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Classification of Integral Curves
in (2n + 1) Dimensional Vector Field
A. Taleshian'

Department of Mathematical Sciences
University of Aberdeen AB24 3UE, UK

Abstract

Recently Taleshian [1] derived integral curve of vector field X in

E?"+1 Earlier the Realisation [ 61 ? ] proposed by Karger and No-

vak [2] for vector field X in E3. The skew-symmetric matrix and A
considered in [1] has different structure from the one used in [2]. In this
paper the original form of matrix A, by Karger and Novak [2] applicable
in B3 is considered and extended to be used in E?"*1. It is proved that
for rank[AC| = 2n + 1, we have Hyperhelices. and for rank[AC] = 2n,
we have circles in Hyperplanes. However for series of parallel Hyperlines
only exist when we have rank[AC] = 1.
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1 Introduction

The integral curves of a linear vector field on E?"*! are dependent on the rank
of the matrix which defines the linear vector fields. They are circles or helices
in the cases when the matrix of the linear vector field has even or respectively
odd rank. In recent years the theory of helices in higher dimensions has been
extensively studied. In the present paper, we investigate the theory of integral
curves of a linear vector field and show that the theory of integral curves of
a linear vector field in the (2n+1)-dimensional Euclidean space(n > 1) is the
same as in the case n =1 [1].
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2 Preliminaries

Let o : I — E™ t — «(t) (t € I) be a parametrized curve and let X be a
vector field in E™ ([1],)2]). If ¢ = X(a(t)), holds true, then the curve « is
called an integral curve of the vector field X. Let V' be a vector space over R
of dimension 2n + 1. A vector field X on V' is called linear if X (v) = A(v),
each v € V, where A is a linear mapping from V into V. LetA € R3'"{ be a
skew-symmetric matrix. Then we can choose an orthonormal basis ¢ € R?"*1,

such that the matrix A reduces to the form

0 k&K O O 0 0... 0 0 0 ]
-k 0 0 0 ke O0... O 0 0
0O 0 0 —ky O 0... O 0 0
0O 0 0 0 0 0 0 k., O
0O 0 0 0 0 0 —k, 0 0
. 0 0 0 0 0 0 0O 0 0 |
ke R—{0}. If C € R#"*
C =" (a1, az, as, ..., g, Aani1) (2)

is a column matrix, then we showed that the value of X at any pointP of
E?"*1 can be written as

L[0T ©

(11 ] is called the matrix of the linear vector field X ([1], [2]).

SRR

where [

3 Linear vector fields and Integral curves in
E3

Let X be a linear vector field in E® and let {o;u;, us, u3} be an orthonormal
frame of E?; then the matrix in this frame can be written as

,rank[AC| = 3,[2]. (4)

| — |
N
Q
| S
|
=N
OO O
O O OO
0 ot Qe
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Then the value of X at a point P = (z,y, 2) of E? is

0 k00 a x
[AX(P)1<_ -k 000 b y (5)
1 0 000 ¢ z
0 0001 1
or
X(P)=(ky+a,—kx +b,c). (6)

On the other hand if the curve a : I — E3,t — a(t) = (a1(t), a(t), as(t)) is
an integral curve of X, then denoting by dot the derivative w.r.t. the variable
t, we can write the differential equation

a(t) = X(a(t),Vtel (7)
as the system of differential equations
r=ky+ay=—-kr+bz=c (8)
For the shake of shortness,we set k& = 1 and then (8) reduces to
r=y+ay=—-x+bz=c (9)
Then the solution of the last equation of this system is
z=ct+d (10)

For the solutions of first two equations we derivate the second equation and
obtain that

Yy +y=—a, (11)

which is the first order linear differential equation with constant coefficent. We
know the solution of this equation is

y = Acost+ Bsint —a (12)
On the other hand the derivation of (11) and the second of (12) give us that
x = Asint — Bcost + b. (13)

Thus the integral curves of X can be written as
a(t) = (Asint — Bcost + b, Acost + Bsint — a, ct + d). (14)

This is a family of inclined curves with common axes and the same parameter,
since we have

_ Ky — 1«/,42 + B2, (15)

H=——
K2 C
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where K, and K, are the curvatures of the curve and H is constant for each
one of the cures. Now we assume the case that rank [AC]=2. In this case ¢ = 0
since we know that k& # 0. Hence (13) gives us the equation of integral curves
as

a(t) = (Asint — Bceost+ b, Acost + bsint — a, d). (16)

The curves are the circle each one of which lies on the parallel planes and the
centers of these circle are located on an axis perpendicular to those parallel
planes. Finally, assume that rank[AC] = 1. In this case we have that\ = 0
and the system (16) reduces to the system

r=a,y =bz=c (17)
Then the solution of this system is
O[(t) = (at+d1,bt+d2,ct+d3). (18)

These integral curves are parallel straight lines ([1],[2]).

4 The Normal Form Case

The normal form of the skew-symmetric matrix A is

0 Kk O O 0 O0... 0 0 0 7
—k; 0 0 0 ky O... 0 0 0
0 0 0 =k O O0... O 0 0
A=| ¢+ + ¢ ¢t | eRyH (19
0 0O 0 O 0 0... 0 %k, O
0 0O 0 O 0 0... =k, 0 O
L 0 0O 0 0 0 0... 0 0 0 |

k € R —{0}. In this case we can prove the following theorem:

Theorem 4.1. LetX be a linear vector field in the (2n+1)-dimensional Eu-
A :
0 ? with respect to an orthonor-
mal frame {O;uq,ug, ..., Uspy1}, whose A is normal formed skew-symmetric
matrix, C' is a column matrix. Then the integral curves of X have the follow-
ing properties:

(i) If rank[AC] = 2A + 1,1 < X < n, then these curves are same parametrized
circular helices which have a common axis.

(ii) If rank[AC] = 2X , 1 < X < n, then those curves are circles in parallel
planes whose centeres lie on a same straight line perpendicular to those planes.

clidean space determined by the matrix
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(iii) If rank[AC] = 1, then these curves are the parallel straight lines.

Proof : Let X a linear vector field for all points P = (1, ..., Tony1) € E**HL

Then we have
P e

X(P) = (kiza + a1, —k121 + @, ..., knToy + @21, —knZon_1 + Gon, G2n1).

Moreover, if a curve o : I C R — E***! is an integral curve of the vector field
X , then we can write that

do
= = X(a(). (21)

The integral curve, with the initial condition «(t) = P and P = (a1, ..., T2p11)
is a solution curve of the differential equation

do
— = X(P 22
== X(P) (22)
which means that

da1 4 dOéQ 4 dCKQn,l i

— == ay, — = —2% a9, ..., ——— =X A9y —

dt 2 1 dt 1 29 IR dt 2n 2n—1,

do n do n

di = —Tp—1 + Q2n, ;tH = Qgn41 = constant. (23)

This means that k; = 1, and 1 <7 < n. If we solve the differential equation

d042n+1

el (24)

we get
Aontl1 = ct + d. (25)

The other 2n equations can be solved in pairs. For example let us solve the
first two equations are

Ty = Ajcost + Bysint — ay,xy = Ay sint + By cost + as (26)
Continuing in this way, we get

Top_1 = A, sint — B, cost + aop, Top, = A, cost + By, sint + agp,_1. (27)
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Using these solutions the expreession of a(t) can be written as

a(t) = (Apsint — Bycost + ag, Ay cost + By sint — ay, ...,
A, sint — By, cost + agy,, Ay, cost + By sint — ag, 1, ct + d). (28)

Now, we that «a(t) is an helx in E** and we find the axis of it. In order to
show this, we must show that [4]

K
H, = = = constant. (29)
Ko

The vectors o, o , o~ and a* ..., o®"*! are liearly dependent. Hence there

exists two curvatures K; and K. Since the curve a(t) does not have the unit
velocity, we must apply the change of parameter to normalize the velocity.

a = (Ajcostt+Brsint, — Ay sint+DBj cost, ..., A, cost+ B, sint, — A, sint+B,, cost, ¢)
(30)

and if we denote .

> (AT + BY) (31)

i=1
by Y we have

ol = VI &, = [ flor(e) (32)

and if we denote VY + ¢* by 7 we get ¢ = 2. Since Ey(s) = ((s) and let be
<, >, inner product operator, then

< B (s),0°(s) >=0,< B (s),8(s) >=0. (33)
Ey(s) = 07(s), Es(s) = %(5'”(8) +Y, Ey(s)) (34)

and from [4] we have

1B
K= &
we have
Y

Hy(s) = C (36)

This means that curve ((s) and so the curve a(t) are helices. Let U be the
axis of a(t). Since U € S,{V1, V3}, we have

U =Vicosp + Vysinp. (37)

where V; and V3 are the Frenet Vector fields of the curve. Since

_ Ei(s) o, Es(s)
CEGIT T 1B

(38)



Classification of Integral Curves

Y
Hi(s) = Hatancp.
= arctan X
v \'c

Y
v= S Yy
o o

and

By combining(38)and (41) we get
U =(0,0,...,0,1).

339

(39)

(40)

(41)

(42)

The curve a(t) is a circular helix because if the curve a(t) is translated by T

, where
T = (—(11, g, —A3, A4 — +, eery A2n, 0)

We obtain

al + a3+ ...+ a3, = > (A7 + B}) = r = constant.
i=1

This completes the proof of the first part of the theorem.
(ii) Let rank[AC] = 2X , 1 < X < n then:

a) if rank|AC] = 2n, A\ = n then dfferential equation system becames,

dl’l dl’g

At 2+ 1, At 1 2 )

dran—1 — 2 La dxay, — Ta doni1
= T2 2n—1, —7; — " T2n-1 2
dt n n b dt n no dt

This system of differential equations has the solution

=0.

a(t) = (Apsint — Bycost + ag, Ay cost + Bysint — ay, ...,
Apsint — By, cost + agy,, A, cost + By sint — ag,_1,d)

Itis trivial to show that the curve a(t) are circles.
b) Let rank[AC| =7, r =2,...,2n — 2, in this case
Rank[AC] :r<:>ki:0,2+1§z’§n.

So that
d£C1 d£C2

— = ,—— = —x1 + ao, ...,
7t To + ay o7 T, + a9

(43)

(44)

(45)

(46)

(47)
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dx,_q dx dx; .
(];f :Ir‘i_arfla#:_xr+l+ar77;:07T+lS.]§2n+1' (48)

Therefore in this case «(t) is

a(t) = (Arsint — By cost + ag, Ay cost + Bysint — ay, oy Arsint — Br cost +
Ay, A% cost + B% sint — Ar_1, d,«_i_g, d,«+3, ey d2n+1).

Again the curves a(t) are circles.

Rank[AC]| =2 A+1, <A <n.

a) If rank[AC] =2 \+1,A=n

a(t) is same as the first part of the theorem.

b) Let rank[AC| =2 \+1=r+1,r=2,4,...,2n — n,

then rank[AC]| =r+1< X\, =0,a,41 #0,r+1<i<n.
Hence

Ty =Ty + a1, Ty = —T1 + ag, ...,
Ty g+ A1, T = Ty Ty = Ay, 7 = 0,7 +2 <5 <20+ 1 (49)

The solution of this system is

a(t) = (Aysint — By cost + ag, Ay cost + Bysint — ay, wy Az sint — Bz cost +
ap, Az cost + Brsint — ap—1, a1t + d + dyya, ..., dongr.

Obviously «(t) are again circular helices.

4. If rank[AC] = 1. Then \; = 0 which gives us a system of the differential
equations. This system of differential equations has the solution «(t) which are
are parallel straight lines,in £2"1.

Acknowledgements
I would like to express my gratitude to Prof Graham Hall and Prof Victor
Varela and Dr Majid Aleyaasin for discussions and reading of this manuscript
and suggesting some modifications in the presentation.

References

[1] A. Taleshian, Integral Curves of a Linear Vector Field, Journal of Dif-
ferential Geometry-Dynamical Systems, Vol . 6 (2004) 37-42.



Classification of Integral Curves 341

2] A. Garger and J. Novak, Kinematics and Lie Groups, Gordan and Breach
Science Publishers, New York, London Paris, 1985.

[3] Komaresan, A course in Differential Geometry and Lie Groups, Copy-
right 2002 by Hindustan book agency (India).

[4] H Hacisalioglu, Differential Geometry, Inonu Univesity, Art and Sciences
Faculty‘s publications , Malatiya, Turkye, 1980.

Received: June 2, 2006



