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Abstract

In this study, we define the Jacobsthal F-matrix and Jacobsthal
M-matrix similar to Fibonacci Q-matrix. After, using this matrix
representation we have found the some equalities and the Binet-like
formula for the Jacobsthal numbers.
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1 Introduction

The Fibonacci, the Lucas numbers and their generalization have many
interesting properties and applications to almost every fields of science and
art. For the prettiness and rich applications of these numbers and their
relatives one can see science and the nature [1, 5] and [7-17].

In [12], Silvester shows that a number of the properties of the Fibonacci
sequence can be derived from a matrix representation. In so doing, he shows

that if
01
=[]

oY=l |

where u,, represents the nthFibonacci number.
In 1960, Charles H. King studied on the following ()-matrix

o-[t 4]

then
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in his Ms thesis. He showed that

det(Q) = —1
and

n __ Fn+1 Fn

Moreover, it is easy seen that
Fo B,y — F? = (—1)" (Cassini’s formula).

Above equalities demonstrate that there is a very close link between the
matrices and Fibonacci numbers. More generally, there are some relations
between the integer sequences and matrices [10, 15].

In [10], some properties obtained related Fibonacci and Lucas numbers by
matrix method such that m,n > 1 as follows:

7;) Fm+n+1 = Fm+1Fn+1 + Fan:

M) Foin = Fnp By + FpFug,

iii) Fron = FnFni + Fr 1 Fy,

'l"l)) Fm—|—n—1 = Fan + Fm—an—b

v) Fi1 Ly + FuLypy 1 = L,

vi) 2Fin = Ly + Fy L,

vii) 2L in = Lin Ly + 56, F,

where F, and L, denote the mnth Fibonacci and Lucas numbers,
respectively. Furthermore, in [10] generalized characteristic equation and
Binet formula for the Fibonacci and Lucas numbers using matrix method are
given by

2 — Lyx + (—1)" =0,
r = (L, +5E,)/2

and
e
2 2
where
1 5 1—+/5
a = +\/_andﬁ: \/_

2 2

We know that the Fibonacci sequence is also a Lucas sequence U,(a,b)
where a and b are equal to (14 v/5)/2 and (1 — v/5)/2 respectively. That is,
we notice that a« = « and b = 8 for Fibonacci and Lucas numbers [3, 4] , [16]
and [18].
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Microcontrollers (and other computers) use conditional instructions to
change the flow of execution of a program. In addition to branch instructions,
some microcontrollers use skip instructions which conditionally bypass the next
instruction. This winds up being useful for one case out of the four possibilities
on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 11 on 5 bits, 21 on 6 bits, 43 on
7 bits, 85 on 8 bits, ..., which are exactly the Jacobsthal numbers [19].

In [6], the Jacobsthal and the Jacobsthal-Lucas sequences J,, and j, are
defined by the recurrence relations

JO :0, Jl = 1, Jn = Jn—l +2Jn_2 for n Z 2

and
Jo=2, 1=1, jn=Jn1+2jn2forn=>2
respectively.
In additation, the Jacobsthal numbers are the numbers obtained from the
U, in the Lucas sequence with a = 2 and b = —1. Similarly, the

Jacobsthal-Lucas numbers are the numbers obtained by the V,, in the the
Lucas sequence with a = 2 and b = —1 [4, 18].

The first eleven terms of the Jacobsthal sequence {J,,} are 0, 1, 1, 3, 5, 11,
21, 43, 85, 171 and 341. This sequence is given by the formula
=" 1

3 (1)

The first eleven terms of the sequence {j,} are 2, 1, 5, 7, 17, 31, 65, 127,
257, 511 and 1025. This sequence is given by the formula

Jn=2"+(=1)" [2]. (2)

In [6] Cassini-like formulas of Jacobsthal and Jacobsthal-Lucas numbers
are given by

Iy =i = ()2 (3)
jn+1jn71 - jg = 32 . (_1)n+1 . 2n71. (4)

In this study, we have defined Jacobsthal F-matrix by
1 2
r=11e) o)

It is easy to seen that, it can be write

Jn-i—l o Jn
el
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JIn In—1

where J, and j, are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively.
Furthermore, we have defined Jacobsthal M-matrix by

M:ﬁ’ﬂ (6)

Throughout this paper, J, and j,, denote the nth Jacobsthal and Jacobsthal-
Lucas numbers.

and

2 The Matrix Representation of Jacobsthal
Numbers

In this section, we present two different matrix representation of Jacobsthal
numbers which is called Jacobsthal F-matrix and Jacobsthal M-matrix.
Using this representations we obtain the determinants and elements of F™
and M", and we get Cassini-like formula for the Jacobsthal numbers. After,
we calculated the generalized characteristic roots and Binet formula of the
matrix F”. Finally, we get sum formulas for the Jacobsthal numbers using
these matrices.

Theorem 1 Let F' be a matriz as in (5). Then

n __ Jn-i—l 2Jn
F _{ s an]. 7)

Proof. We will use the principle of mathematical induction (PMI). When

n=1,
P 120 |2 2/
1 0 J1 2Jy
so the result is true. We assume it is true for any positive integer n = k:

e | e 2Jk
F _{ J. 20,1 |

Now, we show that it is true for n = k 4+ 1. Then, we can write

et _ FkF:[JkH 2Jy ][1 2]

J 2J._4 10
_ Jir2 2Jk1
Jkr1 2y

and the result follows. W
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Corollary 2 For all positive integers n, following equalities hold:
i) det(F™) = (=2)",
i) Jni1dn_1 — J2 = (=1)"2""! (Cassini-like formula,).
Proof. It is easy to see that
det(F) = —2.

Then, it can be write

det(F") = det(F)-det(F)----- det(F)
= (=2)".

The determinant of F™ in (7) and from (i), (ii) follows. W

Theorem 3 Let n be an integer. The well-known Binet-like formula of the
Jacobsthal numbers is

Proof. Let the matrix F' be as in (5). If we calculate the eigenvalues and
eigenvectors of the matrix F' are

A =2 M=-1
and
vy = (2, 1), v =(-1, 1),
respectively. We notice that eigenvalues of the matrix F' are seen
Al=a, da=0>
as in [18]. Then, we can diagonalize of the matrix F' by
D =P 'FP

where
2 -1
P:(’U?,’l}g):{l 1:|
and

. 2 0
D = diag(A1, \2) = [ 0 —1 } .
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From the properties of the similar matrices, we can write
D" =P lF"p

where n is any integer. Furthermore, we can write

F" = PD"P~! -
where
D" — { 20 (_%n ]
By (7) and (8), we get
Jnp1 2, 22" +(-=1)"  22"—2.(-1)"
{ Jn 2Ju } - [ wiflw 2n+22(,1)n ]

Thus, the proof is completed. W
Consequently, limiting ratio of the successive Jacobsthal number is

n+l _ (__1\n+1
e (@ ()3
e g, nes (20— (—1)7)/3
= 2.

a =

Theorem 4 The generalized characteristic roots of F™ are
A2 = (Jn £3J5)/2

where A1 and Ay denote the characteristic roots of F™. Then,
and j, =2"+ (=1)".

Proof. If we write the characteristic polynomial of F'™, we get

det(F™ —XI) = N — (Jop1 + 20 )N+ 2(Jpir Sy — J?)
= AN —jn- A+ (=2,

by identities J,11 + 2Jp_1 = jp and Jui1Juo1 — J2 = (=1)"2""1. Thus, the
characteristic equation of F™ is

MG A (=2)"=0 (9)
and we get the generalized characteristic roots as following:

Jn £ VJn —4(=2)"

Ao = 5
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Since j2 — 4(—2)" = 9J2, it can be write A\, 5 = (j, & 3.J,)/2. Consequently,

n

.n 3Jn "n - 3Jn
SRR T .3
Thus, we give the Binet-like formula by matrix method for the Jacobsthal and
Jacobsthal-Lucas numbers given in (1) and (2) by

on _ (_1)n

|
We know the matrix equation in (7), then we can write,

J, J

n nt1 n

F — r]7j—1 2Jn—1 .
n

Jn_l In—1 2

Since lim (J,11/J,) = a, it follows that

n—oo

lim
n—oo

F*  la* 2a| |a+2 2a
a2 | a 2 |

n—1

If we compute the determinant of both sides, we reach the
characteristic equation of the Jacobsthal F-matrix as follows:

a*>—a—2=0.
Theorem 5 Let M be 2 X 2 matriz as in (6), then

n o __ J2n+1 2J2n
M™ = |: J2n 2J2n1:|

forn > 1.

Proof. It can be show easily by PMI. &

Corollary 6 For all positive integers n, following equalities are valid:
i) det(M™) = 2%,
ZZ) J2n+1J2n,1 — J22n = 221

Proof. Proofs are easily seen similar to Corollary 2. B

Theorem 7 For any integer n > 1,

. 1
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Proof. When n = 1, equation (9) becomes A\* — A — 2 = 0, which is the
charracteristic equation of Jacobsthal F-matrix. Notice that F'? — F — 2] =0
(from the Cayley-Hamilton Theorem).

Now, we have following equation

I+F+F+. . +F)F-1)=F"t -1 (10)

Since det(F — I) = —2 # 0, F — I is invertible. Since F? = F + 2[ and
F? — F = 2I, we can write F(F —I) = 2I. Thus, (F — I) = F~'. If we

’ 2

multiply both sides of equation (10) by (F' —I)™' = F we get

1
I+F+F+ . +F" = 5(F““—I)-F
1
= —(F""?-F).
5( )

Equating the (2,1) entry of both side, we have

. 1

This completes the proof. W

Theorem 8 Let n and k be a positive integer. Then, following relation be-
tween the Jacobsthal and Lacobsthal-Lucas numbers

Intk = Jet1dn + 2JkJn—1
18 valid.

Proof. From the definition of the Jacobsthal-Lucas numbers,

JIn In—1

can be written easily. If we multiply both side with F*, we get
Fk|:jn+1:|:Fk+1|: Jn }
In In—1

Using (7) we obtain

Ikt | _ | Jrt2dn + 2Jkt10n
Jntk ot + 2J0jn-1 |

Thus, the proof is completed. W



Jacobsthal numbers by matrix methods 613

Theorem 9 Let m and n are positive integers. Then, following equalities are

hold:
i) i = Jmdni1 + 2T 1,
i) Jop = Jndpir + 251 = Jnjn,
i) Jony1 = J2 .+ 2J2,

Z‘U) (_1)n ’ 2n71J'm—n = JmJn-1 — Jm—1Jn.
Proof. Let the matrix F as in (5). Since F™™™ = F™F" we can write

Jm+n+1 2<]m+n :| — |: Jm+1Jn+1 +2JmJn Q(Jerl*]n +2<]m¢]n71)

Jm+n 2<]m—|—n—1 JmJn—l—l + 2Jm—IJn Q(JmJn + 2Jn—1Jm—1)

Thus, equalities (i), (1) and (7i) are easily seen. If we calculate F'~", we get

1 {QJn_l —2Jn]
(—2)” _Jn Jn+1 .

Since F™™™" = F™F~" we can write

Jm—n+1 2<]m—n — (_1)n 2(Jm+1<]n—1 - JmJn) _Q(Jm—l—lJn - JmJn-i-l)
Jmfn 2Jmfn71 2n 2(JmJn71 - ']mflJn) _2<JmJn - ']mfI']nJrl)

F=

and (7v) immediately seen. W
This study is the part of Ms. Thesis of Fikri Koken.
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