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Abstract

In this paper the notion of product of probabilistic metric spaces
is extended to some family of fuzzy metric spaces. We also study the
topological expect of product of fuzzy metric spaces and a fixed point
theorem on it.
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1 Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [18]. Many au-
thors have introduced the concepts of fuzzy metric in different ways [3, 5]. In
particular, Kramosil and Michalek [8] generalized the concept of probabilistic
metric space given by Menger [14] to the fuzzy framework. In [7, 8] George and
Veeramani modified the concept of fuzzy metric space introduced by Kramosil
and Michalek and obtained a Hausdorff and first countable topology on this
modified fuzzy metric space. On the other hand, the study on product spaces
in the probabilistic framework was initiated by Istratescu and Vaduva [11], and
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subsequently by Egbert [4], Alsina [1] and Alsina and Schweizer [2]. Recently,
Lafuerza-Guillen [13] has studied finite products of probabilistic normed spaces
and proved some interesting results. The main purpose of this paper is to in-
troduce the product spaces in the fuzzy framework. In section 3, we generalize
the concepts of product of probabilistic metric (normed) spaces studied by
Egbert (Lafuerza -Guillen). In section 4, we study on the fixed point theorem
on this newly developed fuzzy product spaces by generalizing the fixed point
theorem introduced in product spaces by Nedler [15].

2 Preliminaries

Throughout this paper we shall use all symbols and basic definitions of George
and Veeramani [7, 8].

Definition 2.1. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:
(i) ∗ is associative and commutative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are

a ∗ b = ab and a ∗ b = Min(a, b).

The following definition is due to George and Veeramani [7].

Definition 2.2. [7] A Fuzzy Metric Space is a triple (X, M, ∗) where X is
a nonempty set, ∗ is a continuous t-norm and M : X × X × [0,∞) → [0, 1]
is a mapping (called fuzzy metric) which satisfies the following properties: for
every x, y, z ∈ X and t, s > 0
(FM1) M(x, y, t) > 0;
(FM2) M(x, y, t) = 1 if and only if x = y;
(FM3) M(x, y, t) = M(y, x, t);
(FM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
(FM5) M(x, y, ·) : [0,∞) → [0, 1] is continuous.

Lemma 2.3. [9] M(x, y, ·) is nondecreasing for all x, y ∈ X

Remark 2.4. [7] In a fuzzy metric space (X, M, ∗), for any r ∈ (0, 1) there
exists an s ∈ (0, 1) such that s ∗ s ≥ r.

In [7] it has been proved that every fuzzy metric M on X generates a
topology τM on X which has a base the family of sets of the form

{Bx(r, t) : x ∈ X, r ∈ (0, 1), t > 0},
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where Bx(r, t) = {y ∈ X : M(x, y, t) > 1 − r} is a neighborhood of x ∈ X for
all r ∈ (0, 1) and t > 0. In addition, (X, τM) is a Hausdorff first countable
topological space. Moreover, if (X, d) is a metric space, then the topology
generated by d coincides with the topology τM generated by the induced metric
Md.

Theorem 2.5. [7] Let (X, M, ∗) be a fuzzy metric space and τM be the
topology induced by the fuzzy metric M . Then for a sequence (xn) in X,
xn → x if and only if M(xn, x, t) → 1 as n → ∞.

Definition 2.6. A sequence (xn) in a fuzzy metric space (X, M, ∗) is a
Cauchy sequence if and only if for each ε > 0 and t > 0 there exists n0 ∈ N such
that M(xn, xm, t) > 1 − ε for all n, m ≥ n0, i.e., limn,m→∞ M(xn, xm, t) = 1
for every t > 0.

A fuzzy metric space in which every Cauchy sequence is convergent is called
a complete fuzzy metric space.

3 Product of Fuzzy Metric Space

The study on product spaces in the probabilistic framework was initiated by
Istratescu and Vaduva [11] followed by Egbert [4], Alsina [1] and Alsina and
Schweizer [2]. In this section, we define the product of two fuzzy metric spaces
in the sense of Egbert [4] in the following way:

Definition 3.1. Let (X, MX , ∗) and (Y, MY , ∗) are two fuzzy metric spaces
defined with same continuous t-norms ∗. Let Δ be a continuous t-norm. The
Δ-product of (X, MX , ∗) and (Y, MY , ∗) is the product space (X × Y, MΔ, ∗)
where X × Y is the Cartesian product of the sets X and Y , and MΔ is the
mapping from (X × Y × (0, 1)) × (X × Y × (0, 1)) into [0, 1] given by

MΔ(p, q, t + s) = M1(x1, x2, t)ΔM2(y1, y2, s) (1)

for every p = (x1, y1) and q = (x2, y2) in X × Y and t + s ∈ (0, 1).

As an immediate consequence of Definition 3.1, we have

Theorem 3.2. If (X, MX , ∗) and (Y, MY , ∗) are fuzzy metric spaces under
the same continuous t-norm ∗, then their ∗-product (X × Y, M∗, ∗) is a fuzzy
metric space under ∗.

We noted that for a metric space (X, dX), if a∗b = ab (or a∗b = Min(a, b))
for all a, b ∈ [0, 1] and MdX

(x1, x2, t) = ktn

ktn+mdX (x1,x2)
for each x1, x2 ∈ X and

k, m, n > 0, then (X, MdX
, ∗) is a fuzzy metric space induced by the metric

dX . Hence, we have
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Example 3.3. Let (X, dX) and (Y, dY ) are metric spaces and (X ×Y, d) be
their product with d(p, q) = Max{dX(x1, x2), dY (y1, y2)} for each p = (x1, y1)
and q = (x2, y2) in X × Y . Denote aΔb = Min(a, b) for all a, b ∈ [0, 1] and
let Md(p, q, t) = t

t+d(p,q)
. Then (x × Y, Md, ∗) is a Δ-product of (X, dX) and

(Y, dY ).

Proof:It is suffices to prove the condition (1). To this end,

Md(p, q, t) =
t

t + d(p, q)
=

t

t + Max{dX(x1, x2), dY (y1, y2)}
=

t

Max{t + dX(x1, x2), dY (y1, y2)}
= Min

(
t

t + dX(x1, x2)
,

t

t + dY (y1, y2)

)

=

(
t

t + dX(x1, x2)

)
Δ

(
t

t + dY (y1, y2)

)
.

Whence, Md(p, q, t) = MdX
ΔMdY

.

Definition 3.4. [15] Let Δ and ∗ are continuous t-norms. We say that Δ
is stronger than ∗, if for each a1, a2, b1, b2 ∈ [0, 1],

(a1 ∗ b1)Δ(a2, b2) ≥ (a1Δa2) ∗ (b1Δb2).

Lemma 3.5. If Δ is stronger than ∗ then Δ ≥ ∗.
Proof: From Definition 3.4, by setting a2 = b1 = 1, yields a1Δb2 ≥ a1 ∗b2,

i.e., Δ ≥ ∗.
Theorem 3.6. Let (X, MX , ∗) and (Y, MY , ∗) are fuzzy metric spaces under

the same continuous t-norm ∗. If there exists a continuous t-norm Δ stronger
than ∗, then the Δ-product (X × Y, MΔ, ∗) is a fuzzy metric space under ∗.

Proof: It is suffices to prove the axiom (FM4) and (FM6). Let p =
(x1, y1), q = (x2, y2), r = (x3, y3) are in X × Y . Then

MΔ(p, r, 2α) = (MX(x1, x3, α)ΔMY (y1, y3, α))

≥ (MX(x1, x2, α/2) ∗ MX(x2, x3, α/2))Δ(MY (y1, y2, α/2) ∗ MY (y2, y3, α/2))

≥ (MX(x1, x2, α/2)ΔMX(x2, x3, α/2)) ∗ (MY (y1, y2, α/2)ΔMY (y2, y3, α/2))

= MΔ(p, q, α) ∗ MΔ(q, r, α).

The continuity of the t-norms implies the function MΔ(p, q, ·) : (0,∞) → [0, 1]
is continuous. Hence completes the proof.
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Corollary 3.7. If (X, MX , ∗1) and (Y, MY , ∗2) are fuzzy metric spaces and
if there exists a continuous t-norm Δ stronger than ∗1 and ∗2 then their Δ-
product is a fuzzy metric space under Δ.

We now turn to the question of topologies in the -product spaces and give
the following result:

Theorem 3.8. Let (X1, M1, ∗) and (X2, M2, ∗) be fuzzy metric spaces un-
der the same continuous t-norm ∗. Let U denote the neighborhood system in
(X1×X2, M∗, ∗) and let V denote the neighborhood system in (X1×X2, M∗, ∗)
consisting of the Cartesian products Bx1(r, t) × Bx2(r, t) where x1 ∈ X1, x2 ∈
X2, r ∈ (0, 1) and t > 0. Then U and V induce the same fuzzy topology on
(X1 × X2, M∗, ∗) .

Proof: Clearly, since ∗ is continuous, U and V are bases for their respective
topology. So, it is suffices to prove that for each V ′ ∈ V there exists a U ′ ∈ U
such that U ′ ⊆ V ′, and conversely. Let A1 × A2 ∈ V . Then there exist
neighborhoods Bx1(r, t) and Bx2(r, t) contained in A1 and A2 respectively. Let
r = Min(r1, r2), t = Min(t1, t2), and let x = (x1, x2). Here, we shall show
that Bx(r, t) ∈ A1 × A2. Let y = (y1, y2) ∈ Bx(r, t), then we have

M1(x1, y1, t1) = M1(x1, y1, t1) ∗ 1 ≥ M1(x1, y1, t1) ∗ M1(x2, y2, t2)

≥ M1(x1, y1, t) ∗ M1(x2, y2, t)

= M(x, y, t) > 1 − r ≥ 1 − r1.

Similarly, we can show that M2(x2, y2, t2) > 1 − r2. Thus y1 ∈ Bx1(r1, t1)
and y2 ∈ Bx2(r2, t2) which implies that Bx(r, t) ∈ A1×A2 . Conversely, suppose
that Bx(r, t) ∈ U . Since ∗ is continuous, there exists an η ∈ (0, 1) such that
(1 − η) ∗ (1 − η) > 1 − r. Let y ∈ (y1, y2) ∈ Bx1(η, t) × Bx2(η, t). Then

M∗(x, y, t) = M1(x1, y1, t) ∗ M2(x2, y2, t) ≥ (1 − η) ∗ (1 − η) > 1 − r

so that y ∈ Bx(r, t) and Bx1(r, t) × Bx2(r, t) ⊆ Bx(r, t). This completes the
proof.

4 Fixed Point Theorems

Grabiec [9] proved a fuzzy Banach contraction theorem whenever fuzzy metric
space was considered in the sense of Kramosil and Michalek and was complete
in Grabiec’s sense. Meanwhile, Gregori and Sapena [10] gave fixed point the-
orems for complete fuzzy metric space in the sense of George and Veeramani
and also for Kramosil and Michalek’s fuzzy metric space which are complete
in Grabiec’s sense. Recently, Zikic [19] proved that the fixed point theorem
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of Gregori and Sapena holds under general conditions (theory of countable
extension of a t-norm).

We begin with the definition of contraction mappings in fuzzy metric
spaces.

Definition 4.1. Let (X, M, ∗) be a fuzzy metric space. A mapping f : X →
X is said to be fuzzy contraction if there exists a k ∈ (0, 1) such that

M(fx, fy, t) ≥ M(x, y, t/k) for all x, y ∈ X.

Theorem 4.2. [9] Let (X, M, ∗) be a complete fuzzy metric space such that
limt→∞ M(x, y, t) = 1 for all x, y ∈ X. Let f : X → X be a contractive
mapping. Then f has a unique fixed point.

We prove the following theorem on continuity of fixed points as a fuzzy
version of Theorem 1 in [15].

Theorem 4.3. Let (X, M∗) be a fuzzy metric space with a∗ b = Min(a, b).
Let fi : X → X be a function with at least one fixed point xi for each i =
1, 2, · · · , and f0 : X → X be a fuzzy contraction mapping with fixed point x0.
If the sequence (fi) converges uniformly to f0, then the sequence (xi) converges
to x0.

Proof: Let k ∈ (0, 1) and choose a positive number N ∈ N such that
i ≥ N implies

M(fix, f0x, (1 − k)t) > 1 − r

where r ∈ (0, 1) and x ∈ X. Then, if i ≥ N , we have

M(xi, x0, t) = M(fixi, f0x0, t)

≥ M(fixi, f0xi, (1 − k)t) ∗ M(f0xi, f0x0, kt)

> Min(1 − r, M(xi, x0, t)).

Hence, M(xi, x0, t) → 1 as i → ∞. This proves that (xi) converges to x0.

In what follows π1 : X × Y → X will denote the first projection mapping
defined by π1(x, y) = x, while π2 : X×Y → Y will denote the second projection
mapping defined by π2(x, y) = y.

Definition 4.4. Let (X, M, ∗) be a fuzzy metric space and Y be any space.
A mapping f : X × Y → X × Y is said to be locally fuzzy contraction in the
first variable if and only if for each y ∈ Y there exists an open ball By(ε),
ε ∈ (0, 1) containing y and a real number k(y) ∈ (0, 1) such that

M(π1 ◦ f(x1, y), π1 ◦ f(x2, y), t) ≥ M(x1, x2, t/k(y)) for all x1, x2 ∈ X.
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A mapping f : X × Y → X × Y is called fuzzy contraction in the first
variable if and only if there exists a real number k ∈ (0, 1) such that for any
y ∈ Y

M(π1 ◦ f(x1, y), π1 ◦ f(x2, y), t) ≥ M(x1, x2, t/k) for all x1, x2 ∈ X.

It is obvious that every fuzzy contraction mapping is locally fuzzy contrac-
tion in the first variable.

We define a fuzzy contraction mapping in the second variable in an analo-
gous fashion.

Definition 4.5. The fuzzy metric space (X, M, ∗) has fixed point property
(f.p.p) if every continuous mapping f : X → X has fixed point.

The following theorem is a fuzzy version of a theorem in [15].

Theorem 4.6. Let (X, MX , ∗) be a complete fuzzy metric space, (Y, MY , ∗)
be a fuzzy metric space with the f.p.p., and let f : X×Y → X×Y be uniformly
continuous and a fuzzy contraction mapping in the first variable. Then, f has
a fixed point.

Proof: For y ∈ Y , let fy : X → X be defined by fy(x) = π1 ◦ f(x, y) for
all x ∈ X. Since, for every y ∈ Y , fy is a fuzzy contraction mapping, therefore
fy has a unique fixed point (see, Theorem 4.2). Let G : Y → X be given by
G(y) = fy(G(y)) is the unique fixed point of fy. Now, let y0 ∈ Y and let
(yn) be a sequence of points of Y which converges to y0. Since f is uniformly
continuous, the sequence (fyn) converges uniformly to fy0. Hence, by Theorem
4.3, the sequence (G(yn)) converges to G(y0). This shows that the function G
is continuous on Y . Now, let g : Y → Y be a continuous function defined via
g(y) = π2 ◦ f(G(y), y) for each y ∈ Y . Since, (Y, MY , ∗) has f.p.p., there is a
point z ∈ Y such that g(z) = z, i.e., z = g(z) = π2 ◦ f(G(z), z). It follows that
(G(z), z) is a fixed point of f . This completes the proof.

To prove the following theorem, we require:

Lemma 4.7. Let (X, M, ∗) be a fuzzy metric space with a ∗ a ≥ a for every
a ∈ [0, 1] and Y be a fuzzy topological space with f.p.p. Let f : X ×Y → X×Y
be locally fuzzy contraction in the first variable. Let x0 ∈ X and y ∈ Y . Define
the sequence (pn(y)) in X as follows:

p0(y) = x0 and pn = pn(y) = π1 ◦ f(pn−1(y), y).

Then,
(i) (Pn(y)) is a Cauchy sequence in X.
(ii) If pn → py, then π1 ◦ f(py, y) = py.
(iii) Define g : Y → Y as g(y) = π2◦f(py, y). Then, g is a continuous function.
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Proof: (i) Since f is a locally fuzzy contraction mapping in the first vari-
able, there exists a real number k ∈ (0, 1) such that

M(pn, pn+1, t) = M(π1 ◦ f(pn−1, y), π1 ◦ f(pn, y), t) ≥ M(pn1 , pn, t/k) n ≥ 1.

By a simple induction we get

M(pn, pn+1, t) ≥ M(p0, p1, t/k
n)

for all n and t > 0. We note that, for every positive integer m,n with m > n
and k ∈ (0, 1), we have

(1 − k)(1 + k + k2 + · · · + km−n−1) = 1 − km−n < 1.

Therefore, t > (1−k)(1+k+k2+· · ·+km−n−1)t. Since M is nondecreasing,
we have

M(pn, pm, t) ≥ M(pn, pm, (1 − k)(1 + k + k2 + · · · + km−n−1)t).

Thus, by (FM4), we notice that, for m > n,

M(pn, pm, (1 − k)(1 + k + k2 + · · ·+ km−n−1)t)

≥ M(pn, pn+1, (1 − k)t) ∗ · · · ∗ M(pm−1, pm, (1 − k)km−n−1t)

≥ M(p0, p1, (1 − k)t/kn) ∗ · · · ∗ M(p0, p1, (1 − k)km−n−1t/km−1)

= M(p0, p1, (1 − k)t/kn) ∗ · · · ∗ M(p0, p1, (1 − k)t/kn)

Since a ∗ a ≥ a, we conclude that

M(pn, pm, t) ≥ M(p0, p1, (1 − k)t/kn).

By letting n → ∞ and m > n, we get

lim
n,m→∞

M(pn, pm, t) = lim
n→∞

M(po, p1, (1 − k)t/kn) = 1.

This implies that (pn(y)) is a Cauchy sequence in X.
(ii) Let u = π1 ◦ f(py, y). By contradiction, suppose that u 
= py. Then

M(u, py, t) = ε < 1 for every t > 0. Since f : X × Y → X × Y is continuous,
there exists an open set U ×V in X×Y and a real number λ ∈ (0, ε) such that
(py, y) ∈ U × V , U ⊆ Bpy(λ, t) and f(U × V ) ⊆ Bu(λ, t) × Y . Since pn → py,
there is a positive number N ∈ N such that pn ∈ U for all n ≥ N . But
π1 ◦ f(pk, y) = pk+1 ∈ U . Therefore f(pk, y) /∈ Bu(λ, t) × Y which contradicts
the fact that f(U × V ) ⊆ Bu(λ, t)× Y . Therefore our assumption is incorrect.

(iii) Follows Lemma 3 in [6].
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Theorem 4.8. Let (X, M, ∗) be a complete fuzzy metric space with a∗a ≥ a
for every a ∈ [0, 1] and let Y be a fuzzy topological space with f.p.p. If the
mapping f : X ×Y → X ×Y is a locally fuzzy contraction in the first variable,
then f has a fixed point.

Proof: Let x0 ∈ X and y ∈ Y . Define the sequence (pn(y)) as follows:

p0(y) = x0 and pn(y) = π1 ◦ f(pn−1(y), y).

By Lemma 4.7(i), the sequence (pn(y)) is a Cauchy sequence in X. Since
(X, M, ∗) is complete, there exists a point py ∈ X such that limn→∞ py(y) = py.
Now define a continuous mapping g : Y → Y by g(y) = π2 ◦ f(py, y). Since Y
has the f.p.p., there exists a point y0 ∈ Y such that g(y0) = y0 . By Lemma
4.7(ii) we have π1 ◦ f(py0, y0) = py0 . But y0 = g(y0) = π2 ◦ f(py0 , y0). Hence,
f(py0, y0) = (py0 , y0) which completes the proof.

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS This work
is financially supported by the Malaysian Ministry of Science, Technology and
Environment, Science Fund grant no: 06-01-02-SF0177.

References

[1] C. Alsina, On countable products and algebraic convexifications of prob-
abilistic metric spaces, Pacific J. Math., 76(1978) 291-300.

[2] C. Alsina, B. Schweizer, The countable product of probabilistic metric
spaces,Houston J. Math., 9(1983) 303-310.

[3] Deng Zi-Ke, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86(1982)
74-95.

[4] R. J. Egbert, Products and quotients of probabilistic metric spaces, Pa-
cific J. of Math., 24(1968) 437-455.

[5] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69
(1979) 205-230.

[6] A. F. Fora, A fixed point theorem for product spaces, Pacific J. Math.,
99 (1982) 327-335.

[7] A. George and P. Veeramani, On some results in fuzzy metric spaces,
Fuzzy Sets and System, 64 (1994) 395-399.

[8] A. George and P. Veeramani, On some results of analysis for fuzzy metric
spaces, Fuzzy Sets and System, 90 (1997) 365-368.



712 Mohd. Rafi and M.S.M Noorani

[9] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems,
27 (1988) 385-389.

[10] V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces,
Fuzzy Sets and Systems, 125 (2002) 245-252.

[11] V. Istratescu and I. Vaduva, Products of statistical metric spaces, Acad.
R.P. Roumaine Stud. Cerc. Math., 12 (1961) 567-574.

[12] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces,
Kybernetic, 11 (1975) 326-334.

[13] B. Lafuerza Guillen, Finite products of probabilistic normed spaces, Rad.
Mat., 13 (2004) 111-117.

[14] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28 (1942)
535-537.

[15] S. B. Nadler, Jr., Sequences of contractions and fixed points, Pacific J.
Math., 27 (1968) 579-585.

[16] B. Schweizer and A. Sklar, Probabilistic Metric Space, North-Holand,
Amsterdam, 1983.

[17] R. Tardiff, Topologies for probabilistic metric spaces, Pacific J. Math., 65
(1976) 233-251.

[18] L. A. Zadeh, Fuzzy Sets, Inform. And Control, 8 (1965) 338-353.

[19] T. Zikic-Desenovic, A multivalued generalization of Hick’s C-contraction,
Fuzzy Sets and Systems, 151 (2005) 549-562.

Received: November 27, 2007


