Fuzzy Programming Based on Interval-Valued Fuzzy Numbers and Ranking

Jin-Shieh Su

Department of Applied Mathematics Chinese Culture University Hwakang, Yangminshan, Taipei, Taiwan, R.O.C.

Abstract

In this paper, we use interval-valued fuzzy numbers to fuzzify the crisp linear programming to three cases. The first case, we use interval-valued fuzzy numbers to fuzzify the coefficients in the objective function. We get a linear programming in the fuzzy sense. The second case, we use interval-valued fuzzy numbers to fuzzify the coefficients a_{kj} in the constraints about $x_j, j = 1, 2, \dots, n$ and the constants $b_k, k = 1, 2, \dots, m$. We also get a linear programming in the fuzzy sense. The third case, we combine the first and the second cases.

Keywords: Fuzzy programming, fuzzy objective function, interval-valued fuzzy numbers, fuzzy sense

1 Introduction

In paper [1,6,8], they use fuzzy number to fuzzify the crisp linear programming. They do not use interval-valued fuzzy numbers to fuzzify. In [1], for crisp linear programming, the constraints equations are $\sum_{j=1}^{n} a_{kj}x_{j} \leq b_{k}$, $k=1,2,\cdots,m$. They use fuzzy number \widetilde{a}_{kj} , \widetilde{b}_{k} to fuzzify and get the fuzzy numbers inequality $\sum_{j=1}^{n} \widetilde{a}_{kj}x_{j} \lesssim \widetilde{b}_{k}$, $k=1,2,\cdots,m$. Then they use ranking of fuzzy numbers to get linear programming in the fuzzy sense. They do not defuzzify the objective function and did not use interval-valued fuzzy numbers to defuzzify. In [6], they use trapezoidal fuzzy numbers to fuzzify c_{j} , a_{kj} , b_{k} as \widetilde{c}_{j} , \widetilde{a}_{kj} , \widetilde{b}_{k} . Then get $\widetilde{Z} = \sum_{j=1}^{n} \widetilde{c}_{j}x_{j}$, $\sum_{j=1}^{n} \widetilde{a}_{kj}x_{j} \lesssim \widetilde{b}_{k}$, $k=1,2,\cdots,m$. They reduce it to linear programming in the fuzzy sense. They do not use interval-valued fuzzy numbers to discuss. In this paper, we use interval-valued fuzzy numbers to consider this

problem. In §2, we discuss interval-valued fuzzy numbers and their ranking which will be used in §3, 4. In §3, for crisp linear programming under constraints is as following: $\sum_{j=1}^{n} a_{kj} x_j \leq b_k, k = 1, 2, \dots, m, x_j \geq 0, j = 1, 2, \dots, n$

we find optimal solution of objective function $Z = \sum_{j=1}^{n} c_j x_j$. In monopoly market, the price $c_j, j = 1, 2, \dots, n$ can be determined by the factory. If $a_{kj}, b_k, j = 1, 2, \dots, n, k = 1, 2, \dots, m$ do not vary in the plan period T, but c_j in the plan period T for a perfect competitive market may fluctuate a little, we need to fuzzify c_i to \tilde{c}_i . In this plan period T, the grade of membership is not necessary equal to 1. We suppose that the grade of membership lies in the interval $[\lambda, 1], 0 < \lambda < 1$. We set \tilde{c}_i to be level $(\lambda, 1)$ i-v fuzzy number. Through this, we get the linear programming in the fuzzy sense. This is stated in theorem 1. In §3.3, we fuzzify a_{kj} and b_k , $j=1,2,\cdots,n, k=1,2,\cdots,m$. in the constraints for the crisp linear programming to interval-valued fuzzy numbers \widetilde{a}_{kj} , \widetilde{b}_k and get $\sum_{j=1}^{n} \widetilde{a}_{kj} x_j \lesssim \widetilde{b}_k, k = 1, 2, \dots, m$. Using ranking of the interval-valued fuzzy numbers in §2, we have linear programming in the fuzzy sense. This is stated in theorem 2. In §3.4, we combine theorem 1 and 2 and obtain fuzzy objective function $\widetilde{Z} = \sum_{j=1}^{n} \widetilde{c}_{j} x_{j}$ and fuzzy constraints $\sum_{j=1}^{n} \widetilde{a}_{kj} x_{j} \lesssim \widetilde{b}_{k}, k = 1, 2, \dots, m$. Then we have a linear programming in the fuzzy sense. This is stated in

theorem 3. In §4, we give an example and §5 we give the discussions.

2 Interval-Valued Fuzzy Numbers and Ranking

For the purpose to consider fuzzy programming based on interval-valued fuzzy numbers and ranking, we first consider the following:

Definition 1 \tilde{a} is called a fuzzy point, if its membership function on $R=(-\infty,$ $+\infty$) is

$$\mu_{\widetilde{a}}(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases} \tag{1}$$

Definition 2 \widetilde{C} is called a level λ fuzzy number, $0 < \lambda \leq 1$, if its membership function is

$$\mu_{\widetilde{C}}(x) = \begin{cases} \frac{\lambda(x-a)}{b-a} & a \le x \le b\\ \frac{\lambda(c-x)}{c-b} & b \le x \le c\\ 0 & \text{otherwise} \end{cases}$$
 (2)

We denote $\widetilde{C} = (a, b, c; \lambda)$. When $a = b = c, \lambda = 1$ then $(a, a, a; 1) = \widetilde{a}$ is a fuzzy point.

Definition 3 A fuzzy set is called the level α fuzzy interval, $0 \le \alpha \le 1$ and denote it by $[a, b; \alpha], a < b$, if its membership function is

$$\mu_{[a,b;\alpha]}(x) = \begin{cases} \alpha & a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$$
 (3)

When $a = b, \alpha = 1$ then $[a, a; 1] = \tilde{a}$ is a fuzzy point.

Definition 4 ([3]) An interval-valued fuzzy set (i-v fuzzy set for short) \widetilde{A} on R is given by $\widetilde{A} \triangleq \{(x, [\mu_{\widetilde{A}^L}(x), \mu_{\widetilde{A}^U}(x)])\}, \ x \in R \text{ where } \mu_{\widetilde{A}^L} \text{ and } \mu_{\widetilde{A}^U} \text{ maps } R \text{ into } [0,1] \text{ and } \mu_{\widetilde{A}^L} \leq \mu_{\widetilde{A}^U}, \forall x \in R. \text{ Denote } \mu_{\widetilde{A}}(x) = [\mu_{\widetilde{A}^L}(x), \mu_{\widetilde{A}^U}(x)], x \in R \text{ or } \mathbb{R}$

$$\widetilde{A} = [\widetilde{A}^L, \widetilde{A}^U] \tag{4}$$

Then the grade of membership of i-v fuzzy set \widetilde{A} at x belongs to the interval $[\mu_{\widetilde{A}^L}(x), \mu_{\widetilde{A}^U}(x)]$

Fig.1 level (λ, ρ) i-v fuzzy number

Let

$$\mu_{\widetilde{A}L}(x) = \begin{cases} \frac{\lambda(x-a)}{b-a} & a \le x \le b\\ \frac{\lambda(c-x)}{c-b} & b \le x \le c\\ 0 & \text{otherwise} \end{cases}$$
 (5)

then $\widetilde{A}^L = (a, b, c; \lambda)$ is called level λ fuzzy number. Let

$$\mu_{\widetilde{A}U}(x) = \begin{cases} \frac{\rho(x-p)}{b-p} & p \leq x \leq b\\ \frac{\rho(r-x)}{r-b} & b \leq x \leq r\\ 0 & \text{otherwise} \end{cases}$$
 (6)

then $\widetilde{A}^U = (p, b, r; \rho)$, where $0 < \lambda \leq \rho \leq 1, p < a < b < c < r$. We get i-v fuzzy set $\widetilde{A} \triangleq \{(x, [\mu_{\widetilde{A}^L}(x), \mu_{\widetilde{A}^U}(x)])\}, x \in R$. Denote $\widetilde{A} = [(a, b, c; \lambda), (p, b, r; \rho)] = [\widetilde{A}^L, \widetilde{A}^U]$ and call \widetilde{A} level (λ, ρ) i-v fuzzy number.

The family of all level (λ, ρ) i-v fuzzy numbers is defined as following, where $0 < \lambda \le \rho \le 1$,

$$F_{IN}(\lambda, \rho) = \{ [(a, b, c; \lambda), (p, b, r; \rho)] | p < a < b < c < r, p, a, b, c, r \in R \}$$
 (7)

Let $\widetilde{A} = [(a, b, c; \lambda), (p, b, r; \rho)] = [\widetilde{A}^L, \widetilde{A}^U] \in F_{IN}(\lambda, \rho)$. From eqs.(5) and (6), we get the left and right endpoint of α -cut as following:

$$\text{if } 0 \leqq \alpha < \lambda \text{ then } A_l^L(\alpha) = a + (b - a) \frac{\alpha}{\lambda}, \qquad A_r^L(\alpha) = c - (c - b) \frac{\alpha}{\lambda} \\ A_l^U(\alpha) = p + (b - p) \frac{\alpha}{\rho}, \qquad A_r^u(\alpha) = r - (r - b) \frac{\alpha}{\rho} (8) \\ \text{and if } \lambda \leqq \alpha \leqq \rho \text{ then } A_l^U(\alpha) = p + (b - p) \frac{\alpha}{\rho}, \qquad A_r^U(\alpha) = r - (r - b) \frac{\alpha}{\rho}$$

Let $\widetilde{B} = [(d, e, g; \lambda), (u, e, w; \rho)] = [\widetilde{B}^L, \widetilde{B}^U] \in F_{IN}(\lambda, \rho)$. Through operations \oplus of level λ fuzzy numbers and level ρ fuzzy numbers, we can get the following

$$\widetilde{A}^L \oplus \widetilde{B}^L = (a+d, b+e, c+g; \lambda), \qquad \widetilde{A}^U \oplus \widetilde{B}^U = (p+u, b+e, r+w; \rho)(9)$$

Definition 5 $\widetilde{A}, \widetilde{B} \in F_{IN}(\lambda, \rho), k \in R$

$$\widetilde{A} \oplus \widetilde{B} = [\widetilde{A}^L \oplus \widetilde{B}^L, \ \widetilde{A}^U \oplus \widetilde{B}^U]$$
 (10)

$$k\widetilde{A} = [k\widetilde{A}^L, \ k\widetilde{A}^U] \tag{11}$$

From eqs.(9) \sim (11), we have the following

Property 1 Let $\widetilde{A}=[(a,b,c;\lambda),(p,b,r;\rho)],\widetilde{B}=[(d,e,g;\lambda),(u,e,w;\rho)]\in F_{IN}(\lambda,\rho)$ then

$$(1^0)\ \widetilde{A} \oplus \widetilde{B}\ = [(a+d,b+e,c+g;\lambda),(p+u,b+e,r+w;\rho)]$$

(2°) when
$$k > 0$$
 then $k\widetilde{A} = [(ka, kb, kc; \lambda), (kp, kb, kr; \rho)]$

(3°) when
$$k < 0$$
 then $k\widetilde{A} = [(kc, kb, ka; \lambda), (kr, kb, kp; \rho)]$

(4⁰) when
$$k = 0$$
 then $k\widetilde{A} = [(0, 0, 0; \lambda), (0, 0, 0; \rho)]$

with the similarly arguments as [9], we use signed distance to consider ranking. In order to consider ranking of $F_{IN}(\lambda, \rho)$ in R, we first consider ranking on R. **Definition 6** Let $a, 0 \in R$, we define the signed distance d^* as $d^*(a, 0) = a$.

The meaning of d^* is that when a > 0, $d^*(a,0) = a > 0$, i.e. a is at the right of 0 and the distance from 0 is a, when a < 0, $d^*(a,0) = -a < 0$, i.e. a is at the left of 0 and the distance from 0 is -a. Therefore, $d^*(a,0)$ is called the signed distance of a from 0.

The signed distance on $F_{IN}(\lambda, \rho)$, by definition 6, can be defined by the following: if $\widetilde{A} = [(a, b, c; \lambda), (p, b, r; \rho)] = [\widetilde{A}^L, \widetilde{A}^U] \in F_{IN}(\lambda, \rho)$. The α -level set of $\widetilde{A} = [\widetilde{A}^L, \widetilde{A}^U] \in F_{IN}(\lambda, \rho)$ is defined as $\{x \mid \mu_{\widetilde{A}^U}(x) \geq \alpha\} - \{x \mid \mu_{\widetilde{A}^L}(x) > \alpha\}$, then by Decomposition Theorem and Fig.2 we have

$$\widetilde{A} = \bigcup_{0 \le \alpha < \lambda} ([A_l^U(\alpha), A_l^L(\alpha); \alpha] \cup [A_r^L(\alpha), A_r^U(\alpha); \alpha]) \cup (\bigcup_{\lambda \le \alpha \le \rho} [A_l^U(\alpha), A_r^U(\alpha); \alpha])$$

$$(12)$$

Fig.2 signed distance of i-v fuzzy numbers

We have following one-one onto mapping for each α . When $0 \leq \alpha < \lambda$,

$$[A_l^U(\alpha), A_l^L(\alpha); \alpha]$$
 (corresponding PQ) $\longleftrightarrow [A_l^U(\alpha), A_l^L(\alpha)] = [P', Q'],$

$$[A_r^L(\alpha), A_r^U(\alpha); \alpha]$$
 (corresponding RS) $\longleftrightarrow [A_r^L(\alpha), A_r^U(\alpha)] = [R', S'],$

and
$$[A_l^U(\alpha), A_l^L(\alpha)] \cap [A_r^L(\alpha), A_r^U(\alpha)] = \emptyset$$
, and when $\lambda \leq \alpha \leq \rho$,

$$[A_l^U(\alpha), A_r^U(\alpha); \alpha]$$
 (corresponding TW) $\longleftrightarrow [A_l^U(\alpha), A_r^U(\alpha)] = [T', W']$.

From definition 6, we obtain when $0 \le \alpha < \lambda$, $d^*(A_l^U(\alpha), 0) = A_l^U(\alpha)$, $d^*(A_l^L(\alpha), 0) = A_l^L(\alpha)$, $d^*(A_r^L(\alpha), 0) = A_r^L(\alpha)$, and $d^*(A_r^U(\alpha), 0) = A_r^U(\alpha)$. That is to say, the signed distances of P', Q', R', S' from 0 are $A_l^U(\alpha), A_l^L(\alpha)$, $A_r^L(\alpha)$, and $A_r^U(\alpha)$. Therefore, the signed distance of interval $[A_l^U(\alpha), A_l^L(\alpha)]$ from 0 is $d^*([A_l^U(\alpha), A_l^L(\alpha)], 0)$. It can be defined as

$$\begin{split} \frac{1}{2}[d^*(A_l^U(\alpha),0) + d^*(A_l^L(\alpha),0)] & &= \frac{1}{2}[A_l^U(\alpha) + A_l^L(\alpha)] \\ & &= \frac{1}{2}[a + p + (b - a)\frac{\alpha}{\lambda} + (b - p)\frac{\alpha}{\rho}] \end{split}$$

Similarly, $d^*([A_r^L(\alpha), A_r^U(\alpha)], 0) = \frac{1}{2}[c + r - (c - b)\frac{\alpha}{\lambda} - (r - b)\frac{\alpha}{\rho}]$ Since, $[P',Q'] \cap [R',S'] = \emptyset$, for the α -cut of \widetilde{A} on $0 \le \alpha < \lambda$, the signed distance of $[P',Q'] \cup [R',S']$ from 0, can be defined as

$$\begin{split} d^*([A_l^U(\alpha), A_l^L(\alpha)] &\cup [A_r^L(\alpha), A_r^U(\alpha)], 0) \\ &= \frac{1}{2} [d^*([A_l^U(\alpha), A_l^L(\alpha)], 0) + d^*([A_r^L(\alpha), A_r^U(\alpha)], 0)] \\ &= \frac{1}{4} [a + p + c + r + (2b - a - c) \frac{\alpha}{\lambda} + (2b - p - r) \frac{\alpha}{\rho}] \end{split}$$

This function is continuous on $0 \le \alpha < \lambda$ with respect to α . It follows that, by integration, we can find the average value.

$$\frac{1}{\lambda} \int_0^{\lambda} d^*([A_l^U(\alpha), A_l^L(\alpha)] \cup [A_r^L(\alpha), A_r^U(\alpha)], 0) d\alpha
= \frac{1}{8} [a + c + 2b + 2p + 2r + (2b - p - r) \frac{\lambda}{\rho}]$$
(13)

Similarly, when $\lambda \leq \alpha \leq \rho$,

$$\begin{split} d^*([A_l^U(\alpha), A_r^U(\alpha)], 0) & = \frac{1}{2} [d^*(A_l^U(\alpha), 0) + d^*(A_r^U(\alpha), 0)] \\ & = \frac{1}{2} [A_l^U(\alpha) + A_r^U(\alpha)] \\ & = \frac{1}{2} [p + r + (2b - p - r) \frac{\alpha}{\rho}] \end{split}$$

This function is also continuous on $\lambda \leq \alpha \leq \rho$ with respect to α . By the same reason, through integration, find the average value, $\lambda < \rho$.

$$\frac{1}{\rho - \lambda} \int_{\lambda}^{\rho} d^*([A_l^U(\alpha), A_r^U(\alpha)], 0) d\alpha$$

$$= \frac{1}{4} [2b + p + r + (2b - p - r) \frac{\lambda}{\rho}] \tag{14}$$

From eqs.(12) \sim (14) we define the signed distance of \widetilde{A} from $\widetilde{0}$.

Definition 7 Let $\widetilde{A} = [a, b, c; \lambda), (p, b, r; \rho) \in F_{IN}(\lambda, \rho)$. The signed distance of \widetilde{A} from $\widetilde{0}$ is defined as

 (1^0) when $0 < \lambda < \rho \le 1$,

$$d(\widetilde{A}, \widetilde{0}) = \frac{1}{\lambda} \int_0^{\lambda} d^*([A_l^U(\alpha), A_l^L(\alpha)] \cup [A_r^L(\alpha), A_r^U(\alpha)], 0) d\alpha$$
$$+ \frac{1}{\rho - \lambda} \int_{\lambda}^{\rho} d^*([A_l^U(\alpha), A_r^U(\alpha)], 0) d\alpha$$
$$= \frac{1}{8} [6b + a + c + 4p + 4r + 3(2b - p - r) \frac{\lambda}{\rho}]$$

(2⁰) when $0 < \lambda = \rho \le 1$,

$$d(\widetilde{A}, \widetilde{0}) = \frac{1}{8} [4b + a + c + p + r]$$

By definition 7, we can define the ranking of $F_{IN}(\lambda, \rho)$ as following:

Definition 8 Let $\widetilde{A} = [(a, b, c; \lambda), (p, b, r; \rho)], \ \widetilde{B} = [(d, e, g; \lambda), (u, e, w; \rho)] \in F_{IN}(\lambda, \rho),$

$$\widetilde{B} \prec \widetilde{A} \text{ iff } d(\widetilde{B}, \widetilde{0}) < d(\widetilde{A}, \widetilde{0})$$

$$\widetilde{B} \approx \widetilde{A} \text{ iff } d(\widetilde{B}, \widetilde{0}) = d(\widetilde{A}, \widetilde{0})$$

From linear order property of (R, <, =) and definition 8, we get the following property.

Property 2 Let $\widetilde{A}, \widetilde{B}, \widetilde{C} \in F_{IN}(\lambda, \rho)$.

- (a) $(F_{IN}(\lambda, \rho), \approx, \prec)$ satisfies the law of trichotomy, i.e., only one of $\widetilde{A} \prec \widetilde{B}$, $\widetilde{A} \approx \widetilde{B}$, $\widetilde{B} \prec \widetilde{A}$ will occur.
- (b) $(F_{IN}(\lambda, \rho), \approx, \prec)$ satisfies the following ordering relation
 - (1^0) $\widetilde{A} \lesssim \widetilde{A}$
 - (2°) $\widetilde{A} \lesssim \widetilde{B}$ and $\widetilde{B} \lesssim \widetilde{A} \Longrightarrow \widetilde{A} \approx \widetilde{B}$
 - (3°) $\widetilde{A} \lesssim \widetilde{B}$ and $\widetilde{B} \lesssim \widetilde{C} \Longrightarrow \widetilde{A} \lesssim \widetilde{C}$

From property 2, we known that " \approx , \prec ," is the linear order on $F_{IN}(\lambda, \rho)$. **Definition 9** Let \widetilde{A}_n , $n = 1, 2, 3, \dots$, $\widetilde{B} \in F_{IN}(\lambda, \rho)$. If $\widetilde{A}_n \lesssim \widetilde{B} \quad \forall n = 1, 2, \dots$, then we write $\widetilde{B} = \max_{n \in \{1, 2, 3, \dots\}} \widetilde{A}_n$

3 Fuzzy objective function in linear programming based on interval-valued fuzzy numbers

3.1 Crisp linear programming

Consider the following crisp linear programming problem.

A factory produces n productors X_j , $j=1,2,\cdots,n$. Each product requires m processes A_k , $k=1,2,\cdots,m$. Product X_j , through process A_k requires a_{kj} hours, $k=1,2,\cdots,m$, $j=1,2,\cdots,n$. Each process A_k provides b_k hours, $k=1,2,\cdots,m$. Let the quantity produced for X_j be x_j , $j=1,2,\cdots,n$. Then we get the following constraint functions

$$\sum_{j=1}^{n} a_{kj} x_j \le b_k, \ k = 1, 2, \dots, m.$$

In monopoly market, the monopolist can determine the sale price $c_j(>0)$, $j=1,2,\dots,n$ and can get total income $Z=\sum_{j=1}^n c_j x_j$ Therefore, we have the following crisp linear programming objective function

Maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$
 (15)

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j \le b_k, \quad k = 1, 2, \dots, m$$
 (16)

$$x_j \geqq 0, \quad j = 1, 2, \cdots, n \tag{17}$$

Let

$$L = \{(x_1, x_2, \dots, x_n) | \sum_{i=1}^n a_{kj} x_j \leq b_k, k = 1, 2, \dots, m, x_j \geq 0, j = 1, 2, \dots, n \}.$$

Obvious, L is a closed bounded convex set. Under condition eqs.(16) and (17), monopolist can find out x_j , $j=1,2,\cdots,n$ which maximize the total income Z. This is a crisp linear programming problem. We can use simplex method to find the optimal solution. Suppose that this optimal solution is the production quantity $x_j^{(0)}$, $j=1,2,\cdots,n$. The total income $Z_0=\sum_{j=1}^n c_j x_j^{(0)}$ is maximized. If in a plan period, a_{kj} , b_k , c_j , $j=1,2,\cdots,n$, $k=1,2,\cdots,m$ do not change, The result stays the same. That is to say, in this period, the optimal solutions of the product X_j is the quantity $x_j^{(0)}$, $j=1,2,\cdots,n$.

In a perfect competitive market, the price c_j in a plan period may fluctuate a little. We can fuzzify to $\widetilde{c_j}$. In this plan period T, the grade of membership of c_j is not necessarily equal to 1. We let the grade of membership of c_j lie in the interval $[\lambda, 1], 0 < \lambda < 1$, (see Fig.3). Set $\widetilde{c_j}$ to be level $(\lambda, 1)$ i-v fuzzy number, $0 < \lambda < 1$.

$$\widetilde{c}_{i} = [(c_{i} - \delta_{i2}, c_{i}, c_{j} + \delta_{i3}; \lambda), (c_{i} - \delta_{i1}, c_{i}, c_{j} + \delta_{i4}; 1)], j = 1, 2, \dots, n$$
 (18)

where $0 < \delta_{i2} < \delta_{i1} < c_i$, $0 < \delta_{i3} < \delta_{i4}$, $j = 1, 2, \dots, n$.

Fig.3 level $(\lambda,1)$ i-v fuzzy numbers $\widetilde{c_i}$

3.2 Fuzzy objective function

We denote $(x_1\tilde{c}_1) \bigoplus (x_2\tilde{c}_2) \bigoplus \cdots \bigoplus (x_n\tilde{c}_n)$ as $\sum_{j=1}^n \tilde{c}_j x_j$. In eqs.(15)~(17), if we fuzzify c_j , $j = 1, 2, \dots, n$ to level $(\lambda, 1)$ i-v fuzzy numbers in a crisp linear programming, we will have the following result.

Theorem 1 In crisp linear programming eqs.(15) \sim (17), we fuzzify c_j , $j = 1, 2, \dots, n$ to eq.(18), then we have

(a) Fuzzy programming

Maximize
$$\widetilde{Z} = \sum_{j=1}^{n} \widetilde{c}_{j} x_{j}$$
 (by definition 9) (19)

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j \le b_k, \ k = 1, 2, \dots, m$$
 (20)

$$x_i \ge 0, \ j = 1, 2, \cdots, n$$
 (21)

(b) Corresponding to (a), by definition 7, 8, 9 we get linear programming in the fuzzy sense as following:

Maximize $Z^* = \frac{1}{2}d(\widetilde{Z}, \widetilde{0})$

$$= \sum_{j=1}^{n} c_j x_j + \frac{1}{16} \sum_{j=1}^{n} [\delta_{j3} - \delta_{j2} + (4 - 3\lambda)(\delta_{j4} - \delta_{j1})] x_j$$
 (22)

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j \le b_k, \ k = 1, 2, \dots, m$$
 (23)

$$x_i \ge 0, \quad j = 1, 2, \dots, n$$
 (24)

Proof: (a) It follows from eqs. (15), (18) and definition 9.

(b) Since $x_j \ge 0, j = 1, 2, \dots, n$, by property 1, we get

$$\widetilde{Z} = \left[\left(\sum_{j=1}^{n} (c_j - \delta_{j2}) x_j, \sum_{j=1}^{n} c_j x_j, \sum_{j=1}^{n} (c_j + \delta_{j3}) x_j; \lambda \right),$$

$$\left(\sum_{j=1}^{n} (c_j - \delta_{j1}) x_j, \sum_{j=1}^{n} c_j x_j, \sum_{j=1}^{n} (c_j + \delta_{j4}) x_j; 1 \right) \right]$$

Through definition 7, we obtain

$$d(\widetilde{Z}, \widetilde{0}) = 2\sum_{j=1}^{n} c_j x_j + \frac{1}{8} \sum_{j=1}^{n} [\delta_{j3} - \delta_{j2} + (4 - 3\lambda)(\delta_{j4} - \delta_{j1})] x_j$$

Using definition 8, 9 and putting them to eq.(19), we have eq.(22). This prove (b).

Remark 1 In eq.(22), when $\delta_{j1} = \delta_{j2} = \delta_{j3} = \delta_{j4} = 0$, $j = 1, 2, \dots, n$, this equation reduces eq.(15), i.e., $Z^* = Z$. Therefore, we take $\frac{1}{2}d(\widetilde{Z}, \widetilde{0})$ in eq.(22). **Remark 2** In theorem 1(b), eqs.(22)~(24), the linear programming in the fuzzy sense can be found by the simplex method (or using computer package) to find the optimal solution.

3.3 fuzzy constraints

Suppose the sale price c_j , $j=1,2,\cdots,n$ do not vary in the plan period T. Similarly to §3.1, §3.2, we consider constraints of eq.(16) $\sum_{j=1}^{n} a_{kj}x_j \leq b_k$, $k=1,2,\cdots,m$. We fuzzify both a_{kj} , b_k , $j=1,2,\cdots,n$, $k=1,2,\cdots,m$ as the following interval-valued fuzzy numbers, $0 < \lambda < 1$

$$\widetilde{a}_{kj} = [(a_{kj} - \delta_{kj2}, \ a_{kj}, \ a_{kj} + \delta_{kj3}; \lambda), \ (a_{kj} - \delta_{kj1}, \ a_{kj}, \ a_{kj} + \delta_{kj4}; 1)]$$
 (25)

where $0 < \delta_{kj2} < \delta_{kj1} < a_{kj}, \ 0 < \delta_{kj3} < \delta_{kj4} \quad \forall j, k$

$$\widetilde{b}_k = [(b_k - \omega_{k2}, b_k, b_k + \omega_{k3}; \lambda), (b_k - \omega_{k1}, b_k, b_k + \omega_{k4}; 1)]$$
 (26)

where $0 < \omega_{k2} < \omega_{k1} < b_k$, $0 < \omega_{k3} < \omega_{k4}$, $k = 1, 2, \dots, m$.

Theorem 2 In eqs.(15) \sim (17) of the crisp linear programming, if we fuzzify a_{kj} , b_k , $k = 1, 2, \dots, m$, $j = 1, 2, \dots, n$ to level $(\lambda, 1)$ i-v fuzzy numbers eqs.(25) and (26) then we have the following:

(a) Fuzzy programming

Maximize
$$Z = \sum_{i=1}^{n} c_i x_i$$

subject to:

$$\sum_{j=1}^{n} \widetilde{a}_{kj} x_j \lesssim \widetilde{b}_k, \ k = 1, 2, \cdots, m$$
 (27)

$$x_j \ge 0, \ j = 1, 2, \cdots, n$$
 (28)

(b) Corresponding to (a), by definition 7, 8, 9 we get the linear programming in the fuzzy sense as

Maximize
$$Z = \sum_{j=1}^{n} c_j x_j \tag{29}$$

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j + \frac{1}{16} \sum_{j=1}^{n} [\delta_{kj3} - \delta_{kj2} + (4 - 3\lambda)(\delta_{kj4} - \delta_{kj1})] x_j$$

$$\leq b_k + \frac{1}{16} [\omega_{k3} - \omega_{k2} + (4 - 3\lambda)(\omega_{k4} - \omega_{k1})], \ k = 1, 2, \dots, m \quad (30)$$

$$x_j \geq 0, \ j = 1, 2, \dots, n \quad (31)$$

Proof: (b) Using definition 8 and putting into eq.(27), we have $d(\sum_{j=1}^{n} \widetilde{a}_{kj} x_j, \widetilde{0}) \leq \widetilde{a}_{kj} \widetilde{a$

 $d(\widetilde{b}_k, \widetilde{0}), \ k = 1, 2, \dots, m.$ From definition 7, we get eq.(30).

3.4 Fuzzy objective function and Fuzzy constraints

Combining §3.2 and §3.3, we have the following result.

Theorem 3 In eqs.(15) \sim (17) of the crisp linear programming, if we fuzzify c_j , a_{kj} , b_k , $j=1,2,\cdots,n$, $k=1,2,\cdots,m$, to level $(\lambda,1)$ i-v fuzzy numbers eqs.(18)(25)(26), then we obtain

(a) Fuzzy programming

Maximize
$$\widetilde{Z} = \sum_{j=1}^{n} \widetilde{c}_{j} x_{j}$$
 (32)

subject to:

$$\sum_{j=1}^{n} \widetilde{a}_{kj} x_j \lesssim \widetilde{b}_k, \ k = 1, 2, \cdots, m$$
(33)

$$x_j \ge 0, \ j = 1, 2, \dots, n$$
 (34)

(b) Corresponding to (a), by definition 7, 8, 9 we get the linear programming in the fuzzy sense as

Maximize
$$Z^* = \sum_{j=1}^{n} c_j x_j + \frac{1}{16} \sum_{j=1}^{n} [\delta_{j3} - \delta_{j2} + (4 - 3\lambda)(\delta_{j4} - \delta_{j1})] x_j$$
 (35)

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j + \frac{1}{16} \sum_{j=1}^{n} [\delta_{kj3} - \delta_{kj2} + (4 - 3\lambda)(\delta_{kj4} - \delta_{kj1})] x_j$$

$$\leq b_k + \frac{1}{16} [\omega_{k3} - \omega_{k2} + (4 - 3\lambda)(\omega_{k4} - \omega_{k1})], \ k = 1, 2, \dots, m$$
(36)

$$x_j \ge 0, \ j = 1, 2, \cdots, n$$
 (37)

4 Examples

A factory produces automobils and truck. Each requires three processes. The production condition are given in table 1.

Table 1 production condition

r				
	process1	process2	process3	profit
type	hour	hour	hour	hundred dollars
automobil	15	24	21	25
truck	30	6	14	48
total hour	45000	24000	28000	

Let the quantity of automobils and truck produced be x_1 and x_2 . Then we have the following crisp linear programming

Maximize
$$Z = 25x_1 + 48x_2$$
 (hundred dollars) (38)

subject to:

$$15x_1 + 30x_2 \le 45000$$

$$24x_1 + 6x_2 \le 24000$$

$$21x_1 + 14x_2 \le 28000$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

$$(40)$$

Fig.4 closed bounded convex set of (39),(40)

In this figure, A(0, 1500), B(500, 1250), C(800, 800) and D(1000, 0).

[A] Crisp case

From Fig.4, the optimal solution of the crisp linear programming eqs. (38)~(40) are among the points A,B,C,D. Therefore, we get $x_1 = 500 (\equiv x_1^{(0)})$ and $x_2 = 1250 (\equiv x_2^{(0)})$ which will maximize the profit $Z = 72500 (\equiv z^{(0)})$.

[B] Fuzzy case

Case 2.1. Let $\delta_{11} = 7$, $\delta_{12} = 6$, $\delta_{13} = 8$, $\delta_{14} = 9$, $\delta_{21} = 5$, $\delta_{22} = 4$, $\delta_{23} = 6$, $\delta_{24} = 8$, $\lambda = 0.9$.

(B.1) From theorem 1(b).

Maximize
$$Z^* = 25x_1 + 48x_2 + \frac{1}{16}[4.6x_1 + 5.9x_2]$$

subject to:

$$\begin{array}{rcl}
15x_1 + 30x_2 & \leq 45000 \\
24x_1 + 6x_2 & \leq 24000 \\
21x_1 + 14x_2 & \leq 28000 \\
x_j \geq 0, & j = 1, 2
\end{array}$$

Since the constraints are the same as the crisp case, from Fig.4, we need only to consider points A,B,C,D where Z^* is the maximum. We have $x_1 = 500 (\equiv x_1^{(1)}), x_2 = 1250 (\equiv x_2^{(1)})$ and the maximum profit $Z^* = 73104.687$ (hundred dollars).

Case 2.2. Let

(B.2) From theorem 2(b).

$$Maximize Z = 25x_1 + 48x_2 (41)$$

subject to:

$$15x_1 + 30x_2 + \frac{1}{16}(-1.6x_1 + 0.3x_2) \le 45000 + \frac{1}{16}(62)$$

$$24x_1 + 6x_2 + \frac{1}{16}(5.5x_1 + 1.3x_2) \le 24000 + \frac{1}{16}(30)$$

$$21x_1 + 14x_2 + \frac{1}{16}(-3x_1 + 5.6x_2) \le 28000 + \frac{1}{16}(7)$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

$$(43)$$

From eq.(42) and (43), the closed bounded convex set L is the following:

$$14.9x_1 + 30.01875x_2 \le 45003.875$$

$$24.34375x_1 + 6.08125x_2 \le 24001.875$$

$$20.8125x_1 + 14.35x_2 \le 28000.4375$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

$$(45)$$

Fig. 5 closed bounded convex set of (44),(45)

In Fig. 5, $A_1(3020.394,0)$, $B_1(0,1499.192)$, $A_2(985.956,0)$, $B_2(0,3946.865)$, $A_3(1345.366,0)$, $B_3(0,1951.25)$. The vertices of L are B_1 , B(475.353,1261.822), C(781.756,817.432), $A_2(985.956,0)$. Since the optimal solution must be integers, we consider the points in L which are closest to point B_1 , B, C, A_2 . Here we take points $B_1^*(0,1499)$, $B^*(475,126)$, $C^*(781,817)$ and $A_2(985,0)$. The optimal solution of eq.(41) occurs when $x_1 = 475 (\equiv x_1^{(2)})$, $x_2 = 1261 (\equiv x_2^{(2)})$ and the maximum profit is Z = 72403.

5 Discussion

- (A) The crisp case is a special case of the fuzzy case.
- (a) In theorem 1(b), let $\delta_{j2} = \delta_{j3}$ and $\delta_{j1} = \delta_{j4}$, $j = 1, 2, \dots, n$. Then, in theorem 1(b), eqs.(22) \sim (24) reduces to

Maximize
$$Z^* = \sum_{j=1}^n c_j x_j$$

subject to:

$$\sum_{j=1}^{n} a_{kj} x_j \leq b_k, \quad k = 1, 2, \dots, m$$
$$x_j \geq 0, \quad j = 1, 2, \dots, n$$

this is the crisp case of eqs.(15) \sim (17). Therefore, the crisp case of eqs.(15) \sim (17) is a special case of theorem 1(b).

(b) In theorem 2(b), let $\delta_{kj2} = \delta_{kj3}$ and $\delta_{kj1} = \delta_{kj4}$, $j = 1, 2, \dots, n$, $\omega_{k2} = \omega_{k3}$ and $\omega_{k1} = \omega_{k4}$ for all $k = 1, 2, \dots, m$, $j = 1, 2, \dots, n$, then in theorem 2(b), eqs.(29)~(31) reduce to the crisp case of eqs.(15)~(17). Therefore, the crisp case of eqs.(15)~(17) is a special case of theorem 2(b).

- (c) In theorem 1,2(b), each are special case of theorem 3(b).
 - (c1) In theorem 3(b), let $\delta_{kj2} = \delta_{kj3}$ and $\delta_{kj1} = \delta_{kj4}$, $\omega_{k2} = \omega_{k3}$ and $\omega_{k1} = \omega_{k4}$ for all $k = 1, 2, \dots, m, j = 1, 2, \dots, n,$ then theorem 3(b) eqs.(35)~(37) reduce to theorem 1(b) eqs.(22)~(24). Therefore, theorem 1(b) is a special case of theorem 3(b).
 - (c2) In theorem 3(b), let $\delta_{j2} = \delta_{j3}$ and $\delta_{j1} = \delta_{j4}$, $j = 1, 2, \dots, n$, then theorem 3(b) eqs.(35)~(37) reduce to theorem 2(b) eqs.(29)~(31). Therefore, theorem 2(b) is a special case of theorem 3(b).
- (B) The result of fuzzification by fuzzy numbers is a special case of fuzzification by interval-valued fuzzy numbers.
- (b1) In theorem 1 eq.(18), let $\delta_{j3} = \delta_{j2} = 0$ for all j and $\lambda = 0$. From Fig.3, we have level $(\lambda,1)$ i-v fuzzy number in eq.(18) reduce to fuzzy number $\widetilde{c}_j = (c_j \delta_{j1}, c_j, c_j + \delta_{j4}; 1), \ j = 1, 2, \cdots, n$. This implies eq.(19) in theorem 1(a) use fuzzy numbers $\widetilde{c}_j = (c_j \delta_{j1}, c_j, c_j + \delta_{j4}; 1), \ j = 1, 2, \cdots, n$. In theorem 1(b), eq.(22). $Z^* = \sum_{j=1}^n c_j x_j + \frac{1}{4} \sum_{j=1}^n (\delta_{j4} \delta_{j1}) x_j$ is the result of defuzzification by signed distance using fuzzy numbers $\widetilde{c}_j = (c_j \delta_{j1}, c_j, c_j + \delta_{j4}; 1)$, through

$$d(\widetilde{c_j}, \widetilde{0}) = \frac{1}{2} \int_0^1 (\widetilde{c_{jL}}(\alpha) + \widetilde{c_{jU}}(\alpha)) d\alpha = c_j + \frac{1}{4} (\delta_{j4} - \delta_{j1})$$

Therefore, the defuzzification by using fuzzy numbers is a special case of using level $(\lambda, 1)$ i-v fuzzy numbers.

(b2) In theorem 2(a), let $\delta_{kj2} = \delta_{kj1} = 0$, $\omega_{k2} = \omega_{k1} = 0$ for all j, k, and $\lambda = 0$. It is similarly to (b1). Level $(\lambda, 1)$ i-v fuzzy numbers in eq.(25) reduce to fuzzy numbers $\widetilde{a}_{kj} = (a_{kj} - \delta_{kj1}, a_{kj}, a_{kj} + \delta_{kj4}; 1)$, and level $(\lambda, 1)$ i-v fuzzy neumbers in eq.(26) reduce to fuzzy number $\widetilde{b}_k = (b_k - \omega_{k1}, b_k, b_k + \omega_{k4}; 1)$ for all j, k. $\widetilde{a}_{kj}, \widetilde{b}_k, k = 1, 2, \dots, m, j = 1, 2, \dots, n$ in eq.(27) of theorem 2(a) are all fuzzy numbers. Eq.(30) in theorem 2 becomes

$$\sum_{j=1}^{n} a_{kj} x_j + \frac{1}{4} \sum_{j=1}^{n} (\delta_{kj4} - \delta_{kj1}) x_j \le b_k + \frac{1}{4} (\omega_{k4} - \omega_{k1}), \ k = 1, 2, \dots, m$$

This is the result of defuzzification of fuzzy number through the signed distance $d(\tilde{a}_{kj}, \tilde{0}) = a_{kj} + \frac{1}{4} \sum_{j=1}^{n} (\delta_{kj4} - \delta_{kj1}), d(\tilde{b}_k, \tilde{0}) = b_k + \frac{1}{4} (\omega_{k4} - \omega_{k1}).$ Therefore, it has the same conclusion as (b1). The defuzzification result by using fuzzy numbers is a special case of using level $(\lambda, 1)$ i-v fuzzy numbers.

(b3) In theorem 3, the same treatments will lead to the same conclusions as (b1) and (b2).

References

- [1] L. Campos and J.L. Verdegay, Linear programming problems and ranking of fuzzy numbers, Fuzzy Sets and Systems 32 (1989) 1-11.
- [2] D. Dufois and H. prade, System of linear fuzzy constraints. Fuzzy Sets and Systems 13 (1982) 1-10.
- [3] Marin B. Gorzalezang, A method of inference in appropriate reasoning based on interval-valued fuzzy sets. *Fuzzy Sets and Systems* 21 (1987) 1-17.
- [4] Arnold Kanfmann and Madan M. Gupta, *Introduction to fuzzy arithemetic theory and applications*, Van Nostrand Reinhold, New York 1991.
- [5] M. Minoux, Mathematical programming theory and applications. John Wile And Sons, New York 1986.
- [6] Jaroslow Ramik, Heinrich Rommeffanger, Fuzzy mathematical programming based on some new inequality relations, Fuzzy Sets and Systems 81 (1996) 77-87.
- [7] Ton Shaochebg, Interval numbers and fuzzy numbers linear programming, Fuzzy Sets and Systems 66 (1994) 301-306.
- [8] H,Tanaka, K Asal, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and Systems 13 (1984) 1-10.
- [9] J-S. Yao and Kuweimei Wu, Ranking fuzzy numbers based on de'compositions principle and signed distance, *Fuzzy Sets and Systems* 116 (2000) 275-288.

[10] H.J. Zimmrermann, Fuzzy Set Theory and its applications, Second Edition, Kluwer academic publishers, Boston/Dordrecoht/London 1991.

Received: August 4, 2006