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Abstract

In this paper, we use interval-valued fuzzy numbers to fuzzify the
crisp linear programming to three cases. The first case, we use interval-
valued fuzzy numbers to fuzzify the coefficients in the objective function.
We get a linear programming in the fuzzy sense. The second case, we use
interval-valued fuzzy numbers to fuzzify the coefficients akj in the con-
straints about xj, j = 1, 2, · · · , n and the constants bk, k = 1, 2, · · · , m.
We also get a linear programming in the fuzzy sense. The third case,
we combine the first and the second cases.
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1 Introduction

In paper [1,6,8], they use fuzzy number to fuzzify the crisp linear programming.
They do not use interval-valued fuzzy numbers to fuzzify. In [1], for crisp lin-

ear programming, the constraints equations are
n∑

j=1

akjxj � bk, k = 1, 2, · · · , m.

They use fuzzy number ãkj , b̃k to fuzzify and get the fuzzy numbers inequality
n∑

j=1

ãkjxj � b̃k, k = 1, 2, · · · , m. Then they use ranking of fuzzy numbers to get

linear programming in the fuzzy sense. They do not defuzzify the objective
function and did not use interval-valued fuzzy numbers to defuzzify. In [6],

they use trapezoidal fuzzy numbers to fuzzify cj, akj, bk as c̃j, ãkj, b̃k. Then get

Z̃ =
n∑

j=1

c̃jxj,
n∑

j=1

ãkjxj � b̃k, k = 1, 2, · · · , m. They reduce it to linear program-

ming in the fuzzy sense. They do not use interval-valued fuzzy numbers to
discuss. In this paper, we use interval-valued fuzzy numbers to consider this
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problem. In §2, we discuss interval-valued fuzzy numbers and their ranking
which will be used in §3, 4. In §3, for crisp linear programming under con-

straints is as following:
n∑

j=1

akjxj � bk, k = 1, 2, · · · , m, xj � 0, j = 1, 2, · · · , n

we find optimal solution of objective function Z =
n∑

j=1

cjxj. In monopoly

market, the price cj, j = 1, 2, · · · , n can be determined by the factory. If
akj, bk, j = 1, 2, · · · , n, k = 1, 2, · · · , m do not vary in the plan period T , but cj

in the plan period T for a perfect competitive market may fluctuate a little, we
need to fuzzify cj to c̃j . In this plan period T , the grade of membership is not
necessary equal to 1. We suppose that the grade of membership lies in the inter-
val [λ, 1], 0 < λ < 1. We set c̃j to be level (λ,1) i-v fuzzy number. Through this,
we get the linear programming in the fuzzy sense. This is stated in theorem 1.
In §3.3, we fuzzify akj and bk, j = 1, 2, · · · , n, k = 1, 2, · · · , m. in the constraints

for the crisp linear programming to interval-valued fuzzy numbers ãkj, b̃k and

get
n∑

j=1

ãkjxj � b̃k, k = 1, 2, · · · , m. Using ranking of the interval-valued fuzzy

numbers in §2, we have linear programming in the fuzzy sense. This is stated
in theorem 2. In §3.4, we combine theorem 1 and 2 and obtain fuzzy objective

function Z̃ =
n∑

j=1

c̃jxj and fuzzy constraints
n∑

j=1

ãkjxj � b̃k, k = 1, 2, · · · , m.

Then we have a linear programming in the fuzzy sense. This is stated in
theorem 3. In §4, we give an example and §5 we give the discussions.

2 Interval-Valued Fuzzy Numbers and Rank-

ing

For the purpose to consider fuzzy programming based on interval-valued fuzzy
numbers and ranking, we first consider the following:
Definition 1 ã is called a fuzzy point, if its membership function on R=(-∞,
+∞) is

μ
�a(x) =

{
1 x = a
0 x �= a

(1)

Definition 2 C̃ is called a level λ fuzzy number, 0 < λ � 1, if its membership
function is

μ
�C(x) =

⎧⎨
⎩

λ(x−a)
b−a

a � x � b
λ(c−x)

c−b
b � x � c

0 otherwise

(2)

We denote C̃ = (a, b, c; λ). When a = b = c, λ = 1 then (a, a, a; 1) = ã is a
fuzzy point.
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Definition 3 A fuzzy set is called the level α fuzzy interval, 0 � α � 1 and
denote it by [a, b; α], a < b, if its membership function is

μ[a,b;α](x) =

{
α a � x � b
0 otherwise

(3)

When a = b, α = 1 then [a, a; 1] = ã is a fuzzy point.

Definition 4 ([3]) An interval-valued fuzzy set (i-v fuzzy set for short) Ã on

R is given by Ã � {(x, [μ
�AL(x), μ

�AU (x)])}, x ∈ R where μ
�AL and μ

�AU maps R
into [0, 1] and μ

�AL � μ
�AU , ∀x ∈ R. Denote μ̄

�A(x) = [μ
�AL(x), μ

�AU (x)], x ∈ R or

Ã = [ÃL, ÃU ] (4)

Then the grade of membership of i-v fuzzy set Ã at x belongs to the interval
[μ

�AL(x), μ
�AU (x)]
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Fig.1 level (λ, ρ) i-v fuzzy number

Let

μ
�AL(x) =

⎧⎨
⎩

λ(x−a)
b−a

a � x � b
λ(c−x)

c−b
b � x � c

0 otherwise

(5)

then ÃL = (a, b, c; λ) is called level λ fuzzy number.
Let

μ
�AU (x) =

⎧⎪⎨
⎪⎩

ρ(x−p)
b−p

p � x � b
ρ(r−x)

r−b
b � x � r

0 otherwise

(6)

then ÃU = (p, b, r; ρ), where 0 < λ � ρ � 1, p < a < b < c < r. We get i-v fuzzy

set Ã � {(x, [μ
�AL(x), μ

�AU (x)])}, x ∈ R. Denote Ã = [(a, b, c; λ), (p, b, r; ρ)] =

[ÃL, ÃU ] and call Ã level (λ, ρ) i-v fuzzy number.
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The family of all level (λ, ρ) i-v fuzzy numbers is defined as following, where
0 < λ � ρ � 1,

FIN(λ, ρ) = {[(a, b, c; λ), (p, b, r; ρ)]|p < a < b < c < r, p, a, b, c, r ∈ R} (7)

Let Ã = [(a, b, c; λ), (p, b, r; ρ)] = [ÃL, ÃU ] ∈ FIN (λ, ρ). From eqs.(5) and
(6), we get the left and right endpoint of α-cut as following:

if 0 � α < λ then AL
l (α) = a + (b− a)

α

λ
, AL

r (α) = c− (c− b)
α

λ

AU
l (α) = p + (b− p)

α

ρ
, Au

r (α) = r − (r − b)
α

ρ
(8)

and if λ � α � ρ then AU
l (α) = p + (b− p)

α

ρ
, AU

r (α) = r − (r − b)
α

ρ

Let B̃ = [(d, e, g; λ), (u, e, w; ρ)] = [B̃L, B̃U ] ∈ FIN (λ, ρ). Through opera-
tions ⊕ of level λ fuzzy numbers and level ρ fuzzy numbers, we can get the
following

ÃL ⊕ B̃L = (a + d, b + e, c + g; λ), ÃU ⊕ B̃U = (p + u, b + e, r + w; ρ)(9)

Definition 5 Ã, B̃ ∈ FIN(λ, ρ), k ∈ R

Ã⊕ B̃ = [ÃL ⊕ B̃L, ÃU ⊕ B̃U ] (10)

kÃ = [kÃL, kÃU ] (11)

From eqs.(9)∼(11), we have the following

Property 1 Let Ã = [(a, b, c; λ), (p, b, r; ρ)], B̃ = [(d, e, g; λ), (u, e, w; ρ)] ∈
FIN(λ, ρ) then

(10) Ã⊕ B̃ = [(a + d, b + e, c + g; λ), (p + u, b + e, r + w; ρ)]

(20) when k > 0 then kÃ = [(ka, kb, kc;λ), (kp, kb, kr; ρ)]

(30) when k < 0 then kÃ = [(kc, kb, ka; λ), (kr, kb, kp; ρ)]

(40) when k = 0 then kÃ = [(0, 0, 0;λ), (0, 0, 0; ρ)]

with the similarly arguments as [9], we use signed distance to consider ranking.
In order to consider ranking of FIN(λ, ρ) in R, we first consider ranking on R.
Definition 6 Let a, 0 ∈ R, we define the signed distance d∗ as d∗(a, 0) = a.

The meaning of d∗ is that when a > 0, d∗(a, 0) = a > 0, i.e. a is at the
right of 0 and the distance from 0 is a, when a < 0 , d∗(a, 0) = −a < 0, i.e. a
is at the left of 0 and the distance from 0 is −a. Therefore, d∗(a, 0) is called
the signed distance of a from 0.
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The signed distance on FIN(λ, ρ), by definition 6, can be defined by the

following: if Ã = [(a, b, c; λ), (p, b, r; ρ)] = [ÃL, ÃU ] ∈ FIN(λ, ρ). The α-level

set of Ã = [ÃL, ÃU ] ∈ FIN(λ, ρ) is defined as {x | μ
�AU (x) � α}−{x | μ

�AL(x) >
α}, then by Decomposition Theorem and Fig.2 we have

Ã =
⋃

0�α<λ

([AU
l (α), AL

l (α); α] ∪ [AL
r (α), AU

r (α); α]) ∪ (
⋃

λ�α�ρ

[AU
l (α), AU

r (α); α])

(12)
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T

T’ W’

W

AL
r (α)
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Fig.2 signed distance of i-v fuzzy numbers

We have following one-one onto mapping for each α. When 0 � α < λ,

[AU
l (α), AL

l (α); α](corresponding PQ)←→ [AU
l (α), AL

l (α)] = [P ′, Q′],

[AL
r (α), AU

r (α); α](corresponding RS)←→ [AL
r (α), AU

r (α)] = [R′, S ′],

and [AU
l (α), AL

l (α)] ∩ [AL
r (α), AU

r (α)] = ∅,
and when λ � α � ρ,

[AU
l (α), AU

r (α); α](corresponding TW)←→ [AU
l (α), AU

r (α)] = [T ′, W ′].

From definition 6, we obtain when 0 � α < λ, d∗(AU
l (α), 0) = AU

l (α),
d∗(AL

l (α), 0) = AL
l (α), d∗(AL

r (α), 0) = AL
r (α), and d∗(AU

r (α), 0) = AU
r (α).

That is to say, the signed distances of P ′, Q′, R′, S ′ from 0 are AU
l (α),AL

l (α),
AL

r (α), and AU
r (α). Therefore, the signed distance of interval [AU

l (α), AL
l (α)]

from 0 is d∗([AU
l (α), AL

l (α)], 0). It can be defined as

1

2
[d∗(AU

l (α), 0) + d∗(AL
l (α), 0)] =

1

2
[AU

l (α) + AL
l (α)]

=
1

2
[a + p + (b− a)

α

λ
+ (b− p)

α

ρ
]
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Similarly, d∗([AL
r (α), AU

r (α)], 0) = 1
2
[c + r − (c− b)α

λ
− (r − b)α

ρ
]

Since, [P’,Q’] ∩ [R’,S’]=∅, for the α-cut of Ã on 0 � α < λ, the signed distance
of [P’,Q’] ∪ [R’,S’] from 0, can be defined as

d∗([AU
l (α), AL

l (α)] ∪ [AL
r (α), AU

r (α)], 0)

=
1

2
[d∗([AU

l (α), AL
l (α)], 0) + d∗([AL

r (α), AU
r (α)], 0)]

=
1

4
[a + p + c + r + (2b− a− c)

α

λ
+ (2b− p− r)

α

ρ
]

This function is continuous on 0 � α < λ with respect to α. It follows that,
by integration, we can find the average value.

1

λ

∫ λ

0

d∗([AU
l (α), AL

l (α)] ∪ [AL
r (α), AU

r (α)], 0)dα

=
1

8
[a + c + 2b + 2p + 2r + (2b− p− r)

λ

ρ
] (13)

Similarly, when λ � α � ρ,

d∗([AU
l (α), AU

r (α)], 0) =
1

2
[d∗(AU

l (α), 0) + d∗(AU
r (α), 0)]

=
1

2
[AU

l (α) + AU
r (α)]

=
1

2
[p + r + (2b− p− r)

α

ρ
]

This function is also continuous on λ � α � ρ with respect to α. By the same
reason, through integration, find the average value, λ < ρ.

1

ρ− λ

∫ ρ

λ

d∗([AU
l (α), AU

r (α)], 0)dα

=
1

4
[2b + p + r + (2b− p− r)

λ

ρ
] (14)

From eqs.(12)∼(14) we define the signed distance of Ã from 0̃.

Definition 7 Let Ã = [a, b, c; λ), (p, b, r; ρ)] ∈ FIN(λ, ρ). The signed distance

of Ã from 0̃ is defined as
(10) when 0 < λ < ρ � 1,

d(Ã, 0̃) =
1

λ

∫ λ

0

d∗([AU
l (α), AL

l (α)] ∪ [AL
r (α), AU

r (α)], 0)dα

+
1

ρ− λ

∫ ρ

λ

d∗([AU
l (α), AU

r (α)], 0)dα

=
1

8
[6b + a + c + 4p + 4r + 3(2b− p− r)

λ

ρ
]



Fuzzy Programming 399

(20) when 0 < λ = ρ � 1,

d(Ã, 0̃) =
1

8
[4b + a + c + p + r]

By definition 7, we can define the ranking of FIN(λ, ρ) as following:

Definition 8 Let Ã = [(a, b, c; λ), (p, b, r; ρ)], B̃ = [(d, e, g; λ), (u, e, w; ρ)]
∈ FIN(λ, ρ),

B̃ ≺ Ã iff d(B̃, 0̃) < d(Ã, 0̃)

B̃ ≈ Ã iff d(B̃, 0̃) = d(Ã, 0̃)

From linear order property of (R, <, =) and definition 8, we get the following
property.
Property 2 Let Ã, B̃, C̃ ∈ FIN(λ, ρ).

(a) (FIN(λ, ρ), ≈,≺) satisfies the law of trichotomy, i.e., only one of Ã ≺
B̃, Ã ≈ B̃, B̃ ≺ Ã will occur.

(b) (FIN(λ, ρ), ≈,≺) satisfies the following ordering relation

(10) Ã � Ã

(20) Ã � B̃ and B̃ � Ã =⇒ Ã ≈ B̃

(30) Ã � B̃ and B̃ � C̃ =⇒ Ã � C̃

From property 2, we known that ”≈,≺,” is the linear order on FIN(λ, ρ).

Definition 9 Let Ãn, n = 1, 2, 3, · · · , B̃ ∈ FIN (λ, ρ). If Ãn � B̃ ∀n =

1, 2, · · · , then we write B̃ = max
n∈{1,2,3,···}

Ãn

3 Fuzzy objective function in linear program-

ming based on interval-valued fuzzy num-

bers

3.1 Crisp linear programming
Consider the following crisp linear programming problem.
A factory produces n productors Xj , j = 1, 2, · · · , n. Each product requires
m processes Ak, k = 1, 2, · · · , m. Product Xj , through process Ak requires akj

hours, k = 1, 2, · · · , m, j = 1, 2, · · · , n. Each process Ak provides bk hours,
k = 1, 2, · · · , m. Let the quantity produced for Xj be xj, j = 1, 2, · · · , n. Then
we get the following constraint functions

n∑
j=1

akjxj � bk, k = 1, 2, · · · , m.
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In monopoly market, the monopolist can determine the sale price cj(> 0), j =

1, 2, · · · , n and can get total income Z =
n∑

j=1

cjxj Therefore, we have the

following crisp linear programming objective function

Maximize Z =

n∑
j=1

cjxj (15)

subject to:

n∑
j=1

akjxj � bk, k = 1, 2, · · · , m (16)

xj � 0, j = 1, 2, · · · , n (17)

Let

L = {(x1, x2, · · · , xn)|
n∑

j=1

akjxj � bk, k = 1, 2, · · · , m, xj � 0, j = 1, 2, · · · , n}.
Obvious, L is a closed bounded convex set. Under condition eqs.(16) and (17),
monopolist can find out xj, j = 1, 2, · · · , n which maximize the total income
Z. This is a crisp linear programming problem. We can use simplex method to
find the optimal solution. Suppose that this optimal solution is the production

quantity x
(0)
j , j = 1, 2, · · · , n. The total income Z0 =

n∑
j=1

cjx
(0)
j is maximized. If

in a plan period, akj, bk, cj, j = 1, 2, · · · , n, k = 1, 2, · · · , m do not change, The
result stays the same. That is to say, in this period, the optimal solutions of
the product Xj is the quantity x

(0)
j , j = 1, 2, · · · , n.

In a perfect competitive market, the price cj in a plan period may fluctuate
a little. We can fuzzify to c̃j. In this plan period T , the grade of membership
of cj is not necessarily equal to 1. We let the grade of membership of cj lie
in the interval [λ, 1], 0 < λ < 1, (see Fig.3). Set c̃j to be level (λ,1) i-v fuzzy
number, 0 < λ < 1.

c̃j = [(cj − δj2, cj, cj + δj3; λ), (cj − δj1, cj, cj + δj4; 1)], j = 1, 2, · · · , n (18)

where 0 < δj2 < δj1 < cj, 0 < δj3 < δj4, j = 1, 2, · · · , n.
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Fig.3 level (λ,1) i-v fuzzy numbers c̃j

3.2 Fuzzy objective function

We denote (x1c̃1)
⊕

(x2c̃2)
⊕ · · ·⊕(xnc̃n) as

n∑
j=1

c̃jxj. In eqs.(15)∼(17), if we

fuzzify cj , j = 1, 2, · · · , n to level (λ,1) i-v fuzzy numbers in a crisp linear
programming, we will have the following result.
Theorem 1 In crisp linear programming eqs.(15)∼(17), we fuzzify cj , j =
1, 2, · · · , n to eq.(18), then we have
(a) Fuzzy programming

Maximize Z̃ =
n∑

j=1

c̃jxj (by definition 9) (19)

subject to:
n∑

j=1

akjxj � bk, k = 1, 2, · · · , m (20)

xj � 0, j = 1, 2, · · · , n (21)

(b) Corresponding to (a), by definition 7, 8, 9 we get linear programming in
the fuzzy sense as following:

Maximize Z∗ = 1
2
d(Z̃, 0̃)

=

n∑
j=1

cjxj +
1

16

n∑
j=1

[δj3 − δj2 + (4− 3λ)(δj4 − δj1)]xj (22)

subject to:

n∑
j=1

akjxj � bk, k = 1, 2, · · · , m (23)
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xj � 0, j = 1, 2, · · · , n (24)

Proof: (a) It follows from eqs.(15),(18) and definition 9.
(b) Since xj � 0, j = 1, 2, · · · , n, by property 1, we get

Z̃ = [(
n∑

j=1

(cj − δj2)xj,
n∑

j=1

cjxj,
n∑

j=1

(cj + δj3)xj; λ),

(
n∑

j=1

(cj − δj1)xj,
n∑

j=1

cjxj,
n∑

j=1

(cj + δj4)xj; 1)]

Through definition 7, we obtain

d(Z̃, 0̃) = 2

n∑
j=1

cjxj +
1

8

n∑
j=1

[δj3 − δj2 + (4− 3λ)(δj4 − δj1)]xj

Using definition 8, 9 and putting them to eq.(19), we have eq.(22). This prove
(b).
Remark 1 In eq.(22), when δj1 = δj2 = δj3 = δj4 = 0, j = 1, 2, · · · , n, this

equation reduces eq.(15), i.e., Z∗ = Z. Therefore, we take 1
2
d(Z̃ , 0̃) in eq.(22).

Remark 2 In theorem 1(b), eqs.(22)∼(24), the linear programming in the
fuzzy sense can be found by the simplex method (or using computer package)
to find the optimal solution.

3.3 fuzzy constraints
Suppose the sale price cj, j = 1, 2, · · · , n do not vary in the plan period T .

Similarly to §3.1, §3.2, we consider constraints of eq.(16)
n∑

j=1

akjxj � bk, k =

1, 2, · · · , m. We fuzzify both akj, bk, j = 1, 2, · · · , n, k = 1, 2, · · · , m as the
following interval-valued fuzzy numbers, 0 < λ < 1

ãkj = [(akj − δkj2, akj , akj + δkj3; λ), (akj − δkj1, akj, akj + δkj4; 1)] (25)

where 0 < δkj2 < δkj1 < akj, 0 < δkj3 < δkj4 ∀j, k

b̃k = [(bk − ωk2, bk, bk + ωk3; λ), (bk − ωk1, bk, , bk + ωk4; 1)] (26)

where 0 < ωk2 < ωk1 < bk, 0 < ωk3 < ωk4, k = 1, 2, · · · , m.
Theorem 2 In eqs.(15)∼(17) of the crisp linear programming, if we fuzzify
akj, bk, k = 1, 2, · · · , m, j = 1, 2, · · · , n to level (λ,1) i-v fuzzy numbers eqs.(25)
and (26) then we have the following:
(a) Fuzzy programming

Maximize Z =
n∑

j=1

cjxj
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subject to:

n∑
j=1

ãkjxj � b̃k, k = 1, 2, · · · , m (27)

xj � 0, j = 1, 2, · · · , n (28)

(b) Corresponding to (a), by definition 7, 8, 9 we get the linear programming
in the fuzzy sense as

Maximize Z =
n∑

j=1

cjxj (29)

subject to:

n∑
j=1

akjxj +
1

16

n∑
j=1

[δkj3 − δkj2 + (4− 3λ)(δkj4 − δkj1)]xj

� bk +
1

16
[ωk3 − ωk2 + (4− 3λ)(ωk4 − ωk1)], k = 1, 2, · · · , m (30)

xj � 0, j = 1, 2, · · · , n (31)

Proof: (b) Using definition 8 and putting into eq.(27), we have d(
n∑

j=1

ãkjxj, 0̃) �

d(̃bk, 0̃), k = 1, 2, · · · , m. From definition 7, we get eq.(30).
3.4 Fuzzy objective function and Fuzzy constraints

Combining §3.2 and §3.3, we have the following result.
Theorem 3 In eqs.(15)∼(17) of the crisp linear programming, if we fuzzify
cj, akj, bk, j = 1, 2, · · · , n, k = 1, 2, · · · , m, to level (λ,1) i-v fuzzy numbers
eqs.(18)(25)(26), then we obtain
(a) Fuzzy programming

Maximize Z̃ =
n∑

j=1

c̃jxj (32)

subject to:

n∑
j=1

ãkjxj � b̃k, k = 1, 2, · · · , m (33)

xj � 0, j = 1, 2, · · · , n (34)

(b) Corresponding to (a), by definition 7, 8, 9 we get the linear programming
in the fuzzy sense as

Maximize Z∗ =
n∑

j=1

cjxj +
1

16

n∑
j=1

[δj3 − δj2 + (4− 3λ)(δj4 − δj1)]xj (35)
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subject to:

n∑
j=1

akjxj +
1

16

n∑
j=1

[δkj3 − δkj2 + (4− 3λ)(δkj4 − δkj1)]xj

� bk +
1

16
[ωk3 − ωk2 + (4− 3λ)(ωk4 − ωk1)], k = 1, 2, · · · , m (36)

xj � 0, j = 1, 2, · · · , n (37)

4 Examples

A factory produces automobils and truck. Each requires three processes. The
production condition are given in table 1.

Table 1 production condition
process1 process2 process3 profit

type hour hour hour hundred dollars
automobil 15 24 21 25
truck 30 6 14 48
total hour 45000 24000 28000

Let the quantity of automobils and truck produced be x1 and x2. Then we
have the following crisp linear programming

Maximize Z = 25x1 + 48x2 (hundred dollars) (38)

subject to:

15x1 + 30x2 � 45000

24x1 + 6x2 � 24000 (39)

21x1 + 14x2 � 28000

x1 � 0, x2 � 0 (40)
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In this figure, A(0, 1500), B(500,1250), C(800,800) and D(1000,0).

[A] Crisp case
From Fig.4, the optimal solution of the crisp linear programming eqs.(38)∼(40)

are among the points A,B,C,D. Therefore, we get x1 = 500(≡ x
(0)
1 ) and x2 =

1250(≡ x
(0)
2 ) which will maximize the profit Z = 72500(≡ z(0)).

[B] Fuzzy case
Case 2.1. Let δ11 = 7, δ12 = 6, δ13 = 8, δ14 = 9, δ21 = 5, δ22 = 4, δ23 =

6, δ24 = 8, λ = 0.9.
(B.1) From theorem 1(b).

Maximize Z∗ = 25x1 + 48x2 +
1

16
[4.6x1 + 5.9x2]

subject to:

15x1 + 30x2 � 45000
24x1 + 6x2 � 24000
21x1 + 14x2 � 28000

xj � 0, j = 1, 2

Since the constraints are the same as the crisp case, from Fig.4, we need
only to consider points A,B,C,D where Z∗ is the maximum. We have x1 =
500(≡ x

(1)
1 ), x2 = 1250(≡ x

(1)
2 ) and the maximum profit Z∗ = 73104.687

(hundred dollars).
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Case 2.2. Let

δ111 = 5, δ112 = 1, δ113 = 2, δ114 = 3
δ121 = 7, δ122 = 5, δ123 = 4, δ124 = 8
δ211 = 4, δ212 = 3, δ213 = 2, δ214 = 9
δ221 = 4, δ222 = 2, δ223 = 2, δ224 = 5
δ311 = 5, δ312 = 4, δ313 = 1, δ314 = 5
δ321 = 6, δ322 = 2, δ323 = 5, δ324 = 8
ω11 = 30, ω12 = 20, ω13 = 30, ω14 = 70
ω21 = 60, ω22 = 20, ω23 = 50, ω24 = 60
ω31 = 50, ω32 = 10, ω33 = 30, ω34 = 40

(B.2) From theorem 2(b).

Maximize Z = 25x1 + 48x2 (41)

subject to:

15x1 + 30x2 +
1

16
(−1.6x1 + 0.3x2) � 45000 +

1

16
(62)

24x1 + 6x2 +
1

16
( 5.5x1 + 1.3x2) � 24000 +

1

16
(30) (42)

21x1 + 14x2 +
1

16
(−3x1 + 5.6x2) � 28000 +

1

16
( 7)

x1 � 0, x2 � 0 (43)

From eq.(42) and (43), the closed bounded convex set L is the following:

14.9x1 + 30.01875x2 � 45003.875

24.34375x1 + 6.08125x2 � 24001.875 (44)

20.8125x1 + 14.35x2 � 28000.4375

x1 � 0, x2 � 0 (45)
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In Fig. 5, A1(3020.394,0), B1(0,1499.192), A2(985.956,0), B2(0,3946.865),
A3(1345.366,0), B3(0,1951.25). The vertices of L are B1, B(475.353,1261.822)
,C(781.756,817.432), A2(985.956,0). Since the optimal solution must be inte-
gers, we consider the points in L which are closest to point B1, B, C, A2. Here
we take points B∗

1(0,1499), B∗(475,126), C∗(781,817) and A2(985,0). The op-

timal solution of eq.(41) occurs when x1 = 475(≡ x
(2)
1 ), x2 = 1261(≡ x

(2)
2 ) and

the maximum profit is Z = 72403.

5 Discussion

(A) The crisp case is a special case of the fuzzy case.

(a) In theorem 1(b), let δj2 = δj3 and δj1 = δj4, j = 1, 2, · · · , n. Then, in
theorem 1(b), eqs.(22)∼(24) reduces to

Maximize Z∗ =
n∑

j=1

cjxj

subject to:

n∑
j=1

akjxj � bk, k = 1, 2, · · · , m
xj � 0, j = 1, 2, · · · , n

this is the crisp case of eqs.(15)∼(17). Therefore, the crisp case of
eqs.(15)∼(17) is a special case of theorem 1(b).
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(b) In theorem 2(b), let δkj2 = δkj3 and δkj1 = δkj4, j = 1, 2, · · · , n ,ωk2 = ωk3

and ωk1 = ωk4 for all k = 1, 2, · · · , m, j = 1, 2, · · · , n, then in theorem
2(b), eqs.(29)∼(31) reduce to the crisp case of eqs.(15)∼(17). Therefore,
the crisp case of eqs.(15)∼(17) is a special case of theorem 2(b).

(c) In theorem 1,2(b), each are special case of theorem 3(b).

(c1) In theorem 3(b), let δkj2 = δkj3 and δkj1 = δkj4 , ωk2 = ωk3 and
ωk1 = ωk4 for all k = 1, 2, · · · , m, j = 1, 2, · · · , n,
then theorem 3(b) eqs.(35)∼(37) reduce to theorem 1(b) eqs.(22)∼(24).
Therefore, theorem 1(b) is a special case of theorem 3(b).

(c2) In theorem 3(b), let δj2 = δj3 and δj1 = δj4, j = 1, 2, · · · , n, then theo-
rem 3(b) eqs.(35)∼(37) reduce to theorem 2(b) eqs.(29)∼(31). Therefore,
theorem 2(b) is a special case of theorem 3(b).

(B) The result of fuzzification by fuzzy numbers is a special case of fuzzification
by interval-valued fuzzy numbers.

(b1) In theorem 1 eq.(18), let δj3 = δj2 = 0 for all j and λ = 0. From Fig.3, we
have level (λ,1) i-v fuzzy number in eq.(18) reduce to fuzzy number c̃j =
(cj − δj1, cj, cj + δj4; 1), j = 1, 2, · · · , n. This implies eq.(19) in theorem
1(a) use fuzzy numbers c̃j = (cj − δj1, cj, cj + δj4; 1), j = 1, 2, · · · , n.

In theorem 1(b), eq.(22). Z∗ =
n∑

j=1

cjxj + 1
4

n∑
j=1

(δj4 − δj1)xj is the result

of defuzzification by signed distance using fuzzy numbers c̃j = (cj −
δj1, cj, cj + δj4; 1), through

d(c̃j , 0̃) =
1

2

∫ 1

0

(c̃jL(α) + c̃jU(α))dα = cj +
1

4
(δj4 − δj1)

Therefore, the defuzzification by using fuzzy numbers is a special case of
using level (λ,1) i-v fuzzy numbers.

(b2) In theorem 2(a), let δkj2 = δkj1 = 0, ωk2 = ωk1 = 0 for all j, k, and λ = 0.
It is similarly to (b1). Level (λ,1) i-v fuzzy numbers in eq.(25) reduce to
fuzzy numbers ãkj = (akj−δkj1, akj, akj+δkj4; 1), and level (λ,1) i-v fuzzy

neumbers in eq.(26) reduce to fuzzy number b̃k = (bk−ωk1, bk, bk +ωk4; 1)

for all j, k. ãkj, b̃k, k = 1, 2, · · · , m, j = 1, 2, · · · , n in eq.(27) of theorem
2(a) are all fuzzy numbers. Eq.(30) in theorem 2 becomes

n∑
j=1

akjxj +
1

4

n∑
j=1

(δkj4 − δkj1)xj � bk +
1

4
(ωk4 − ωk1), k = 1, 2, · · · , m
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This is the result of defuzzification of fuzzy number through the signed

distance d(ãkj, 0̃) = akj+
1
4

n∑
j=1

(δkj4 − δkj1), d(̃bk, 0̃) = bk + 1
4
(ωk4 − ωk1).

Therefore, it has the same conclusion as (b1). The defuzzification result
by using fuzzy numbers is a special case of using level (λ,1) i-v fuzzy
numbers.

(b3) In theorem 3, the same treatments will lead to the same conclusions as
(b1) and (b2).
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