2)}{(1-\overline{\varphi(\lambda)}z)^{\alpha+1}} \Big\}.$$

An easy calculation yields that $(1-|z|^2)^{\alpha}|f'_{\lambda}(z)| \leq 3(\alpha+1)2^{\alpha+1}$ and $|f_{\lambda}(0)| \leq 1+(\alpha+1)/\alpha$. Thus we have $M=\sup\{\|f_{\lambda}\|_{\mathcal{B}^{\alpha}}: \lambda \in \mathbb{D}\} \leq (1+(\alpha+1)/\alpha+3(\alpha+1)2^{\alpha+1})$. Moreover $f'_{\lambda}(\varphi(\lambda))=0$. Again

$$f_{\lambda}''(z) = \left(\frac{(\alpha+1)(\alpha+2)(1-|\varphi(\lambda)|^2)^2}{(1-\overline{\varphi(\lambda)}z)^{\alpha+3}} - \frac{(\alpha+1)^2(1-|\varphi(\lambda)|^2)}{(1-\overline{\varphi(\lambda)}z)^{\alpha+2}}\right)(\overline{\varphi(\lambda)})^2.$$

and so

$$f_{\lambda}''(\varphi(\lambda)) = \frac{(\alpha+1)}{(1-|\varphi(\lambda)|^2)^{\alpha+1}} (\overline{\varphi(\lambda)})^2$$

Since DC_{φ} maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} , so we can find a constant C > 0 such that $\|DC_{\varphi}f_{\lambda}\|_{\mathcal{B}^{\beta}} \leq C \|f_{\lambda}\|_{\mathcal{B}^{\alpha}} \leq CM$. Hence

$$(1-|z|^2)^{\beta}|f_{\lambda}''(\varphi(z))(\varphi'(z))^2 + f_{\lambda}'(\varphi(z))\varphi''(z)| \le CM$$

for all $z \in \mathbb{D}$. In particular

$$(1 - |\lambda|^2)^{\beta} |f_{\lambda}''(\varphi(\lambda))(\varphi'(\lambda))^2 + f_{\lambda}'(\varphi(\lambda))\varphi''(\lambda)| \le CM$$

and so

$$(\alpha+1)\frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha+1}}|\varphi(\lambda)|^2|\varphi'(\lambda)|^2 \le CM.$$

Thus for fixed δ_1 , $0 < \delta_1 < 1$, we have

$$\sup \left\{ \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha+1}} |\varphi'(\lambda)|^2 : \lambda \in \mathbb{D}, |\varphi(\lambda)| > \delta_1 \right\} < \infty.$$
 (3.4)

For $\lambda \in \mathbb{D}$ such that $|\varphi(\lambda)| \leq \delta_1$, we have

$$\frac{1 - |\lambda|^2)^{\beta}}{(1 - |\varphi(\lambda)|^2)^{\alpha + 1}} |\varphi'(\lambda)|^2 \le \frac{1}{(1 - \delta_1^2)^{\alpha + 1}} (1 - |\lambda|^2)^{\beta} |\varphi'(\lambda)|^2.$$

Since $\varphi' \in \mathcal{B}^{\beta}$, we have

$$\sup \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha+1}} |\varphi'(\lambda)|^2 : \lambda \in \mathbb{D}, |\varphi(\lambda)| \le \delta_1 < \infty.$$
 (3.5)

Consequently, by (3.4) and (3.5), we have

$$\sup_{\lambda \in \mathbb{D}} \left\{ \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha+1}} |\varphi'(\lambda)|^2 \right\} < \infty.$$

Next for fixed $\lambda \in \mathbb{D}$, consider the function

$$f_{\lambda}(z) = \frac{(\alpha+1)(1-|\varphi(\lambda)|^2)^3}{(\alpha+3)(1-\overline{\varphi(\lambda)}z)^{\alpha+2}} - \frac{1-|\varphi(\lambda)|^2}{(1-\overline{\varphi(\lambda)}z)^{\alpha+1}}$$

Then

$$f_{\lambda}'(z) = \left(\frac{(\alpha+1)(\alpha+2)(1-|\varphi(\lambda)|^2)^3}{(\alpha+3)(1-\overline{\varphi(\lambda)}z)^{\alpha+3}} - \frac{(\alpha+1)(1-|\varphi(\lambda)|^2)^2}{(1-\overline{\varphi(\lambda)}z)^{\alpha+2}}\right)\overline{\varphi(\lambda)}$$

Thus an easy calculation yields that $(1-|z|^2)^{\alpha}|f'_{\lambda}(z)| \leq (\alpha+1)(5\alpha+11)2^{\alpha+1}$ and $|f_{\lambda}(0)| \leq 4(3\alpha+5)/(\alpha+3)$ and so, we have $M = \sup\{\|f_{\lambda}\|_{\mathcal{B}^{\alpha}}: \lambda \in \mathbb{D}\} \leq 4(3\alpha+5)/(\alpha+3) + (\alpha+1)(5\alpha+11)2^{\alpha+1}$. Also

$$f_{\lambda}''(z) = (\alpha + 1)(\alpha + 2) \left(\frac{(1 - |\varphi(\lambda)|^2)^3}{(1 - \overline{\varphi(\lambda)}z)^{\alpha + 4}} - \frac{(1 - |\varphi(\lambda)|^2)^2}{(1 - \overline{\varphi(\lambda)}z)^{\alpha + 3}} \right) (\overline{\varphi(\lambda)})^2.$$

Thus

$$f''(\varphi(\lambda)) = 0$$
 and $f'_{\lambda}(\varphi(\lambda)) = -\frac{(\alpha+1)}{(\alpha+3)(1-|\varphi(\lambda)|^2)^{\alpha}}\overline{\varphi(\lambda)}$.

Now we can find a constant C > 0 such that

$$C \ge (1 - |\lambda|^2)^{\beta} |f_{\lambda}''(\varphi(\lambda))(\varphi'(\lambda))^2 + f_{\lambda}'(\varphi(\lambda))\varphi''(\lambda)|$$

and hence

$$\frac{(\alpha+1)(1-|\lambda|^2)^{\beta}}{(\alpha+3)(1-|\varphi(\lambda)|^2)^{\alpha}}|\varphi(\lambda)||\varphi''(\lambda)| \le C'.$$

Thus for fixed δ_2 , $0 < \delta_2 < 1$, we have

$$\sup \left\{ \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha}} |\varphi''(\lambda)| : \lambda \in \mathbb{D}, |\varphi(\lambda)| > \delta_2 \right\} < \infty.$$
 (3.6)

For $\lambda \in \mathbb{D}$ such that $|\varphi(\lambda)| \leq \delta_2$, we have

$$\frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha}}|\varphi''(\lambda)| \le \frac{1}{(1-\delta_2^2)^{\alpha}}(1-|\lambda|^2)^{\beta}|\varphi''(\lambda)|$$

Since $\varphi' \in \mathcal{B}_0^{\beta}$, we have

$$\sup \left\{ \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha}} |\varphi''(\lambda)| : \lambda \in \mathbb{D}, |\varphi(\lambda)| \le \delta_2 \right\} < \infty.$$
 (3.7)

Consequently, by (3.6) and (3.7) we have

$$\sup_{\lambda \in \mathbb{D}} \frac{(1-|\lambda|^2)^{\beta}}{(1-|\varphi(\lambda)|^2)^{\alpha}} |\varphi''(\lambda)| < \infty.$$

This completes the proof.

Theorem 3.4. Let $\alpha \geq 1$, $\beta > 0$ be two real numbers and φ be a holomorphic self map of \mathbb{D} such that DC_{φ} maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} . Then DC_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} if and only if

$$(i) \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} = 0 \quad and \quad (ii) \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} = 0.$$

Proof. Let $\{f_n\}$ be a bounded sequence in \mathcal{B}^{α} that converges to zero uniformly on compact subsets of \mathbb{D} . Then $\parallel DC_{\varphi}f_n \parallel_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$. Let $M = \sup_n \parallel f_n \parallel_{\mathcal{B}^{\alpha}} < \infty$. Given $\epsilon > 0$, there exist an $r \in (0,1)$ such that if $|\varphi(z)| > r$, then

$$\frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha+1}}|\varphi'(z)|^2 < \epsilon \quad \text{and} \quad \frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha}}|\varphi''(z)|^2 < \epsilon.$$

Thus for $z \in \mathbb{D}$ such that $|\varphi(z)| > r$ we have

$$(1 - |z|^{2})^{\beta} |(DC_{\varphi}f_{n})'(z)| = (1 - |z|^{2})^{\beta} (|\varphi'(z)|^{2} |f''_{n}(\varphi(z))| + |f'_{n}(\varphi(z))||\varphi''(z)|)$$

$$\leq \left(C_{\alpha} \frac{(1 - |z|^{2})^{\beta} |\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{\alpha+1}} + \frac{(1 - |z|^{2})^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{\alpha}}\right) \|f_{n}\|_{\mathcal{B}^{\alpha}}$$

$$< \epsilon M(C_{\alpha} + 1)$$

for all n. On the other hand since f'_n and f''_n converges uniformly on $\{w : |w| \le r\}$, there exist an n_0 such that if $|\varphi(z)| \le r$ and $n \ge n_0$, then $|f'_n(\varphi(z))| < r$ and $|f''_n(\varphi(z))| < \epsilon$. Also conditions (1) and (2) of Theorem 3.3 implies that

$$A = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |\varphi'(z)|^2 < \infty \quad \text{and} \quad B = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |\varphi''(z)| < \infty.$$

Thus we deduce that

$$(1 - |z|^2)^{\beta} |(DC_{\varphi}f_n)'(z)| \leq (1 - |z|^2)^{\beta} (|\varphi'(z)|^2 |f_n''(\varphi(z))| + |f_n'(\varphi(z))| |\varphi''(z)|)$$

$$\leq (A + B)\epsilon.$$

The above arguments together with the fact that $DC_{\varphi}f_n(0) = f'_n(\varphi(0)) \to 0$ as $n \to \infty$ yields that $\|DC_{\varphi}f_n\|_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$.

Conversely, suppose that DC_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} . Let $\{z_n\}$ be a sequence in \mathbb{D} such that $|\varphi(z_n)| \to 1$ as $n \to \infty$. Let

$$f_n(z) = \frac{(1 - |\varphi(z_n)|^2)^2}{(1 - \overline{\varphi(z_n)}z)^{\alpha+1}} - \frac{(\alpha + 1)(1 - |\varphi(z_n)|^2)}{\alpha(1 - \overline{\varphi(z_n)}z)^{\alpha}}$$

for $z \in \mathbb{D}$. Then as in Theorem 3.3, $f_n \in \mathcal{B}^{\alpha}$, f_n is norm bounded in \mathcal{B}^{α} and $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Moreover

$$f'_n(z) = \overline{\varphi(z_n)} \left\{ \frac{(\alpha+1)(1-|\varphi(z_n)|^2)^2}{(1-\overline{\varphi(z_n)}z)^{\alpha+2}} - \frac{(\alpha+1)(1-|\varphi(z_n)|^2)}{(1-\overline{\varphi(z_n)}z)^{\alpha+1}} \right\}$$

$$f''_n(z) = \left\{ \frac{(\alpha+1)(\alpha+2)(1-|\varphi(z_n)|^2)^2}{(1-\overline{\varphi(z_n)}z)^{\alpha+3}} - \frac{(\alpha+1)^2(1-|\varphi(z_n)|^2)}{(1-\overline{\varphi(z_n)}z)^{\alpha+2}} \right\} (\overline{\varphi(z_n)})^2.$$

Note that

$$f'_n(\varphi(z_n)) = 0$$
 and $f''_n(\varphi(z_n)) = \frac{(\alpha+1)}{(1-|\varphi(z_n)|^2)^{\alpha+1}} (\overline{\varphi(z_n)})^2$.

Since DC_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} , it follows that $\|DC_{\varphi}f_n\|_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$. Thus

$$\| DC_{\varphi} f_n \|_{\mathcal{B}^{\beta}} \ge \frac{(1 - |z_n|^2)^{\beta} (\alpha + 1) |\varphi(z_n)|^2 |\varphi'(z_n)|^2}{(1 - |\varphi(z_n)|^2)^{\alpha + 1}}$$

implies that

$$\lim_{|\varphi(z_n)| \to 1} \frac{(1 - |z_n|^2)^{\beta}}{(1 - |\varphi(z_n)|^2)^{\alpha + 1}} |\varphi'(z_n)|^2 = 0.$$

Next for $\{z_n\} \in \mathbb{D}$ such that $|\varphi(z_n)| \to 1$ consider the function

$$g_n(z) = \frac{(\alpha+1)(1-|\varphi(z_n)|^2)^3}{(\alpha+3)(1-\overline{\varphi(z_n)}z)^{\alpha+2}} - \frac{(1-|\varphi(z_n)|^2)^2}{(1-\overline{\varphi(z_n)}z)^{\alpha+1}}.$$

Again as in Theorem 3.3, $g_n \in \mathcal{B}^{\alpha}$, g_n is norm bounded in \mathcal{B}^{α} and $g_n \to 0$ uniformly on compact subsets of \mathbb{D} . Moreover

$$g'_n(z) = \left\{ \frac{(\alpha+1)(\alpha+2)}{\alpha+3} \frac{(1-|\varphi(z_n)|^2)^3}{(1-\overline{\varphi(z_n)}z)^{\alpha+3}} - \frac{(\alpha+1)(1-|\varphi(z_n)|^2)^2}{(1-\overline{\varphi(z_n)}z)^{\alpha+3}} \right\} \overline{\varphi(z_n)}$$

and

$$g_n''(z) = (\alpha + 1)(\alpha + 2) \left\{ \frac{(1 - |\varphi(z_n)|^2)^3}{(1 - \overline{\varphi(z_n)}z)^{\alpha + 4}} - \frac{(1 - |\varphi(z_n)|^2)^2}{(1 - \overline{\varphi(z_n)}z)^{\alpha + 3}} \right\} (\overline{\varphi(z_n)})^2.$$

Thus

$$g'_n(\varphi(z_n)) = -\frac{(\alpha+1)}{(\alpha+3)} \frac{1}{(1-|\varphi(z_n)|^2)^{\alpha}} \overline{\varphi}(z_n)$$
 and $g''_n(\varphi(z_n)) = 0$.

Since DC_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} , so

$$\|DC_{\varphi}g_n\|_{\mathcal{B}^{\beta}} \ge \frac{(\alpha+1)}{(\alpha+3)} \frac{(1-|z_n|^2)^{\beta}}{(1-|\varphi(z_n)|^2)^{\alpha}} |\varphi''(z_n)|$$

and hence

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha}} |\varphi''(z)| = 0$$

This completes the proof.

4 Boundedness and Compactness of $C_{\varphi}D$ and DC_{φ} between little α -Bloch spaces

In this section, we consider the operators $C_{\varphi}D$ and DC_{φ} acting between little α -Bloch spaces \mathcal{B}_0^{α} and \mathcal{B}_0^{β} .

Theorem 4.1. Let $\alpha \geq 1$, $\beta > 0$ be two real numbers and φ be a holomorphic self map of \mathbb{D} . Then $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} boundedly into \mathcal{B}_{0}^{β} if and only if the following conditions are satisfied

(i)
$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} |\varphi'(z)| < \infty \quad and \quad (ii) \ \varphi \in \mathcal{B}_0^{\beta}.$$

Proof. First suppose that $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} boundedly into \mathcal{B}_{0}^{β} . Then (i) can be proved exactly in the same way as in the proof of the Theorem 3.1. By taking $f(z) = z^{2}/2$ in \mathcal{B}_{0}^{α} , we get $\varphi \in \mathcal{B}_{0}^{\beta}$ which is (ii).

Next, suppose that (i) and (ii) are satisfied. Take any $\varepsilon > 0$. Let $f \in \mathcal{B}_0^{\alpha}$. Then by Theorem 2.1, there is $\delta_1 \in (0,1)$ such that for any $z \in \mathbb{D}$, $|z| > \delta_1$, we have $|f''(z)| < \varepsilon/(1-|z|^2)^{\alpha+1}$. Thus for $|\varphi(z)| > \delta_1$, by (i), we can find a constant M > 0 such that

$$(1 - |z|^2)^{\beta} |f''(\varphi(z))\varphi'(z)| < \varepsilon |\varphi'(z)| \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} \le \varepsilon M. \tag{4.1}$$

On the other hand, since by (ii) $\varphi \in \mathcal{B}_0^{\beta}$, so for above ε , there is $\delta_2 \in (0,1)$ such that $|z| > \delta_2$ implies that $(1 - |z|^2)^{\beta} |\varphi'(z)| < \varepsilon$. Thus for $|\varphi(z)| \le \delta_1$, if $|z| > \delta_2$, we have a constant N > 0 such that

$$(1 - |z|^2)^{\beta} |\varphi'(z)f''(\varphi(z))| < C_{\alpha} ||f||_{\mathcal{B}^{\alpha}} |\varphi'(z)| \frac{(1 - |z|^2)^{\beta}}{(1 - \delta_1^2)^{\alpha + 1}} \le \varepsilon N.$$
 (4.2)

By combining (4.1) and (4.2), we see that whenever $|z| > \delta_2$, we have

$$(1 - |z|^2)^{\beta} |\varphi'(z)f''(\varphi(z))| < \max(M, N)\varepsilon$$

which means

$$\lim_{|z|\to 1} (1-|z|^2)^{\beta} |(C_{\varphi}Df)'(z)| = 0.$$

Thus $C_{\varphi}Df \in B_0^{\beta}$. By Closed Graph Theorem DC_{φ} maps \mathcal{B}_0^{α} boundedly into \mathcal{B}_0^{β} .

Theorem 4.2 Let $\alpha \geq 1$, $\beta > 0$ be two real numbers and φ be a holomorphic self map of \mathbb{D} . Then $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} compactly into \mathcal{B}_{0}^{β} if and only if

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} |\varphi'(z)| = 0.$$
(4.3)

Proof. By Lemma 2.2, the set $\{C_{\varphi}Df: f \in \mathcal{B}_0^{\alpha}, ||f||_{\mathcal{B}^{\alpha}} \leq 1\}$ has compact closure in \mathcal{B}_0^{β} if and only if

$$\lim_{|z| \to 1} \sup \{ (1 - |z|^2)^{\beta} | (C_{\varphi} Df)'(z)| : f \in \mathcal{B}_0^{\alpha}, ||f||_{\mathcal{B}^{\alpha}} \le 1 \} = 0.$$
 (4.4)

Suppose that $f \in \mathcal{B}_0^{\alpha}$ is such that $||f||_{\mathcal{B}^{\alpha}} \leq 1$, and (4.3) is satisfied. Then

$$(1 - |z|^{2})^{\beta} |(C_{\varphi}Df)'(z)| = (1 - |z|^{2})^{\beta} |\varphi'(z)f''(\varphi(z))|$$

$$\leq \frac{(1 - |z|^{2})^{\beta}}{(1 - |\varphi(z)|^{2})^{\alpha + 1}} |\varphi'(z)|.$$

By (4.2) above inequality implies (4.4). Hence $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} compactly into \mathcal{B}_{0}^{β} .

Conversely, suppose that $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} compactly into \mathcal{B}_{0}^{β} . Using the same test as in the proof of Theorem 3.2, we see that

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} |\varphi'(z)| = 0.$$
(4.5)

Since $C_{\varphi}D$ maps \mathcal{B}_{0}^{α} boundedly into \mathcal{B}_{0}^{β} , Theorem 4.1 implies that $\varphi \in B_{0}^{\beta}$. It is easy to show that $\varphi \in B_{0}^{\beta}$ and (4.5) is equivalent to (4.4).

Remark. The conditions in Theorem 4.2 include the necessary and sufficient conditions for boundedness of $C_{\varphi}D$ from \mathcal{B}_{0}^{α} into \mathcal{B}_{0}^{β} .

Theorem 4.3. Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Then DC_{φ} maps \mathcal{B}_{0}^{α} boundedly into \mathcal{B}^{β}_{0} if and only if the following conditions are satisfied.

(i)
$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} < \infty, \quad (ii) \quad \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} < \infty,$$

(iii)
$$\varphi' \in \mathcal{B}_0^{\beta}$$
 and (iv) $\lim_{|z| \to 1} (1 - |z|^2)^{\beta} |\varphi'(z)|^2 = 0.$

Proof. First suppose that DC_{φ} maps \mathcal{B}_{0}^{α} boundedly into \mathcal{B}_{0}^{β} . Then (i) and (ii) can be proved exactly in the same way as in the proof of the Theorem 3.1. By taking f(z) = z in \mathcal{B}_{0}^{α} , we get $\varphi' \in \mathcal{B}_{0}^{\beta}$ which is (ii). Again by taking $f(z) = z^{2}/2$ in \mathcal{B}_{0}^{α} , we get $\lim_{|z| \to 1} (1 - |z|^{2})^{\beta} (|(\varphi'(z))^{2} + \varphi(z)\varphi''(z)|) = 0$. Since

 $\varphi' \in \mathcal{B}_0^{\beta}$ and $|\varphi(z)| < 1$, we get $\lim_{|z| \to 1} (1 - |z|^2)^{\beta} |\varphi'(z)|^2 = 0$, which is (iv).

Next, suppose that (i) - (iv) are satisfied. Take any $\varepsilon > 0$. Let $f \in \mathcal{B}_0^{\alpha}$. Then by (2.2) there is $\delta_1 \in (0,1)$ such that for any $z \in \mathbb{D}$, $|z| > \delta_1$, we have $|f''(z)| < \varepsilon/(1-|z|^2)^{\alpha+1}$ Thus for $|\varphi(z)| > \delta_1$, by (i), we can find a constant $C_1 > 0$ such that

$$(1 - |z|^2)^{\beta} |(\varphi'(z))|^2 f''(\varphi(z))| < \varepsilon |\varphi'(z)|^2 \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha + 1}} \le C_1 \varepsilon \tag{4.6}$$

On the other hand, by (iv) there is $\delta_2 \in (0,1)$ such that $(1-|z|^2)^{\beta}|\varphi'(z)|^2 < \varepsilon$. Thus for $|\varphi(z)| \leq \delta_1$, if $|z| > \delta_2$, we have a constant $C_2 > 0$ such that

$$(1 - |z|^2)^{\beta} |(\varphi'(z))^2 f''(\varphi(z))| < C_{\alpha} ||f||_{\mathcal{B}^{\alpha}} |\varphi'(z)|^2 \frac{(1 - |z|^2)^{\beta}}{(1 - \delta_1^2)^{\alpha + 1}} \le C_2 \varepsilon$$
 (4.7)

By combining (4.6) and (4.7), we see that whenever $|z| > \delta_2$, we have

$$(1 - |z|^2)^{\beta} |(\varphi'(z))^2 f''(\varphi(z))| \le \max(C_1, C_2)\varepsilon. \tag{4.8}$$

Again, since $f \in \mathcal{B}_0^{\alpha}$, there is $\delta_3 \in (0,1)$ such that $|z| > \delta_3$ implies that $|f'(z)| < \varepsilon/(1-|z|^2)^{\alpha}$ Thus for $|\varphi(z)| > \delta_3$, by (ii), we can find a constant $C_3 > 0$ such that

$$(1 - |z|^2)^{\beta} |\varphi''(z)f'(\varphi(z))| < \varepsilon |\varphi''(z)| \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha}} \le C_3 \varepsilon$$
 (4.9)

On the other hand, by (iii) $\varphi' \in \mathcal{B}_0^{\beta}$, so for above ε , there is $\delta_4 \in (0,1)$ such that $|z| > \delta_4$ implies that $(1 - |z|^2)^{\beta} |\varphi''(z)| < \varepsilon$. Thus for $|\varphi(z)| \le \delta_3$, if $|z| > \delta_4$, we have a constant $C_4 > 0$ such that

$$(1 - |z|^2)^{\beta} |\varphi''(z)f'(\varphi(z))| < ||f||_{\mathcal{B}^{\alpha}} |\varphi''(z)| \frac{(1 - |z|^2)^{\beta}}{(1 - \delta_3^2)^{\alpha}} \le C_4 \varepsilon \tag{4.10}$$

By combining (4.9) and (4.10), we see that whenever $|z| > \delta_4$, we have

$$(1-|z|^2)^{\beta}|\varphi''(z)f'(\varphi(z))| \le \max(C_3, C_4)\varepsilon. \tag{4.11}$$

By combining (4.8) and (4.11), we have for $\delta = max(\delta_2, \delta_4)$, if $|z| > \delta$, there is a constant C > 0 such that

$$(1 - |z|^2)^{\beta} (|\varphi'(z)|^2 |f''(\varphi(z))| + |f'(\varphi(z))||\varphi''(z)|) < \varepsilon C$$

which means that

$$\lim_{|z|\to 1} (1-|z|^2)^{\beta} |(DC_{\varphi}f)'(z)| = 0.$$

Thus $DC_{\varphi} \in \mathcal{B}_{0}^{\beta}$. The proof is complete.

Theorem 4.4. Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Then DC_{φ} maps \mathcal{B}_0^{α} compactly into \mathcal{B}_0^{β} if and only if

$$(i) \quad \lim_{|z| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} = 0 \quad \text{and} \quad (ii) \quad \lim_{|z| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} = 0.$$

Proof. By Lemma 2.2, the set $\{DC_{\varphi}f: f \in \mathcal{B}_0^{\beta}, ||f||_{\mathcal{B}^{\alpha}} \leq 1\}$ has compact closure in \mathcal{B}_0^{β} if and only if

$$\lim_{|z|\to 1} \sup\{(1-|z|^2)^{\beta} |(DC_{\varphi}f)'(z)| : f \in \mathcal{B}_0^{\alpha}, ||f||_{\mathcal{B}^{\alpha}} \le 1\} = 0.$$
 (4.12)

Suppose that $f \in \mathcal{B}_0^{\alpha}$ is such that $||f||_{\mathcal{B}^{\alpha}} \leq 1$, and φ satisfies (i) and (ii). Then

$$(1 - |z|^{2})^{\beta} |(DC_{\varphi}f)'(z)| \leq (1 - |z|^{2})^{\beta} [|\varphi'(z)|^{2} |f''(\varphi(z))| + |f'(\varphi(z))||\varphi''(z)|]$$

$$\leq C_{\alpha} \left(\frac{(1 - |z|^{2})^{\beta} |\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{\alpha+1}} + \frac{(1 - |z|^{2})^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{\alpha}} \right) \| f \|_{\mathcal{B}^{\alpha}}$$

By (i) and (ii) above inequality implies (4.12). Hence DC_{φ} maps \mathcal{B}_{0}^{α} compactly into \mathcal{B}_{0}^{β} .

Conversely, suppose that DC_{φ} maps \mathcal{B}_{0}^{α} compactly into \mathcal{B}_{0}^{β} . Using the same test function as in the proof of Theorem 3.4, we see that

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha + 1}} = 0 \tag{4.13}$$

and

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} = 0.$$
(4.14)

Since DC_{φ} maps \mathcal{B}_0^{α} boundedly into \mathcal{B}_0^{β} , Theorem 4.3 implies that $\varphi' \in \mathcal{B}_0^{\beta}$ and

$$\lim_{|z| \to 1} (1 - |z|^2)^{\beta} |\varphi'(z)|^2 = 0 \tag{4.15}$$

It is easy to show that $\varphi' \in \mathcal{B}_0^{\beta}$ and (4.14) is equivalent to (i) and (4.13) and (4.15) is equivalent to (ii).

Remark. The conditions in Theorem 4.4 include the necessary and sufficient conditions for boundedness of DC_{φ} from \mathcal{B}_{0}^{α} into \mathcal{B}_{0}^{β} .

In the trivial case that $\varphi(z) = z$, our theorems give necessary and sufficient conditions for boundedness and compactness of the differentiation operator between α -Bloch spaces. It seems that the results for the boundedness and compactness of the differentiation operator between α -Bloch spaces has not appeared in the literature. Therefore we single these results as corollaries.

Corollary 1. Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Then the following are equivalent:

- (i) D maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} ;
- (ii) D maps \mathcal{B}_0^{α} boundedly into \mathcal{B}_0^{β} ;
- (iii) $\alpha + 1 \leq \beta$.

Corollary 2. Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Then the following are equivalent:

- (i) D maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} ;
- (ii) D maps \mathcal{B}_0^{α} compactly into \mathcal{B}_0^{β} ;
- (iii) $\alpha + 1 < \beta$.

Before we give some examples, we state characterisations of boundedness and compactness of the C_{φ} between α -Bloch spaces, obtained by Ohno, Stroethoff and Zhao in [6], (see Corollaries 2.4 and 3.2).

Theorem 4.5. [6] Let $\alpha \geq 1$ and $\beta > 0$ be two real numbers. Then C_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} if and only if

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha}}|\varphi'(z)|<\infty.$$

Further, if C_{φ} maps \mathcal{B}^{α} boundedly into \mathcal{B}^{β} , then C_{φ} maps \mathcal{B}^{α} compactly into \mathcal{B}^{β} if and only if

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha}} |\varphi'(z)| = 0.$$

Example 1. Let $\varphi(z) = (1-z)/2$. Then $1-|\varphi(z)|^2 \ge (1-|z|^2)/4$. Thus by Theorem 4.5, we obtain that C_{φ} maps \mathcal{B}^{α} boundedly (respectively compactly)into \mathcal{B}^{β} , when $\alpha \le \beta$ (respectively $\alpha < \beta$).

Furthermore $C_{\varphi}D$ and DC_{φ} maps \mathcal{B}^{α} boundedly (respectively compactly) into \mathcal{B}^{β} , when $\alpha + 1 \leq \beta$ (respectively $\alpha + 1 < \beta$).

Example 2. Let $\varphi_{\gamma}(z) = 1 - (1-z)^{\gamma}, 0 < \gamma < 1$. Then $\varphi'_{\gamma}(z) = \gamma(1-z)^{\gamma-1}$. Again for z near to $1, 1 - |\varphi(z)|^2 \approx (1-z)^{\gamma}$. Thus by Theorem 4.5, C_{φ} maps \mathcal{B}^{α} boundedly (respectively compactly)into \mathcal{B}^{β} , when $\alpha - \gamma + 1 \leq \beta$ (respectively $\alpha - \gamma + 1 < \beta$).

 $C_{\varphi}D$ maps \mathcal{B}^{α} boundedly (respectively compactly)into \mathcal{B}^{β} , when $\alpha - \gamma + 2 \leq \beta$ (respectively $\alpha - \gamma + 2 < \beta$) and DC_{φ} maps \mathcal{B}^{α} boundedly (respectively compactly) into \mathcal{B}^{β} , when $\alpha - \gamma + 3 \leq \beta$ (respectively $\alpha - \gamma + 3 < \beta$).

Acknowledgment. We are thankful to Professor S. D. Sharma for his encouragement and helpful discussion.

References

- [1] S.Axler, 'Bergman spaces and their operators', Surveys of some recent results in operator theory, *Pitman Research Notes in Math.*, **171**(1988), 1-50.
- [2] C. C. Cowen and B.D. MacCluer, 'Composition operators on spaces of analytic functions', (CRC Press Boca Raton, New York, 1995.)
- [3] H. Hedenmalm, B. Korenblum and K. Zhu, 'Theory of Bergman spaces', (Springer, New York, Berlin, etc. 2000.)
- [4] R.A. Hibschweiler and N. Portnoy, 'Composition followed by differentiation between Bergman and Hardy spaces' *Rocky Mountain Journal of Mathematics* **35** 2005, 843-855.
- [5] K. Medigan and A. Matheson, 'Compact composition operators on the Bloch space', *Trans. Amer. Math. Soc.* **347** (1995), 2679-2687.
- [6] S. Ohno, K. Stroethoff and R. Zhao, 'Weighted composition operators between Bloch-type spaces', *Rocky Mountain J. Math.*, **33** (2003), 191-215.
- [7] J. H. Shapiro, 'Composition operators and classical function theory', (Springer-Verlag, New York.) 1993.
- [8] Ajay K. Sharma, S. D. Sharma and Sanjay Kumar, Weighted composition followed by differentiation between Bergman spaces' *International Mathematical Forum* **2**, no. 33, (2007), 1647-1656.
- [9] K. Zhu, 'Operator theory in function spaces', (Marcel Dekker, New York, 1990.)
- [10] K. Zhu, 'Bloch type spaces of analytic functions', Rocky Mountain J. Math., 23 (1993), 1143-1177.

Received: January 15, 2008