Random Convex Bodies in a Lattice of Parallelograms

Giuseppe Caristi

University of Messina Faculty of Economics, 98122 (Me) Italy gcaristi@dipmat.unime.it

Giovanni Molica Bisci

University of Reggio Calabria
Faculty of Engineering, DIMET. Via Graziella (Feo di Vito)
I-89100 Reggio Calabria Italy
giovanni.molica@ing.unirc.it

Abstract

We solve a problem of Buffon-type for an arbitrary "test body" K and a lattice of lines whose elementary tile $C_0 = \bigcup_{i=1}^m \bigcup_{j=1}^t \mathcal{P}_i^{(j)}$, where $\mathcal{P}_i^{(j)}$ is a parallelogram of sides a_j and b_i and acute angle $\alpha \in]0, \pi/2]$.

Mathematics Subject Classification: 60D05, 52A22

Keywords: Geometric probability; stochastic geometry; random sets; random convex sets and integral geometry

1 Introduction

In 1733, at a meeting of the Académie des Sciences de Paris, Buffon posed a problem that later on should become known as the famous "Buffon needle problem": in a room, the floor of which is merely divided by parallel lines, at a distance a apart, a needle of length l < a is allowed to fall at random: which is the probability that the needle intersects one of the lines?

The solution, determined by Buffon by means of empirical methods, was $p = 2l/\pi a$. The problem and its solution were published in 1777, in the "Comptes rendus de l'Académie des sciences de Paris".

In 1812, Laplace extended the problem by considering a room paved with equal tiles, shaped as rectangles of sides a and b, with l < min(a, b). The solution was $p = \frac{2l(a+b)-l^2}{\pi ab}$, and it is obvious that the probability of Buffon can be obtained from that of Laplace by letting $b \to +\infty$.

We restate now these problems in a slightly different form, which will be useful for several different extensions.

Let us denote by \mathbf{E}_2 be the Euclidean plane. By a lattice \mathcal{R} in \mathbf{E}_2 we understand a sequence of closed and connected sets $\{\mathcal{C}_n\}_{n\in\mathbb{N}}$ such that

- 1. $\bigcup_{n\in N} C_n = \mathbf{E}_2$,
- 2. $Int(\mathcal{C}_i) \cap Int(\mathcal{C}_j) = \emptyset, \forall i, j \in N \text{ and } i \neq j,$
- 3. $C_n = \gamma_n(C_0)$, $\forall n \in N$, where γ_n are the elements of a discrete subgroup of the group of motions in \mathbf{E}_2 that leaves invariant the lattice.

The domain C_0 is usually called the *fundamental tile* (or cell) of \mathcal{R} . Let us denote by K be a convex body (which means here a compact convex set) which we shall call *test body*. A general problem of Buffon type can be stated as follows:

"Which is the probability $p_{K,\mathcal{R}}$ that the random convex body K, or more precisely, the random congruent copy of K, meets some of the boundary points of at least one of the domains \mathcal{C}_n ?"

In [1] A.Aleman, M.Stoka and T.Zamfirescu in considered Buffon's problem for an arbitrary convex test body K and certain lattices. When K is tangent to an oriented line g, then S_g will denote the orthogonal projection of S on g, and if φ is the angle between a given direction d related to the body and $\overline{SS_g}$, we set $p(\varphi) := |\overline{SS_g}|$, the distance from S to g.

The 2π -periodic extension function $p:R\to R$ will be called the *support* function with respect to the pair (K,d). We denote by L the function $L:R\to R$ given by $L(\varphi):=p(\varphi)+p(\varphi+\pi)$. We call L the width of the pair (K,d) in the direction φ . By construction L is a π -periodic function.

The goal of this paper is to compute the probability $p_{K,\mathcal{R}}$ that a convex body K, dropped at random, intersects a lattice \mathcal{R} of lines whose elementary tile is a set of parallelograms \mathcal{P}_i with sides a and b_i , for i = 1, ..., m and acute angle $\alpha \in]0, \pi/2]$ as in the following picture, under the assumption that the support function is known. For other similar results see [4].

We denote by \mathcal{M} the set of all convex test bodies congruent to K and with barycenter S within \mathcal{C}_0 . We also assume that these convex test bodies are uniformly distributed, i.e. that the coordinates of S are a bidimensional random variable with uniform distribution in \mathcal{C}_0 , and that the random variable φ is uniformly distributed in $[0, 2\pi]$, S and φ stochastically independent.

Finally we denote by \mathcal{N} the set of convex bodies K, of diameter Diam(K), which are completely contained in \mathcal{C}_0 . As is well known then we can write the probability that the test body K intersects the boundary of one of the tiles of the lattice \mathcal{R} :

$$p_K = 1 - \frac{\mu(\mathcal{N})}{\mu(\mathcal{M})},\tag{1}$$

where μ is the Lebesgue measure.

The measures $\mu(\mathcal{N})$ and $\mu(\mathcal{M})$ can be computed using the elementary Kinematic measure in \mathbf{E}_2 [[9],p.126]

$$dK = dx \wedge dy \wedge d\varphi, \tag{2}$$

where x and y are the coordinates of $P \in K$ and φ is an angle of rotation.

2 Main Results

Now consider for fixed $\varphi \in [0, \pi]$ the set of points $P \in \mathcal{C}_0$ for with the body K with centroid P does not intersect the boundary $\partial \mathcal{C}_0$ and let $\mathcal{C}(\varphi)$ the topological closure of this open subset of \mathcal{C}_0 . In the sequel we will assume that the body K is $small^1$ with respect to the lattice \mathcal{R} , using some restriction on the diameter Diam(K) of K:

$$Diam(K) < min\{a_1, ..., a_t, b_1, ..., b_m\} \sin \alpha.$$

Theorem 2.1 The probability that a convex body K of boundary of length \mathcal{L} , intersects one of the lines of the lattice \mathcal{R} is

$$p_K = \frac{1}{\pi \left(\sum_{j=1}^t a_j\right) \left(\sum_{i=1}^m b_i\right) \sin \alpha} \left\{ \mathcal{L}\left(m \sum_{i=1}^m b_i + t \sum_{i=1}^m b_i\right) + \frac{mt}{\sin \alpha} \int_0^\pi L(\varphi) L(\varphi + \alpha) d\varphi \right\}.$$
(3)

Proof. Let us consider the fundamental cell \mathcal{C} of the lattice \mathcal{R} . We denote by $\mathcal{N}_i^{(j)}$ the set of all "test bodies" K whose barycentres are inside in the parallelogram $\mathcal{P}_i^{(j)}$.

Thus

We say that the body K is small with respect to \mathcal{R} , if the polygons sides of $\mathcal{C}(\varphi)$ and \mathcal{C}_0 are pairwise parallel.

$$p_K = 1 - \frac{\sum_{j=1}^t \sum_{i=1}^m \mu(\mathcal{N}_i^{(j)})}{\mu(\mathcal{M})},$$
(4)

where

$$\mu(\mathcal{M}) = 2\pi \Big(\sum_{j=1}^t a_j\Big) \Big(\sum_{i=1}^m b_i\Big) \sin \alpha.$$

Let $\mathcal{R}_{\varphi}^{(i,j)}$ be the rectangle with sides parallel to those of $\mathcal{P}_{i}^{(j)}$, of lengths

$$a_i - L(\varphi)/\sin \alpha$$
, $b_i - L(\varphi)/\sin \alpha$.

We can write

$$\mu(\mathcal{N}_i^{(j)}) = \int_0^{2\pi} d\varphi \int \int_{(x,y)\in\mathcal{R}_{\varphi}^{(i,j)}} dx dy = \int_0^{2\pi} \frac{[a_j - L(\varphi)][b_i - L(\varphi)]}{\sin \alpha} d\varphi$$

By the fact that L is a π -periodic function and by Cauchy formula, i.e.

$$\int_0^{2\pi} L(\varphi)d\varphi = 2\mathcal{L},$$

we get

$$\sum_{j=1}^{t} \sum_{i=1}^{m} \mu(\mathcal{N}_{i}^{(j)}) = 2\pi \Big(\sum_{j=1}^{t} a_{j}\Big) \Big(\sum_{i=1}^{m} b_{i}\Big) \sin \alpha - 2\mathcal{L}\bigg(m \sum_{j=1}^{t} a_{j} + t \sum_{i=1}^{m} b_{i}\bigg) + \frac{2mt}{\sin \alpha} \int_{0}^{\pi} L(\varphi) L(\varphi + \alpha) d\varphi.$$

When we replace the expression $\sum_{j=1}^{t} \sum_{i=1}^{m} \mu(\mathcal{N}_{i}^{(j)})$ in [4] we have the probability (3).

Corollary 2.2 If S is a segment of constant length, the probability that S intersects one of the lines of the lattice \mathcal{R} is

$$p_K = \frac{1}{\pi \left(\sum_{j=1}^t a_j\right) \left(\sum_{i=1}^m b_i\right) \sin \alpha} \left\{ 2l \left(\sum_{j=1}^t a_j + \sum_{i=1}^m b_i\right) + -mtl^2 \left[1 + \left(\frac{\pi}{2} - \alpha\right) \cot \alpha\right] \right\}.$$
 (5)

If E is an ellipse of half-axes ξ and ζ , the width function is given by

$$L(\varphi) = 2\sqrt{\xi^2 \sin^2 \varphi + \zeta^2 \cos^2 \varphi}.$$

1779

Hence formula (3) gives the following

Corollary 2.3 The probability that a random ellipse E of boundary of length \mathcal{L} , intersects one of the lines of the lattice \mathcal{R} is

$$p_E = \frac{1}{\pi \left(\sum_{j=1}^t a_j\right) \left(\sum_{i=1}^m b_i\right) \sin \alpha} \left\{ \mathcal{L}\left(m \sum_{j=1}^t a_j + t \sum_{i=1}^m b_i\right) + -\frac{4mt}{\sin \alpha} \int_0^\pi \sqrt{(\xi^2 \sin^2 \varphi + \zeta^2 \cos^2 \varphi)(\xi^2 \sin^2(\varphi + \alpha) + \zeta^2 \cos^2(\varphi + \alpha))} d\varphi \right\}$$
(6)

The expression (6) extends the formula proved in [11] and formula 1.1 in [7].

In general for a convex body of constant width k, using Cauchy relation, we have

$$\mathcal{L} = \frac{1}{2} \int_0^{2\pi} k d\varphi = \pi k.$$

By this fact we obtain

Corollary 2.4 If K has constant width k, the probability that K intersects one of the lines of the lattice \mathcal{R} is

$$p_{K,\mathcal{R}} = \left(m \sum_{j=1}^{t} a_j + t \sum_{i=1}^{m} b_i \right) \frac{k}{\left(\sum_{j=1}^{t} a_j \right) \left(\sum_{i=1}^{m} b_i \right) \sin \alpha} + \frac{mt}{\left(\sum_{j=1}^{t} a_j \right) \left(\sum_{i=1}^{m} b_i \right) \sin^2 \alpha} k^2.$$
 (7)

3 Dependence structure of the hitting events

We can look at the lattice \mathcal{R} as the superposition of two elementary lattices of parallel lines: the lattice \mathcal{R}_a of lines parallel to the side BC of \mathcal{P}_1 , with equidistance $a \sin \alpha$, and the lattice \mathcal{R}_b of lines parallel to the side DC of \mathcal{P}_1 and with equidistance $b_i \sin \alpha$. Hence

$$\mathcal{R} = \mathcal{R}_a \cup \mathcal{R}_b$$
.

We denote by E_a the event "a body test K intersects one of the lines of \mathcal{R}_a " and by E_b the event "a body test K intersects one of the lines of \mathcal{R}_b ".

Theorem 3.1 The probability $p_{K,\mathcal{R}}^*$ that a convex body K intersects at the same time two lines with different directions in the lattice \mathcal{R} is

$$p_{K,\mathcal{R}}^* = \frac{mt}{\pi \left(\sum_{j=1}^t a_j\right) \left(\sum_{i=1}^m b_i\right) \sin^2 \alpha} \int_0^\pi L(\varphi) L(\varphi + \alpha) d\varphi. \tag{8}$$

Proof. By simple remarks, using the same arguments in [2] and denoting by $p(E_a)$ and $p(E_b)$ the probabilities of the events E_a and E_b , we have

$$p(E_a) = \frac{t\mathcal{L}}{\pi(\sum_{j=1}^t b_i) \sin \alpha}, \quad p(E_b) = \frac{m\mathcal{L}}{\pi(\sum_{i=1}^m b_i) \sin \alpha}.$$

But

$$p(E_a \cup E_b) = \frac{1}{\pi \left(\sum_{j=1}^t a_j\right) \left(\sum_{i=1}^m b_i\right) \sin \alpha} \left\{ \mathcal{L}\left(m \sum_{j=1}^t a_j + t \sum_{i=1}^m b_i\right) + \frac{mt}{\sin \alpha} \int_0^\pi L(\varphi) L(\varphi + \alpha) d\varphi \right\}.$$

Hence the probability $p(E_a \cap E_b)$ that K meets at the same time some line in \mathcal{R}_a and some line in \mathcal{R}_b is

$$p(E_a \cap E_b) = p(E_a) + p(E_b) - p(E_a \cup E_b).$$

Substituting the previous formulas we get the assertion.

Finally, imposing the condition of independence for the events E_a and E_b we get

Theorem 3.2 The events E_a and E_b are independent if and only if

$$\int_0^{\pi} L(\varphi)L(\varphi + \alpha)d\varphi = \frac{\mathcal{L}^2}{\pi mt}.$$
 (9)

Hence immediately we have

Corollary 3.3 If Σ is a circle of constant radius δ with

$$\delta < \frac{\sin \alpha}{2} min\{a_1, ..., a_t, b_1, ..., b_m\},$$

the events E_a and E_b are independent if and only if (m,t) = (4,4).

Finally

Corollary 3.4 If K has constant width k, the events E_a and E_b are independent if and only the fundamental cell of the lattice \mathcal{R} is given by a single parallelogram of sides a and b and acute angle $\alpha \in]0, \pi/2]$.

References

[1] ALEMAN A., STOKA M., ZAMFIRESCU T.: Convex bodies instead of needles in Buffon's experiment, Geometriae Dedicata, 67, 301-308 (1997).

- [2] BARBIER E.: Note sur le probléme de l'aguille et le jeu du joint couvert, J.Math. pure et appl. (2), vol.5, (1860).
- [3] Caristi G., Molica Bisci G.: Geometric probabilities for an arbitrary convex body of revolution in E₃ and a certain lattice, (Preprint 2004).
- [4] DUMA A., STOKA M.: Sur quelques problèmes de probabilitiés géométrique pour des réseaux irréguliers dans l'espace euclidean \mathbf{E}_2 et \mathbf{E}_n , Rend. Circ. Mat. di Palermo, Serie II-XL (1991),pp. 105-121.
- [5] Duma A., Stoka M.: Problems of geometric probability for non-regular lattices (II), Rend. Circ. Mat. di Palermo, Serie II, suppl. 50(1997),pp. 143-151.
- [6] DUMA A, STOKA M.: Geometric Probabilities for Convex Bodies of Large Revolution in the Euclidean Space E₃(II), Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry. Vol. 43 (2002), nr. 2, 339-349.
- [7] Duma A, Stoka M.: Hitting probabilities for random ellipses and ellipsoids, J.Appl. Prob. 30,971-974, (1993).
- [8] Duma A, Stoka M.: Geometrical probabilities for convex test bodies, Beiträge zur Algebra und Geometrie.
- [9] POINCARÉ H.: Calcul des probabilitiés, ed.2, Carré, Paris, 1912.
- [10] Stoka M.: Probabilités géométriques de type Buffon dans le plan euclidean, Atti Accad. Sci. Torino, 110,53-59, (1975-1976).
- [11] STOKA M.: Une extension du problèmes de probabilités géométriques pour des réseaux dans l'espace euclidean \mathbf{E}_n , Pub. Inst. Stat. Univ. Paris, XXXIV, 3, 31-50, (1989).
- [12] STOKA M.: Problems of Buffon type for convex test bodies, Conf. Sem. Mat. Uni. di Bari, n.268, 1998.

Received: October 2, 2006