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Abstract
A group G is said to be an FC-group if each element x of G has

finite conjugacy classes. It is easy to see that this condition is equivalent
to require that G/CG(〈x〉G) is a finite group for each element x of G.
A group G is said to be a PC-group if G/CG(〈x〉G) is a polycyclic-by-
finite group for each element x of G. The class of PC-groups extends
the class of FC-groups.

A group G, which is not a PC-group, but all of whose proper quo-
tients are PC-groups, is said to be a Just-Non-PC group. It has been
recently opened the question about the knowledge of their structure.
Here we study Just-Non-PC groups.
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1. Introduction

A group G is called PC-group, or group with polycyclic-by-finite conjugacy
classes, if G/CG(〈x〉G) is a polycyclic-by-finite group for each element x of G.
An element x of a group G is called a PC-element of G if G/CG(〈x〉G) is a
polycyclic-by-finite group. Of course, a group G is a PC-group if and only
if each element of G is a PC-element of G. As noted in [10], the set of all
PC-elements of G forms a characteristic subgroup PC(G) of G which is called
the PC-center of G.

The class of PC-groups was introduced in [2] as a generalization of FC-
groups, which are those groups in which every element has finitely many con-
jugates.
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Let X be a class of groups. A group G which belongs to X is said to
be an X-group. A group G is said to be a Just -Non-X group, or briefly a
JNX-group, if G does not belong to X but all its proper quotients are X-
groups. Of course, every simple group which is not an X-group is a Just-
Non-X group, so that in the investigation concerning Just-Non-X groups it is
natural to require that they have nontrivial Fitting subgroup, i.e. that they
contain a nontrivial abelian normal subgroup. The structure of Just-Non-X
groups has already been studied for several choices of the class X, so there is a
well developed theory about this topic (see [1], [6], [7], [13]). The problem of
studying those groups which have not a prescribed property, but all of whose
proper quotients have it, was investigated also in theory of finite groups by
[6], where the Lagrange property is involved. Therefore, many techniques and
methods have general application.

The present paper is devoted to the investigation of Just-Non-X groups,
where X is the class of PC-groups. Such groups are said to be Just-Non-PC
groups, or briefly JNPC-groups.

Recently in [7] fundamental results have been summarized about the theory
of infinite groups which have a prescribed property X but all whose proper
quotients do not have it and here has been posed for the first time the problem
of studying JNPC-groups (question n.6, p.180).

In Section 2 some auxiliary results are listed, preparing structural theorems
of the next Sections 3,4,5. Our theorems treat circumstances which are men-
tioned in [1], [7], [13], where Just-Non-FC groups, Just-Non-CC groups, Just-
Non-(polycyclic-by-finite) groups and Just-Non-Chernikov groups have been
classified. These groups are Just-Non-X groups, where X is respectively the
class of FC-groups, CC-groups, polycyclic-by-finite groups, Chernikov groups.
Briefly Just-Non-FC groups will be called JNFC-groups. We recall that a
group G is said to be a CC-group or group with Chernikov conjugacy classes,
if G/CG(〈x〉G) is a Chernikov group for each element x of G. This class of
groups was introduced in [11] as a generalization of FC-groups. It could be
useful to refer to [10] as a survey on generalized FC-groups.

A complete description of a JNPC-group with Fitting subgroup F it G �= 1
seems very hard to give, because many finitary conditions for JNPC-groups
are local and on the entire group they are too weak restrictions. If G is a
JNPC-group with a unique minimal normal subgroup and G/FitG is locally
nilpotent, then we are able to classify G; this is the object of Section 3. The
notion of FC-hypercentrality is a standard hypothesis when generalized FC-
groups have to be treated: this is testified for instance in [9], [[12], Chapters
4 and 5, vol.I], [14]. Requiring a qualitative condition on conjugacy classes
(Definition 4.1) and that G/FitG is FC-hypercentral, Theorem 4.13 allows
us to reduce the study of JNPC-groups to the well known theory of JNFC-
groups. This is the main result of Section 4. Finally, Section 5 regards JNPC-
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groups which have restrictions on the abelian rank; we will discover that they
are an extension of an abelian group by a polycyclic-by-finite group.

Most of our notation is standard and can be found in [9] and [12]. For
general properties of PC-groups and generalized FC-groups, we refer to [2],
[3], [5], [8], [10], [11], [12], [14].

2. Some auxiliary results

The following two lemmas recall properties of PC-groups which are described
in [2], so the proofs have been omitted.

Lemma 2.1. – Let G be a group. G is a PC-group if and only if 〈X〉G is
a polycyclic-by-finite subgroup of G, where X is a finite subset of G.

Lemma 2.1 can be also expressed by saying that a PC-group is locally (normal
and polycyclic-by-finite). It follows easily from Lemma 2.1 that 〈x〉G is a
polycyclic-by-finite group for each nontrivial PC-element x of a group G.

Lemma 2.2. – Quotients, subgroups and direct products of PC-groups are
PC-groups.

A first fact is related to the properties of closure of PC-groups. [[2], Corol-
lary 2.3, Lemma 2.4] give a weak closure by sections of PC-groups. However we
know that finite extensions of FC-groups are FC-groups, but finite extensions
of PC-groups can not be PC-groups. The following example is emblematic.

Example 2.3. – Let G be the locally dihedral 2-group

G = D2∞ = 〈x〉 � Z2∞ = 〈x〉 � P,

where x is an involution which acts on the quasicyclic 2-group P via ax = a−1,
for each element a ∈ P . G is a finite extension of P by 〈x〉 and G = 〈x〉G.
Clearly 〈x〉G is not polycyclic-by-finite so that G is not a PC-group thanks to
[[2], Theorem 2.2].�

This fact is not expected because more closure properties of PC-groups become
from closure properties of the class of all polycyclic-by-finite groups. Therefore
Example 2.1 proves that a group which contains a normal PC-subgroup of
finite index can not be a PC-group. On the other hand a group G which
contains a normal finite subgroup F whose quotient group G/F is a PC-group
is certainly a PC-group. This is explained by the following statement.

Lemma 2.4. – If G is a JNPC-group, then G has no nontrivial polycyclic-
by-finite normal subgroups. Moreover PC(G) = 1.
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Proof. – Obviously every extension of a polycyclic-by-finite group by a
PC-group is likewise a PC-group, so that a JNPC-group cannot contain
nontrivial polycyclic-by-finite normal subgroups.

Since G is a JNPC-group, PC(G) �= G. Suppose that x is a nontrivial
PC-element of G. As noted in Lemma 2.1, 〈x〉G is a nontrivial polycyclic-by-
finite normal subgroup of G. This cannot be so that PC(G) = 1.�

Another interesting fact is that a JNPC-group is subdirectly indecomposable.

Lemma 2.5. – Let G be a JNPC-group, then every intersection of two
nontrivial normal subgroups of G is nontrivial.

Proof. – Let H and K be two nontrivial normal subgroups of G. Suppose
that H ∩ K is trivial. G is isomorphic to a subgroup of the direct product of
G/H and G/K. But G/H and G/K are PC-groups, so Lemma 2.2 implies
that G is a PC-group and this contradicts the fact that G is a JNPC-group.�

Theorem 2.6. – If G is a JNPC-group, then Z(G) = 1.

Proof. – By Lemma 2.4, G has trivial PC-center PC(G). In general
PC(G) includes Z(G) and it follows that Z(G) = 1.�

Unfortunately, the structure of PC-groups does not allow us to express a
condition similar to [[13], Proposition 2.2]. A JNFC-group G can not satisfy
max-n as testified in [7], so it is clear that a JNPC-group can not satisfy
max-n. In order to adapting [[13], Proposition 2.2] and [[7], Lemma 15.1], we
recall the following two notions.
If G is a group, the Hirsch-Plotkin radical HP (G) of G is defined to be the
unique largest maximal normal locally nilpotent subgroup of G (see [[12], §2,
p.57-64] for details).

Lemma 2.7. – Let G be a locally soluble JNPC-group. If the Hirsch-
Plotkin radical of each proper quotient group of G satisfies max-ab, then G is
a Just-Non-(polycyclic-by-finite) group.

Proof. – [[2], Theorem 3.2] implies that a locally soluble PC-group is
hyperabelian, so that G has each proper quotient group which is hyperabelian.
Now [[12], Theorem 3.31] implies that each proper quotient group of G is
polycyclic-by-finite. The result follows. �

Proposition 2.8. – Assume that G is a JNPC-group, H is a nontrivial
normal subgroup of G, H satisfies max-n, HP (G/H) = R/H. If G/H is
locally soluble and R/H satisfies max-ab, then G is a Just-Non-(polycyclic-by-
finite) group.

Proof. – [[2], Theorem 3.2] implies that a locally soluble PC-group is hy-
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perabelian, so that G/H has each proper quotient group which is hyperabelian.
Now [[12], Theorem 3.31] implies that G/H is polycyclic-by-finite. Since H
satisfies max-n and G/H is a polycyclic-by-finite group, we may conclude that
G satisfies max-n. It follows easily from Lemma 2.1 that a PC-group which
satisfies max-n is a polycyclic-by-finite group. Thus each proper quotient
group of G is a polycyclic-by-finite group and the result follows.�

Obviously each finitely generated JNPC-group is a Just-Non-(polycyclic-by-
finite) group. However an improvement of Lemma 2.7 can be furnished by
means of [[2], Lemmas 5.10 and 5.11].

Proposition 2.9. – Let G be a locally soluble JNPC-group and H be
a normal subgroup of G. If each infinite subset of G/H contains a pair of
elements which generate a polycyclic-by-finite subgroup, then G is a Just-Non-
(polycyclic-by-finite) group.

Proof. – Since G/H is locally soluble PC-group, it is hyperabelian from
[[2], Theorem 3.2]. Therefore we apply [[2], Lemma 5.10] so that G/H is a
polycyclic-by-finite group. Now the result follows.�

Remark 2.10. – According with [7], a JNPC-group which satisfies the
conditions of Lemma 2.7 or Proposition 2.8 or Proposition 2.9 is completely
classified.

Using wreath products we are able to construct many JNPC-groups: this
point of view was suggested at the first time by D.J.Robinson in [13] for Just-
Non-(polycyclic-by-finite) groups. This approach allows us to classify Just-
Non-FC groups, Just-Non-(polycyclic-by-finite) groups and many other types
of Just-Non-X groups, where X is a prescribed class of groups (see [7] for de-
tails).
A classical situation of a monolithic JNPC-group is offered by a monolithic
Just-Non-(polycyclic-by-finite) group as G = C∞ � Qp, where C∞ is infinite
cyclic and Qp is the additive group of rational numbers with denominator a
power of p for a fixed prime p. More details about this construction are men-
tioned in [13]. Certainly each periodic JNPC-group is a JNFC-group, since
the property to be an FC-group and the property to be a PC-group coincide
under periodicity. But the same example G = C∞ � Qp shows that there exist
a non-periodic JNPC-group which is a JNFC-group.
In literature (see [7]) it is not known an example of a JNPC-group which
is not a Just-Non-X group, where X is one of following classes of groups:
polycyclic-by-finite, nilpotent, abelian, finite-by-abelian, central-by-finite, hy-
perfinite, hypercentral, T -groups, FC-groups, CC-groups (see [7] or [9] for
details and terminology). The following example has been constructed in or-
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der to answer positively to this question.

Example 2.11. – For convenience of the reader we recall some elementary
notions in the construction of a wreath product of two groups. Such notions
can be found in each textbook of Group Theory. We follow for instance [12].
We are interested in constructing the group G = Cp � Dri∈�Di, where Di is
infinite dihedral for each positive integer i ≥ 1 and Cp is cyclic of prime order
p �= 2. Let Cp and D = Dri∈�Di be permutation groups acting on sets Cp

and D via Cayley right action, we have that Cp ↪→ SCp and D ↪→ SD. Given
d ∈ D, γ ∈ Cp and δ ∈ D, define permutations γ(d) and δ∗ of the set product
X = Cp × D by the rules:

δ∗ : (c, d) 
→ (c, dδ)

γ(d) : (c, d) 
→ (cγ, d) and (c, d1) 
→ (c, d1), if d �= d1.

It is routine to verify that (γ−1)(d) = (γ(d))−1 and (δ−1)∗ = (δ∗)−1 so that γ(d)
and δ∗ are permutations. The functions ∗ : δ ∈ D 
→ δ∗ ∈ SX and (d) : γ ∈
Cp 
→ γ(d) ∈ SX are monomorphisms of groups with images respectively D∗ �
D and Cp(d) � Cp. The wreath product G of Cp and D is the permutation
group on X generated by D∗ and Cp(d), for d ∈ D; in symbols G = Cp � D =
〈Cp(d), D∗|d ∈ D〉. By construction we have

(◦) (δ∗)−1γ(d)δ∗ = γ(dδ) and (δ∗)−1Cp(d)δ∗ = Cp(dδ),

so if B = Drd∈DCp(d), then without loss of generality G = D�B, that is, G is
the semidirect product of B by D in which the automorphism of B produced
by an element of D is given by (◦).
B = CG(B) � G follows by construction and z ∈ Z(G) if and only if z ∈ B
such that for all δ∗ ∈ D, (δ∗)−1zδ∗ = z, that is, z = 1 so Z(G) = 1. We claim
that B = 〈b〉G for some b ∈ B. Of course, B = BG ≥ 〈b〉G, where b ∈ B.
Note that G = BD and B = CG(B), so 〈b〉G = 〈b〉[b, G] = 〈b〉[b, D]. Now
〈[b, D] : b ∈ B〉 = B so that an element c of B can be written as c = [b, d] for
a suitable d ∈ D. In particular, c ∈ 〈b〉G. Then B = 〈b〉G.
B is characteristically simple, then a G-invariant subgroup contained in B
cannot be characteristic in B. Suppose that N is a nontrivial G-invariant
subgroup of B. A nontrivial element n of N has p-power order. Consider nd,
where d ∈ D. If d is of infinite order, then nd should be of p-power order.
If d is periodic, then d is of 2-power order, and still nd should be of p-power
order. In both cases, we have contradictions. From this N is trivial and B is
the unique minimal normal subgroup of G.
Since B is the monolith of G, 〈g〉G ≥ B for each nontrivial element g of G.
Suppose that 〈g〉G is a polycyclic-by-finite group, then B is polycyclic-by-finite,
in particular it has finite abelian rank and this cannot be. Therefore 〈g〉G is
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not a polycyclic-by-finite group for each element g of G so that G is not a
PC-group thanks to Lemma 2.1.
Note that B∩D is trivial. The monolithic structure of G implies that G′ ≥ B.
The rules of commutators and the fact that B is normal abelian in G imply

G′ = [G, G] = [BD, BD] = [B, BD]D[D, BD] = [B, BD]D[D, D][D, B]D =

= [B, BD]D[D, D][DD, BD] = [BD, (BD)D]D′[D, B] = [B, G]D′[D, B] =

= [B, BD]D′[B, D] = [B, D]D′[B, D] = [B, D]D′.

Repeating the previous steps and noting that D′ is abelian, we have that

G′′ = [[B, D]D′, [B, D]D′] = [[B, D], D′]D′′ = [[B, D], D′].

Since B ∩ D = B ∩ D′ = 1 and G′ = [B, D]D′ ≥ B, we have [B, D] = B so
that

G′′′ = [[[B, D], D′], [[B, D], D′]] = [[B, D′], [B, D′]] ≤ [B, B] = 1.

By monolithic structure of G, if 1 �= N � G, then N ≥ B, D � G/B ≥ G/N .
By Lemma 2.2 G/N is a PC-group and G is a JNPC-group. The quotient
G/B is a PC-group which does not satisfy X, where X is one of the classes of
groups which have been above mentioned. Thus G satisfies our requirements.
It is also interesting to note that G is soluble of derG = 3 thanks to the series
1 = G′′′ � G′′ � G′ � G.

Example 2.12. – G is the semidirect product of D = Dri∈�Di by Q =
Drj∈�Qj, where Di is infinite dihedral for all integers i ≥ 1 and Qj is the
additive group of the rational numbers for all integers j ≥ 1.
Di has a presentation with two generators xi, yi of order two and no other
relations: Di � 〈xi〉 ∗ 〈yi〉. Di has an infinite cyclic subgroup Ai of index two,
generated by ai = xiyi, so that an arbitrary element di ∈ Di can be uniquely
written as di = aixi (see also [12]). For each αi ∈ Q \ {0, 1,−1} the map θαi,
defined by

xiyi ∈ Di 
−→ θαi(xiyi) =

(
αi 0
0 α−1

i

)
∈ GL(2,Q)i

xi ∈ Di 
−→ θαi(xi) =

(
0 1
1 0

)
∈ GL(2,Q)i

is a monomorphism from Di into GL(2,Q)i. Obviously this position defines
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also θαi(di). It is easy to check that θαi is an irreducible representation of Di

in GL(2,Q)i. By chap. XVI of [4], GL(2,Q)1 ×GL(2,Q)2 × . . . ≤ GL(|N|, Q),
so we may extend θαi to a monomorphism θα from D into GL(|N|, Q) via

d = d1 . . . dn ∈ D 
−→ θα(d) = θα1(d1) . . . θαn(dn) ∈ GL(|N|, Q),

where n is a positive integer. By [[4], (c), p.250] AutQ � GL(|N|, Q) and we
may consider G = D �θα Q. Here CG(Q) = Q � G and Q is characteristically
simple. An argument as in Example 2.11 shows that G is monolithic with
monolith Q. Furthermore, an argument as in Example 2.11 shows that G is
a JNPC-group. The quotient G/Q is a PC-group which is not an X-group
where X is one of the classes of groups which have been above mentioned.

Now we pass to list some properties which we will use to classify a JNPC-
group.

Lemma 2.13. – Let G be a JNPC-group. If N is a normal nilpotent
subgroup of G, then N is abelian.

Proof. – Let N be a nontrivial normal nilpotent subgroup of G such that
N ′ �= 1. Then G/N ′ is an PC-group. Now we apply [[8], Lemma 3.1] which is
a generalization of the famous Hall’s criterion of nilpotence (see for instance
[12]). Then G is an PC-nilpotent group, that is, G has a characteristic series

1 = P0 � P1 � P2 . . . � Pc = G,

where c is a positive integer,

P1 = PC(G), P2/P1 = PC(G/P1), . . . , Pc/Pc−1 = PC(G/Pc−1).

Further details can be found for instance in [8] and [10]. Since G is an PC-
nilpotent group, PC(G) �= 1 which is against Lemma 2.4. Then the result
follows. �

Lemma 2.14. – Let G be a JNPC-group. If A = F it G �= 1 then either A
is a torsion-free abelian group or A is an elementary abelian p-group for some
prime p.

Proof. – Let x, y ∈ A. Then there are normal nilpotent subgroups Lx

and Ly such that x ∈ Lx and y ∈ Ly. According to Fitting’s Theorem the
subgroup LxLy is nilpotent, hence Lemma 2.13 implies that it is abelian, thus
xy = yx and A is abelian.
Let T = T (A) be the torsion subgroup of A and let T �= 1. Without loss of
generality we can suppose that T is a p-group for some prime p. Assume that
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T p �= 1. Then T �= T1 = Ω1(T ) = {x ∈ T : xp = 1}. G/T1 is a PC-group,
then Lemma 2.1 implies that 〈g〉GT1/T1 is a polycyclic-by-finite group, where
g ∈ G \ T1.
Assume that 〈g〉GT1/T1 is finite. A Sylow subgroup P/T1 of 〈g〉GT1/T1 is a
finite nontrivial G-invariant subgroup of 〈g〉GT1/T1. Let H/T1 = CG(P/T1).
If h ∈ H and c ∈ P \ T1, then [c, h]T1 = [cT1, hT1] ∈ [P/T1, H/T1] = 1 and
[c, h] ∈ T1. This allows us to say that 1 = [c, h]p = [cp, h], c �∈ T1, cp �= 1, then
cp ∈ Z(H), Z(H) �= 1. Since 〈cp〉 is characteristic in H and H is normal in G,
〈cp〉 is a nontrivial normal subgroup of G which contradicts Lemma 2.4. The
contradiction implies that 〈g〉GT1/T1 must be infinite.
Assume that 〈g〉GT1/T1 is an infinite polycyclic-by-finite group. 〈g〉GT1/T1

contains a nontrivial G-invariant torsion-free abelian subgroup which is finitely
generated (see for instance [[12], Chapter 3, p.65]). We call P/T1 such sub-
group. P/T1 contains a normal subgroup P1/T1 such that (P/T1)/(P1/T1) �
P/P1 is finite abelian and we may suppose that it is a p-group so that |P/P1| =
pn for some positive integer n ≥ 1. Put H/P1 = CG(P/P1), h ∈ H, 1 �=
c ∈ P \ P1. We have again [c, h]P1 = [cP1, hP1] ∈ [P/P1, H/P1] = 1, so
[c, h]p = [cp, h] ∈ P1, cp �= 1, c �∈ P1 and cp ∈ Z(H). Again 〈cp〉 is a nontrivial
normal subgroup of G which contradicts Lemma 2.4.
Such contradictions show that T p = 1, that is, T = T1 is an elementary abelian
p-group.
On the other hand if A �= T , then A can be decomposed in the sense of Prüfer
as A = T × B, being B a torsion-free abelian subgroup of A isomorphic with
A/T . Hence B ≥ Ap and Ap ∩ T = 1. Since A �= T , Ap �= 1. Therefore
Ap ∩ T = 1 is against Lemma 2.5. We may conclude that A = B so that the
lemma follows. �

Lemma 2.15. – Assume that G is a group, A is a normal subgroup of
G and p is a prime. If A is either a maximal elementary abelian p-group or a
maximal torsion-free abelian group, then CG(A) is a maximal abelian subgroup
of G.

Proof. – Of course, A ≤ CG(A). Conversely, A ≥ CG(A), because A is
maximal abelian. Then the result follows with A = CG(A). �

Corollary 2.16. – Let G be a JNPC-group with nontrivial Fitting
subgroup A = F it(G). Then A = CG(A).

Proof. – By Lemma 2.14 either A is a torsion-free abelian group or A is
an elementary abelian p-group. A is a maximal abelian subgroup in G, then
CG(A) = A by Lemma 2.15. �
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3. Monolithic Just-Non-PC groups

In a Just-Non-X group, where X is a prescribed class of groups (see [7]), the
action of the Fitting subgroup is fundamental to obtain structural conditions
on the whole group. Here we will see that a monolithic JNPC-group splits on
its Fitting subgroup: the following result of D.J.Robinson will be useful [[7],
Theorem 4.5].

Theorem 3.1. – Let G be a group with an abelian subgroup A satisfying
the minimal condition on its G-invariant subgroups and let K be a normal
subgroup of G satisfying the following conditions:

(i) K ≥ A and K/A is locally nilpotent;

(ii) the FC-hypercenter of G/CK(A) includes K/CK(A);

(iii) A ∩ Z(K) = 1.

Then G contains a free abelian subgroup X such that the index |G : XA| is
finite and X ∩ A = 1 (nearly splitting of G on A). Moreover the complements
of A in G fall into finitely many conjugacy classes.

Also the following notion can be useful in order to formulate our main results
of classification of monolithic JNPC-groups.

Definition 3.2. – According to Lemma 2.14, we will say that a JNPC-
group G with 1 �= F itG = A has charA=0 if A is a torsion-free abelian group.
We will say that G has charA=p, for some prime p, if A is an elementary
abelian p-group.

The following two results classify monolithic JNPC-groups.

Theorem 3.3. – Let G be a monolithic group with 1 �= A = F itG. If G
is a JNPC-group, charA = 0 and G/A is locally nilpotent, then

(i) A is torsion-free abelian;

(ii) A = CG(A) is the monolith of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩
A = 1 (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. – (i). Follows by Lemma 2.14.
(ii). By Corollary 2.16 A = CG(A) so we must prove that A = M where M
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is the monolith of G, that is, M is the unique minimal normal subgroup of
G. By definition of M , A ≥ M , so M is abelian. Conversely we suppose that
M is nontrivial abelian and M > A. Then M > CG(A) and CG(A) is not a
maximal abelian subgroup of G, against Lemma 2.15.
(iii). By the previous steps (i) and (ii), A is an abelian subgroup of G which
satisfies the minimal condition on its G-invariant subgroups. G/A is a locally
nilpotent PC-group such that G/CG(A) = G/A. Theorem 4.38]. Now Theo-
rem 2.6 implies that Z(G) ∩ A = 1. We may apply Theorem 3.1 so that (iii)
is proved. �

Theorem 3.4. – Let G be a monolithic group with 1 �= A = F itG. If G
is a JNPC-group, charA = p for some prime p and G/A is locally nilpotent,
then

(i) A is p-elementary abelian;

(ii) A = CG(A) is the monolith of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩
A = 1 (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. – A similar argument as in Theorem 3.3 can be applied.�

4. Non-monolithic Just-Non-PC groups

If R is a ring, an infinite R-module M is called just-infinite if all its proper
factor modules are finite and the intersection of all its nontrivial R-submodules
is trivial. Let G be a JNPC-group with nontrivial Fitting subgroup A. Then
A is abelian by Lemma 2.15, so it can be regarded as a module over the ring
ZH, where H = G/A is a PC-group. In this sense it is natural to ask when
A is a just-infinite ZH-module. We will see that the positive answer to this
question plays an important role in the study of non-monolithic JNPC-groups.
Here we treat in details such problem.

Definition 4.1. – A PC-group G is said to be strongly PC if for each
element g of G, either 〈g〉G is finite or it contains a normal subgroup N such
that 〈g〉G/N is infinite cyclic.

By previous definition an FC-group is strongly PC , but Example 5.5 in [2]
shows that there are FC-groups which are not strongly PC . In other terms a
PC-group G is strongly PC if for each element g of G there exists a positive
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integer n and a finite series

1 = G0 � G1 � G2 � . . . � Gn = 〈g〉G

such that either 〈g〉G is finite or, G1 is finite and G2/G1, . . . , Gn/Gn−1 are
infinite cyclic.
Let G be a PC-group which is strongly PC and g be a nontrivial element of
G. The symbol h(〈g〉G) will denote the Hirsch length of 〈g〉G. Elementary
properties of such invariant are described both in [9] and [12]. While each
polycyclic-by-finite group is a PC-group, there are some polycyclic-by-finite
groups which are not strongly PC , for instance the infinite dihedral group.
Certainly each finitely generated nilpotent group with no proper chief factors
of order 2 is always strongly PC . The same holds for supersoluble groups
with no proper chief factors of order 2. We will see that the condition to be
strongly PC allows us to reduce the theory of JNPC-groups to the theory of
JNFC-groups. Next lemmas adapt the main statements of [[7], Chapter 16].

Lemma 4.2. – Let G be a non-monolithic JNPC-group. If 1 �= A = F itG,
a ∈ A, B = 〈a〉G, H = G/A, charA = 0 and each proper quotient of G is
strongly PC, then B includes a nontrivial G-invariant subgroup C such that
B/C is polycyclic-by-finite and C is a just-infinite ZH-module.

Proof. – Let K be a nontrivial G-invariant subgroup of B. G/K is a PC-
group, so BK/K is a polycyclic-by-finite group by Lemma 2.1, in particular
B/K is a polycyclic-by-finite group.
Let U be a nontrivial G-invariant subgroup of B such that h(B/U) ≥ 0 is
maximal. The existence of such a maximum is due to the fact that B/U is
polycyclic-by-finite. When h(B/U) = 0, B/U is finite so for each nontrivial
G-invariant subgroup W of U we have h(U/W ) ≤ h(B/W ) = 0, hence U/W
is finite.
Let h(B/U) ≥ 1. Each proper quotient of G is strongly PC , so we may suppose
in a first moment that BU/U is a finite-by-cyclic group. Then h(BU/U) =
h(B/U) = 1 and h(U/W ) ≤ h(B/W ) − h(B/U) = h(B/W ) − 1, but the
choice of U implies that h(B/W ) = h(B/U). We have h(U/W ) = 0 and U/W
is finite. In this case h(B/U) = 1 and U is a Z-irreducible ZH-module. Given
a nontrivial element u ∈ U , C = 〈u〉G is the required subgroup.
Assume now that h(B/U) > 1, in particular, let h(B/U) = 2. We have that
BU/U = (F/U)(PU/U) contains a normal series

U � F � P1U � BU

with F/U normal finite subgroup of BU/U such that both P1U/F and BU/P1U
are infinite cyclic. The existence of such series is given by the condition of
strongly PC on G/U. Clearly 1 < h(B/U) ≤ 2 so h(B/U) = 2. The choice
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of U implies h(B/W ) ≤ h(B/U) = 2 then 0 ≤ h(U/W ) ≤ h(B/W )− h(B/U)
gives h(U/W ) = 0 and again U/W is finite. By induction we may generalize
such argument for each positive integer h(B/U), concluding that U/W is finite.
Again we obtain that U is a Z-irreducible ZH-module. Given a nontrivial
element u ∈ U , C = 〈u〉G is the required subgroup. �

Lemma 4.3. – Let G be a non-monolithic JNPC-group. If 1 �= A = F itG,
a ∈ A, B = 〈a〉G, H = G/A, charA = p for some prime p, then B is a
just-infinite ZH-module.

Proof. – For all nontrivial G-invariant subgroups U of B, we have that
B/U ≤ BU/U . By Lemma 2.1 and Lemma 2.2 BU/U is a periodic and
polycyclic-by-finite group, so it is finite.�

Lemma 4.4. – Let G be a non-monolithic JNPC-group. If 1 �= A = F itG,
H = G/A is FC-hypercentral, each proper quotient of G is strongly PC,
charA = 0 and A includes a nontrivial G-invariant subgroup B such that
B is a Z-irreducible ZH-module, then A is a Z-irreducible ZH-module.

Proof. – It is sufficient to show that A/B is periodic. Suppose that it is
false and choose a nontrivial element aB ∈ A/B of infinite order. Since G/B
is strongly PC , C/B = 〈a〉GB/B includes a normal subgroup U/B whose quo-
tient C/U is infinite cyclic.
We will repeat the argument which has been used in the proof of Lemma
4.2. Firstly we suppose that C/B is finite-by-(infinite cyclic). U/B is a
Z-irreducible ZH-module, since |G : CG(U/B)| ≤ 2. Therefore U is a Z-
irreducible ZH-module, since B ≤ U . By Lemma 2.4 G has trivial PC-center,
then G/CG(B) is infinite. [[7], Corollary 4.4] implies that C includes a G-
invariant subgroup L such that L ∩ U �= 1, against Lemma 2.5. Then we may
suppose that C/B contains a normal series B�U �U1�C where U1/B is a finite-
by-(infinite cyclic) group and C/U1 is infinite cyclic. By previous step U1/B is
a Z-irreducible ZH-module, |G : CG(C/U1)| ≤ 2 and C/U1 is a Z-irreducible
ZH-module. As before we contradict Lemma 2.5. By induction we get to our
final contradiction, concluding that A is a Z-irreducible ZH-module.�

Lemma 4.5. – Let G be a non-monolithic JNPC-group. If 1 �= A = F itG,
a ∈ A, B = 〈a〉G, H = G/A, charA = 0, H is FC-hypercentral and each
proper quotient of G is strongly PC, then the ZH-module B is just-infinite.
In particular the ZH-module A is Z-irreducible.

Proof. – Lemma 4.2 implies that B includes a nontrivial G-invariant sub-
group C such that B/C is polycyclic-by-finite and C is a just-infinite ZH-
module. Put T/C the torsion subgroup of B/C, T is a Z-irreducible ZH-
module. By Lemma 4.4 A is a Z-irreducible ZH-module, then B is a just-
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infinite ZH-module.�

Corollary 4.6. – Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, a ∈ A, B = 〈a〉G, H = G/A, charA = 0, H is FC-hypercentral and
each proper quotient of G is strongly PC, then CG(B) = A.

Proof. – Lemma 4.4 implies A/B periodic. Let b ∈ A, g ∈ CG(B), b1 = bg.
There is a positive integer n such that bn ∈ B. We have bn

1 = (bg)n = (bn)g =
bn. It follows that b = b1, since charA = 0. Hence CG(B) = CG(A) = A.�

Corollary 4.7. – Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, a ∈ A, B = 〈a〉G, H = G/A and charA = p for some prime p, then
CG(B) = A.

Proof. – A/B is p-group and let b ∈ A, g ∈ CG(B), b1 = bg. There is a
positive integer m such that 1 �= bpm ∈ B. Now bpm

1 = (bg)pm
= (bpm

)g = bpm
,

so bpm

1 ∈ CG(B) ∩ A. Hence CG(B) = CG(A) = A. �

Proposition 4.8. – Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, H = G/A is FC-hypercentral, each proper quotient of G is strongly PC
and charA = 0, then H is an FC-group.

Proof. – Put 1 �= a ∈ A and B = 〈a〉G Lemma 4.5 implies that the ZH-
module B is just-infinite, while Corollary 4.6 yields to CG(B) = A. Since G is
non-monolithic, B contains a nontrivial G-invariant subgroup C . Assume that
x ∈ H, X = 〈x〉H and R is the subgroup of X generated by all the normal
subgroups Y of X with infinite index |X : Y |. When R ≤ A, X is finite and we
finish. Suppose that R �≤ A. Certainly R ∩ CG(B/C) ≤ R, but B/C is finite
hence |G : CG(B/C)| is finite. In particular there is an element r ∈ R and an
integer n > 1 such that rn ∈ CG(B/C), so R∩CG(B/C) = R. We have proved
that R ≤ CG(B/C) for each G-invariant subgroup C of B, then [B, R] ≤ C ,
but

⋂
i∈I Ci = 1 when Ci is a G-invariant subgroup of B, so [B, R] = 1. We

get R ≤ CG(B) = A and there is a contradiction. We conclude that H is an
FC-group. �

Proposition 4.9. – Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, each proper quotient of G is strongly PC and charA = p for some prime
p, then H is an FC-group.

Proof. – Put 1 �= a ∈ A and B = 〈a〉G Lemma 4.4 implies that the ZH-
module B is just-infinite, while Corollary 4.7 yields to CG(B) = A. Since G
is non-monolithic, B contains a nontrivial G-invariant subgroup C . We finish
thanks to the argument of Proposition 4.8. �

Corollary 4.10. – Let G be a non-monolithic JNPC-group. If 1 �= A =
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F itG, H = G/A is FC-hypercentral, each proper quotient of G is strongly
PC and charA = 0, then H is a central-by-finite group and Z(H) includes a
torsion-free subgroup of finite index.

Proof. – Put 1 �= a ∈ A and B = 〈a〉G. Lemma 4.5 shows that the ZH-
module B is just-infinite. Corollary 4.6 implies CG(B) = A. Proposition 4.9
implies that H is an FC-group. It is sufficient to apply [[7], Corollary 6.16]�

Corollary 4.11. – Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, H = G/A is FC-hypercentral, each proper quotient of G is strongly
PC, charA = 0 and there is a nontrivial element zA ∈ Z(G/A) such that
U = CG(〈z〉GB/B), then the ZG-module U ∩ A is just-infinite.

Proof. – By Corollary 2.16 A = CG(A). The mapping φ : a ∈ A 
→ [a, z] ∈
A is a ZG-homomorphism of A with G-invariant subgroups Kerφ = CA(z) and
Imφ = [A, z]. Lemma 4.4 implies that the ZH-module A is Z-irreducible, then
A/Kerφ has to be finite. On the other hand Kerφ is a pure group (see [4]),
otherwise it would be an abelian finitely generated group, against Lemma 2.4.
We conclude that Kerφ = 1 so A � [A, z], in particular U∩A � [U∩A, z]. The
choice of z implies [U ∩A, z] ≤ B. This means that the ZG-module [U ∩A, z]
is just-infinite, hence the ZG-module U ∩ A is just-infinite.�

Proposition 4.12. Let G be a non-monolithic JNPC-group. If 1 �= A =
F itG, G/A is FC-hypercentral, each proper quotient of G is strongly PC and
charA = 0, then the ZG-module A is just-infinite.

Proof. – Corollary 2.16 says that A = CG(A) and Corollary 4.10 implies
that G/A is central-by-finite such that Z(G/A) includes a torsion-free subgroup
of finite index. Let 1 �= a ∈ A, B = 〈a〉G and zA nontrivial element of Z(G/A)
with infinite order such that U/B = CG(〈z〉GB/B). Corollary 4.11 implies
that the ZG-module U ∩ A is just-infinite, in particular U ∩ A/B is finite.
Now U/(U ∩A) � UA/A ≤ G/A and G/A is central-by-finite, thus U/B is an
FC-group. Since zA ∈ Z(U/B), U/B is non-periodic and (U/B)/Z(U/B) is
a periodic FC-group (see [[12], Theorem 4.32]). By Corollary 4.10 U/U ∩A is
central-by-finite. In particular the torsion subgroup T/(U ∩A) of U/(U ∩A) is
finite, but also (U ∩A)/B is finite, so we have that the torsion subgroup T/B
of U/B is finite.
Put Z(G/B) = Z/B, the Prüfer decomposition of Z/B implies that

Z/B = X/B × (Z/B ∩ T/B)

for X/B torsion-free abelian. Let t = |(Z/B)∩ (T/B)|, then (Z/B)t = Y/B ≤
X/B. In particular Y/B is a nontrivial torsion-free abelian normal subgroup of
G/B. Now Y/B ≤ Z(U/B) = Z(G/B) ∩ U/B ≤ Z(G/B), so CG(yB) = G/B
for a suitable element yB ∈ Y/B. By Corollary 4.11 we conclude that the
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ZG-module A is just-infinite.�

Theorem 4.13. – Let G be a non-monolithic JNPC-group with 1 �= A =
F itG and H = G/A.

(i) If H is FC-hypercentral, each proper quotient of G is strongly PC and
charA = 0, then G is a JNFC-group.

(ii) If charA = p for some prime p and each proper quotient of G is strongly
PC, then G is a JNFC-group.

Proof. – (i). Let charA = 0. By Corollary 4.10, H is a central-by-finite
group and Proposition 4.12 implies that the ZG-module A is just-infinite. Let
N be a nontrivial normal subgroup of G. By Lemma 2.5, K = N ∩ A �= 1,
then A/K is finite, so G/K is a finite extension of a central-by-finite group,
then G/K is again a central-by-finite group, in particular it is an FC-group.
We conclude that G/N is an FC-group, so that the statement follows.
(ii). Let charA = p. By Proposition 4.9 we know that H is an FC-group. Let
N be a nontrivial normal subgroup of G and x ∈ G \ N . Clearly 〈x〉GN/N ≤
A/N is a periodic policyclic-by-finite group so that 〈x〉GN/N is finite. As
before we may conclude that G/N is an FC-group. �

5. Special cases of Just-Non-PC groups

We end with a general theorem on the structure of a JNPC-group whose
factor group G/FitG has finite abelian rank.

Proposition 5.1. – Assume that G is a JNPC-group, 1 �= A = F itG and
G/A = H. If Z(H) = 1 and H has finite abelian rank, then G is an abelian-
by-(polycyclic-by-finite) group.

Proof. – By Lemma 2.15 A is either an elementary abelian p-group for some
prime p or a torsion-free abelian group, so there is a subgroup H of G such
that H � G/A and G = AH. By [[2], Theorem 4.7] it exists a monomorphism
of groups

μ : H 
→ Dri∈IPi,

where Pi is a polycyclic-by-finite group for each element i of a nonempty index
set I . H � μ(H) = Drj∈JHj for Hj which is a polycyclic-by-finite group, J
nonempty subset of I , j ∈ J . Suppose that J is infinite, then the ascending
series 1 � H

(n1−1)
1 � H

(n1−1)
1 × H

(n2−1)
2 � . . . allows us to consider the abelian

subgroup Drj∈JH
(nj−1)
j which has infinite abelian rank against that H has

finite abelian rank. Therefore, J is finite and H is a polycyclic-by-finite group.
Now it is clear that G is a abelian-by-(polycyclic-by-finite) group.�
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Proposition 5.2. – Assume that G is a JNPC-group, 1 �= A = F itG and
H = G/A. If |H/Z(H)| is countable and H has finite abelian rank, then G is
an abelian-by-(polycyclic-by-finite) group.

Proof. – It can be found in [2] that a PC-group L whose quotient L/Z(L) is
at most countable can be embedded in a direct product of polycyclic-by-finite
groups. Thanks to this result, we may use again the argument of the proof of
Proposition 5.1.�
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