
Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 1, 25 - 36

A New n log n Algorithm for the Identical

Parallel Machine Scheduling Problem

Maria Italia Gualtieri

Dipartimento di Matematica, Università della Calabria
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Abstract. A new constructive heuristic for the scheduling problem of n
independent jobs on m identical parallel machines with minimum makespan
objective is described. The proposed algorithm, which is an n log n algorithm
as the LPT algorithm of Graham, iteratively combines partial solutions that
are obtained by partitioning the set of jobs in suitable families of subsets. The
algorithm was tested using different families of instances which were taken
from the literature and results compared with other well known algorithms.
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1. Introduction

In this paper the scheduling problem of n independent jobs on m parallel
machines is considered. Each job i must be processed without interruption by
only one of the m machines (non-preemptive environment); as the machines are
identical, the processing time pi of the job i is independent of the processing
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machine (environment of identical parallel processors). The objective is to
minimize the makespan, i.e. the total time required to complete all jobs.
Using the standard three field classification scheme of Graham et al. (1979),
this problem is usually denoted as P ||Cmax.

The problem is well known to be NP-hard in strong sense for an arbitrary
m ≥ 2, see Garey and Johnson (1978), and Ullman (1976). For large instances,
one needs to rely on good heuristic procedures to provide solutions that are
probably close to the optimum. Heuristic algorithms are classified into con-
structive algorithms and improvement algorithms. In the first category, the
list scheduling family of Graham (1966 and 1969), which includes the Largest
Processing Time (LPT ), and the MultiFit Decreasing (MDF ) scheduling algo-
rithm of Coffman et al. (1978) can be referred. Improvement algorithms have
been proposed by França et al. (1994), Anderson et al. (1997) and Frangioni
et al. (2004), among others.

Surveys regarding the heuristic algorithms for parallel machine scheduling
problems have been provided by Cheng and Sin (1990), by Lawler et al. (1993)
and by Chen et al. (1998).

In this paper, a constructive n log n algorithm, named PSC, is presented.
It is more accurate with respect to the relative error than the n log n LPT
algorithm of Graham. As in Paletta and Pietramala (2007), the new algorithm
is based on the idea of combining iteratively partial solutions, calculated by
partitioning the set of jobs in suitable families of subsets as described below,
until a feasible solution for the scheduling problem is obtained. The algorithm
of Paletta and Pietramala is modified by changing both the procedure used to
partition the set of jobs into partial solutions and the rule used for selecting
which two partial solutions are to be combined.

In order to compare PSC with other algorithms, different families of in-
stances, taken from the literature, were used for the computational investiga-
tion.

The paper is organized as follows. Section 2 presents the definitions and the
properties of the partitions that are used to design the algorithm. Section 3
contains the description of the algorithm. Finally, Section 4 includes results
of the computational investigation concerning P ||Cmax.

2. Definitions and preliminary results

Let I = {1, ..., i, ..., n} be the set of n independent jobs, M = {1, ..., j, ..., m}
be the set of m identical parallel machines and A = {p1, ..., pi, ..., pn} be the
set of processing times of the jobs.

Let I = {I1
1 , ..., I1

j , ..., I1
m, ..., Ir

1 , ..., I
r
j , ..., I

r
m, ..., Iz

1 , ..., I
z
j , ..., Iz

s}, s ≤ m, be
a partition of the set I.

The family of z partial solutions P = {I1, . . . , Ir, . . . , Iz} is associated to
the partition I of I, where Ir = {Ir

1 , . . . , Ir
j , . . . , Ir

m}, r = 1, ..., z−1, represents
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the r-th partial solution and Iz = {Iz
1 , . . . , Iz

j , . . . , Iz
s , ∅s+1, . . . , ∅m}, s ≤ m,

represents the z-th partial solution.
With respect to a partial solution Ir, Ir

j represents the set of jobs that are
performed by the machine j; moreover, in the partial solution Iz, the symbol
∅j , j = s + 1, . . . , m, indicates that the machine j is not performing any jobs.

Let pr
j :=

∑
i∈Ir

j

pi be the sum of the processing times of the jobs belonging to

Ir
j , r = 1, ..., z−1 and j = 1, ..., m; let pz

j :=
∑
i∈Iz

j

pi be the sum of the processing

times of the jobs belonging to Iz
j for j = 1, ..., s and pz

j := 0 for s < j ≤ m.
Each partial solution Ir, r = 1, ..., z−1, has, associated with it, the processing
times m-set Gr = {pr

1, . . . , pr
j , . . . , pr

m}, whereas Iz has, associated with it, the
processing times m-set Gz = {pz

1, . . . , pz
s, 0, . . . , 0}, s ≤ m.

Definition 1. A partial solutions Ir is called ordered partial solution if the
elements of Gr are sorted in not increasing order with respect to their size i.e.

pr
1 ≥ . . . ≥ pr

j ≥ . . . ≥ pr
m.

Definition 2. A family of z partial solutions P = {I1, . . . , Ir, . . . , Iz} is
called ordered z-family of solutions if each Ir is an ordered partial solution.

Definition 3. Let Ir and Iq be two ordered partial solutions. The ”combina-
tion” among Ir and Iq (Ir � Iq) is defined as the m-family

Ir � Iq = {Ir
1 ∪ Iq

m, . . . , Ir
j ∪ Iq

m−j+1, . . . , Ir
m ∪ Iq

1}.

Thus Ir � Iq corresponds to a new partial solution using the jobs in Ir and
Iq, and the set Ir

j ∪ Iq
m−j+1, j = 1, . . . , m, represents the jobs performed by

the machine j in the new partial solution. The total processing time needed
for the machines to perform all the jobs belonging to Ir � Iq is computed by
using the following definition.

Definition 4. Let Gr and Gq be the sets of processing times of the ordered
partial solutions Ir and Iq. The ”sum” among Gr and Gq (Gr⊕Gq) is defined
as the m-set

Gr ⊕ Gq = {pr
1 + pq

m, . . . , pr
j + pq

m−j+1, . . . , pr
m + pq

1}.

Therefore pr
j + pq

m−j+1 represents the total processing time required to per-
form all the jobs belonging to Ir

j ∪Iq
m−j+1, and Ir �Iq is a partial solution that

is not necessarily ordered because the elements of Gr ⊕ Gq are not sorted in
decreasing order with respect to their size.
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Definition 5. Let Gr and Gq be the sets of processing times of the ordered
partial solutions Ir and Iq. The ”ordered sum” among Gr and Gq is defined
as the ordered m-set Ord(Gr⊕Gq) whose elements are the elements of Gr⊕Gq

sorted in non-increasing order with respect to their size.

Definition 6. Let Ir and Iq be two ordered partial solutions. The ”ordered
combination” among Ir and Iq is defined as the m-family Ord(Ir �Iq) whose
sets are those of Ir � Iq sorted such that the j-th element of Ord(Gr ⊕ Gq)
represents the total processing time of the j-th job-set of Ord(Ir � Iq).

Let Ir be an ordered partial solution. Let Δr := pr
1 − pr

m denote the gap
between the maximum and the minimum element of the m-set Gr.

The sum operator satisfies the property indicated in the following proposi-
tion.

Proposition 1. Let Gr and Gq be the sets of processing times of the ordered
partial solutions Ir and Iq. Put S = Gr ⊕ Gq and ΔS = max{S} − min{S}.
Then ΔS ≤ max{Δr, Δq}.
Proof. Let

max{S} = pr
k + pq

m−k+1 for some k, 1 ≤ k ≤ m,

and

min{S} = pr
l + pq

m−l+1 for some l, 1 ≤ l ≤ m.

Let

ΔS = (pr
k + pq

m−k+1) − (pr
l + pq

m−l+1) = (pr
k − pr

l ) + (pq
m−k+1 − pq

m−l+1).

As pr
k − pr

l ≥ 0 can or cannot occur, both cases will be examined separately.

First case: pr
k − pr

l ≥ 0.
As an immediate consequence of the definitions of S and ordered partial solu-
tion, it follows that pq

m−k+1 − pq
m−l+1 ≤ 0.

¿From this

ΔS = (pr
k − pr

l ) + (pq
m−k+1 − pq

m−l+1) ≤ pr
k − pr

l ≤ pr
1 − pr

m = Δr.

Second case: pr
k − pr

l ≤ 0.
As an immediate consequence of the definitions of S and ordered partial solu-
tion, it follows that pq

m−k+1 − pq
m−l+1 ≥ 0.

Then

ΔS = (pr
k − pr

l ) + (pq
m−k+1 − pq

m−l+1) ≤ pq
m−k+1 − pq

m−l+1 ≤ pq
1 − pq

m = Δq.

Consequently

ΔS ≤ max{Δr, Δq}.
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In this paper, the procedure used to partition the jobs in an ordered z-
family of solutions P = {I1, . . . , Ir, . . . , Iz} was designed to reduce as much
as possible the gap Δr related to Ir. So, from Proposition 1 it follows that
the smaller the gaps associated with initial partial solutions in P, the smaller
are the gaps associated to the partial solutions in the ordered (z-1)-family of
solutions

{Ord(Ir � Iq), I1, ..., Ir−1, Ir+1, . . . , Iq−1, Iq+1, ..., Iz}.
If the ordered combination operator is used z−1 times until a single ordered

solution, e.g. I2z−1, is obtained, an upper bound on the final gap Δ2z−1 of the
processing times m-set G2z−1 can be given by:

Proposition 2. Let P be an ordered z-family of solutions. Then

Δ2z−1 ≤ max
q=1,... ,z

{Δq}.

3. Algorithms

The proposed PSC algorithm partitions the jobs by using a procedure,
named OFS, for obtaining an ordered z-family of solutions to the schedul-
ing problem. Then, at iteration j, PSC selects two ordered partial solutions
(e.g. Il and Ik) and combines them with the ordered combination operator
obtaining a single ordered partial solution (e.g. Iz+j). The algorithm continues
to iterate (exactly z−1 times) until the feasible solution I2z−1 of the scheduling
problem is obtained.

The procedure used to partition the jobs in partial solutions and the rule
used for selecting which two partial solutions are to be combined are critical
to the success of the heuristic algorithm. The partition procedure and the
selection rule were designed to reduce as much as possible the gap between
the maximum and minimum elements of the processing times m-set, which is
associated to the partial solution.

The algorithm can be summarized as follows.

Algorithm PSC
Initialisation

- Use the procedure OFS to obtain an ordered z-family of solutions P so
that Δ1 ≥ . . . ≥ Δr ≥ ... ≥ Δz. If OFS returns with only one partial
solution then Stop (the algorithm returns with an optimal solution);

- When equal Δr values are obtained, then sort these Δr in non-decreasing

order with respect to the sum
∑

j=2,...,m

(pr
1 − pr

j).

Construction
For j = 1, . . . , z − 1

-select the first two ordered partial solutions belonging to P (say Il and Ik);

-compute Gz+j=Ord(Gl ⊕ Gk), Iz+j =Ord(Il � Ik) and Δz+j = pz+j
1 − pz+j

m ;
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-set P=(P\{Il, Ik}) ∪ Iz+j and order P so that the Δr values are in
non-decreasing order;

End For j.

Let G2z−1
j be the total processing time needed for the j-th machine to perform

all the jobs assigned to it by the PSC solution. Thus Δ = Δ2z−1 = G2z−1
1 −

G2z−1
m represents an upper bound to the heuristic algorithm error. When this

difference is equal to zero, an optimal solution is obtained.
Moreover, as Proposition 2 ensures that Δ ≤ max

q=1,... ,z
{Δq}, the smaller the

gaps of initial partial solutions in P, the smaller is the Δ associated with the
feasible solution, and therefore, the smaller is the upper bound to the heuristic
algorithm error. In particular, if all the z initial partial solutions have gaps
equal to zero, then an optimal solution is obtained by using, iteratively, the
ordered combination operator.

The procedure OFS, which finds an ordered z-family of solutions, first orders
the jobs so that p1 ≥ p2 ≥ . . . ≥ pn and computes z as the greatest index of the

jobs so that
∑

i=1,...,z≤n

pi ≤ max{p1, pm + pm+1,
1

m

∑
i=1,...,n

pi}. Then, by using as

seeds the first z jobs, the procedure initializes z partial solutions. Finally, OFS
processes the remaining jobs, by assigning each job i iteratively to the partial
solution which corresponds to the greatest Δr values, e.g. Δk, if Δk ≥ pi.
Otherwise OFS uses the job i as seed to initialize a new partial solution.

The procedure can be formally described as follows.

Procedure OFS
Initialisation

- Order the jobs so that p1 ≥ . . . ≥ pi ≥ . . . ≥ pn. Set z the greatest index

of the jobs so that
∑

i=1,...,z≤n

pi ≤ max{p1, pm + pm+1,
1

m

∑
i=1,...,n

pi};

- Set I1={I1
1 = {1}, I1

2 = ∅, . . . , I1
j = ∅, . . . , I1

m = ∅}, I2={I2
1 = {2}, I2

2 =

∅, . . . , I2
j = ∅, . . . , I2

m = ∅},..., Iz={Iz
1 = {z}, Iz

2 = ∅, . . . , Iz
j = ∅, . . . , Iz

m =
∅}, and G1 = {p1

1 = p1, p
1
2 = 0, . . . , p1

j = 0, . . . , p1
m = 0}, G2 = {p2

1 =

p2, p
2
2 = 0, . . . , p2

j = 0, . . . , p2
m = 0},..., Gz = {pz

1 = pz, p
z
2 = 0, . . . , pz

j =
0, . . . , pz

m = 0};
- Set Δr = pr, r = 1, ..., z;
- Set P = {I1, . . . , Ir, . . . , Iz} (P is ordered so that Δ1 ≥ . . . ≥ Δr ≥

. . . ≥ Δz).

Construction.
For i = z + 1, . . . , n

a) select I1 (since Δ1 = max
r=1,... ,z

Δr);
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b) If Δ1 ≥ pi then
-set I1

m = I1
m ∪ {i} and p1

m = p1
m + pi;

-sort the elements of G1 so that p1
1 ≥ . . . ≥ p1

j ≥ . . . ≥ p1
m;

-arrange I1 so that p1
j is the total time required by the

jobs belonging to I1
j , for j = 1, . . . , m;

-set Δ1 = p1
1 − p1

m and sort P so that Δ1 ≥ . . . ≥ Δr ≥ . . . ≥ Δz;
Otherwise

-set z = z + 1, Iz={Iz
1 = {i}, Iz

2 = ∅, . . . , Iz
j = ∅, . . . , Iz

m = ∅},
P=P ∪ Iz;
-set Gz = {pz

1 = pi, p
z
2 = 0, . . . , pz

j = 0, . . . , pz
m = 0};

-set Δz = pi, and sort P so that Δ1 ≥ . . . ≥ Δr ≥ . . . ≥ Δz;
End If Δ1 ≥ pi.

End For i.

The OFS procedure finds an ordered z-family of solutions
P = {I1, . . . , Ir, . . . , Iz} such that

1) pr
1 is a singleton, r = 1, . . . , z

2) max
r=1,...,z

Δr = Δ1 ≤ min
r=1,...,z

pr
1.

It is easy to show that the algorithm PSC runs in O(nlog(n))-time which is
the running time of the procedure OFS.

4. Computational investigation

The PSC algorithm was tested on three different families of instances and
compared with the classical LPT heuristic of Graham, the improvement 3-
PHASE heuristic of França et al. and the improvement 1-SPT algorithm of
Frangioni et al.

Results were averaged for a group of 10 instances and are given in terms of
the relative error with respect to the lower bound

L2 = max

{⌈
1

m

∑
i=1,...,n

pi

⌉
, p1, pm + pm+1

}
,

where p1 ≥ p2 ≥ . . . ≥ pn.
In Tables 1-3, columns PSC, LPT, 3-PHASE and 1-SPT describe the results

of PSC algorithm, of the LPT heuristic, of the algorithm of França et al., and
of the algorithm designed by Frangioni et al., respectively. Likewise the number
of instances in which the algorithms obtain the makespan equal to the lower
bound, representing instances solved to optimality, was reported in column o.

The results reported by Frangioni et al. (1999) for the 3-PHASE and 1-SPT
algorithms were utilized in this paper, as the same instances were used here.
These results does not include the column o.

The Instances
Three different families of instances were taken from the literature.
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In the first two families the number of machines m are 5, 10, 25, the number
of jobs n are 50, 100, 500, 1000 (for m = 5 and n = 10 was also tested), and the
interval for the integer processing times were [1, 100], [1, 1000], and [1, 10000].

Ten instances were randomly generated for each choice of m,n and of the
processing time intervals, for a total of 390 instances within each family.

The two families differ in shape of the distribution of processing times. In the
first family (UNIFORM), which was presented by França et al., the processing
times were generated by using an uniform distribution.

The generator of the second family (NON-UNIFORM), which was presented
by Frangioni et al. (1999 and 2004), when an interval [a, b] of the processing
times is given, produces instances where 98% of the processing times are uni-
formly distributed in the interval [(b−a)0.9, b], while the remaining processing
times fall within the interval [a, (b − a)0.02]. Both generators are available at
the URL

http://www.di.unipi.it/di/groups/optimize/Data/index.html
The last family of instances were derived from several difficult bin packing

instances, which are available at the OR-Library of J.E. Beasley, at the URL
http ://mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html

In this family, denoted BINPACK, the processing times are uniformly dis-
tributed in {20, 100} and the number of machines m is the number of bins in
the best known solution of the bin packing instances.

Computational results
The results for UNIFORM instances are shown in Table 1 for the three

subsets of instances with processing times in [1, 100], [1, 1000], and [1, 10000].
UNIFORM instances are known to be efficiently approached with LPT and
3-PHASE algorithms. LPT usually obtains low gaps, and solves to optimality
a fair number of instances, while 3-PHASE offers more accurate results than
LPT. The PSC algorithm offers significant improvement over LPT ; in 15 out
of 30 cases, the average relative error of PSC is comparable with respect to
the more accurate 3-PHASE.

The results for NON-UNIFORM instances are shown in Table 2 for the three
subsets of instances with processing times in [1, 100], [1, 1000], and [1, 10000].
These instances are, in all the cases, more difficult than the UNIFORM in-
stances, as greater gaps remain in all three algorithms examined. The PSC
algorithm consistently outperformed LPT algorithm, generating much smaller
gaps. In addition, compared with the more accurate 3-PHASE algorithm,
PSC always obtained comparable gaps.

The results in Table 3 show that the PSC algorithm can be successfully
applied to BINPACK instances as the solutions obtained were better than
these provided by the LPT algorithm and comparable with these given by
1-SPT.
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LPT 1-SPT PSC

m n gap gap gap

48 120 1.16e-01 2.30e-02 3.09e-02

50 120 1.33e-01 1.90e-02 2.84e-02

102 250 1.20e-01 2.28e-02 2.74e-02

102 250 1.42e-01 1.94e-02 2.14e-02

203 500 1.26e-01 2.48e-02 3.07e-02

200 500 1.41e-01 1.33e-02 2.53e-02

402 1000 1.32e-01 1.80e-02 3.07e-02

399 1000 1.35e-01 2.67e-02 2.35e-02

Table 3 - Computational results for BINPACK instances

5. Conclusions

In this paper an n log n algorithm for solving parallel machine scheduling
problem to minimize the makespan is proposed. The algorithm presented is
capable of producing good quality solutions for all classes of instances used
in the computational investigation. Moreover, this algorithm produces less
average relative errors than the LPT algorithm, and generally the average
relative errors are comparable with those generated by the 3-PHASE and 1-
SPT improvement heuristics.
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