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Abstract

In this paper, we deal with the family I(p, k, r, n) of trinomial arcs
defined as the set of roots of the trinomial equation zn = αzk + (1−α),
with z = ρ eiθ is a complex number, α is a real number between 0 and
1 and k is an integer such that k = (2p + 1)n/(2r + 1), where n, p and
r are three integers satisfying some conditions. These arcs I(p, k, r, n)
are continuous arcs inside the unit disk, expressed in polar coordinates
(ρ, θ). The question is to prove that ρ changes monotonically with
respect to θ and that ρ (θ) is a decreasing function, for each trinomial
arc I(p, k, r, n).
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1 Introduction

Consider the trinomial equation

zn = α zk + (1 − α) (1)

where z is a complex number, n and k are two integers such that k = 1, 2,
..., n−1 and α is a real number. Noting that the first discussion of the behavior
of the roots of trinomial equation was fulfilled by Fell [4]. She has established
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a large description of the trajectories of these roots, called trinomial arcs.
These arcs can be expressed in polar coordinates (ρ, θ) by a function ρ (θ) and
are continuous arcs corresponding to a number α which is whether between
0 and 1, or between 1 and +∞, or also between −∞ and 0. In [4], Fell has
studied equally the monotonicity of the function α (θ) and gave one bound
for the modulus of roots. However, she could not establish the monotonicity
of ρ as a function of θ. In fact, the descriptive results of Fell [4] gave us
the information about the form and the localization of the trinomial arcs.
However, these types of arcs are not well-defined, in order to be studied. In
this paper, we will restrict our attention to a family of trinomial arcs, solutions
of equation (1) with 0 < α < 1, inside the unit disk Du = {z ; |z| ≤ 1},
denoted by I(p, k, r, n), where p, k, r and n satisfy some conditions. By first,
we formulate and define this family of trinomial curves. Notice that Dubuc
and Zaoui were interested in [3] in some particular trinomial arcs denoted by
Bm and which are part of this family of arcs I(p, k, r, n). Next, we prove in
this work that ρ (θ) is a derivable function for these arcs. With a view to
solving the problem of monotonicity of ρ (θ) for the trinomial arcs I(p, k, r, n),
two important intermediate results are showed. At last, this study allows us
to prove that ρ(θ) is a decreasing function.

2 Study of the trinomial equation

In the equation (1), fix n and k. For z = ρeiθ in (1), one has ρneinθ = αρkeikθ +
(1 − α). Separating real and imaginary parts, one gets ρn sinnθ = αρk sin kθ
and ρn cosnθ = αρk cos kθ + (1 − α). So, when θ �= lπ/n where l is an integer,
we get

ρn−k = α sin kθ / sin nθ (2)

On the other side, divide (1) by zn and consider the imaginary part. When
α �= 0 and θ �= lπ/(n − k) where l is an integer, we obtain that

ρk = (1 − 1/α) sinnθ / sin(n − k)θ (3)

Therefore, we have the next equation of the trajectories of roots of (1):

ρn−k sin nθ − ρn sin(n − k)θ = sin kθ (4)

In fact, Fell has studied in [4] the trinomial equation

λ zn + (1 − λ) zk − 1 = 0, (5)

where z is a complex number, n and k are two integers such that k =
1, 2, ..., n − 1 and λ is a real number. Substituting into equation (5) the ex-
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pression given for zn by equation (1), we get
(
zk − 1

)
[1 − λ (1 − α)] = 0. So,

zk = 1 or λ (1 − α) = 1. As z is a complex number, it follows that α = 1−1/λ.
Hence, in order to pass from (1) to (5), we can set α = 1 − 1/λ. From this
equality stems easily that the case 0 ≤ α ≤ 1 of (1) corresponds to the case
1 ≤ λ < +∞ of (5).

In this work, we are interested in the case 0 ≤ α ≤ 1, we have so

sign (sinnθ) = sign (sin kθ) = − sign (sin(n − k)θ) (6)

Definition 2.1 An angle θ which fulfills (6) will be called a (n, k)-feasible
angle for the trinomial equation (1) with 0 ≤ α ≤ 1.

Moreover, in view of the next lemma of [2], the trajectories of roots of (1)
with 0 ≤ α ≤ 1 are inside the unit disk.

Lemma 2.2 For any (n, k)-feasible angle θ for the equation (1) with 0 ≤
α ≤ 1, the function of ρ, −ρn {sin (n − k) θ/ sin kθ}+ρn−k {sin nθ/ sin kθ}−1,
is increasing and vanishes for one and only one positive value of ρ, which is
not larger than 1.

Remark 2.3 The upper and lower half-planes are symmetrical. Then, we
will restrict our study of trinomial arcs to the upper half-plane.

3 Description and definition of trinomial arcs

I(p, k, r, n)

Notice that for α = 0, the equation (1) has n roots; the nth roots of unity. In [4],
Fell tells us that the trajectories of the n roots can be described as trajectories
of particles starting at these n roots. As α changes from 0 to 1, they move
continuously until α = 1, (n − k) of them have moved into (n − k)th roots of
unity and k of them have collapsed to 0. There are k trajectories going to 0,
the k tangents being lines going through 0 and one kth root of −1. Consider
C = {nth roots of unity}, D = {(n − k)th roots of unity} and E = {kth roots
of −1}. Let γ be in C and δ be the unique nearest neighbor of γ in D ∩ E.
Fell ([4]) asserts that, in the case δ ∈ D ∩ E with 0 ≤ α ≤ 1, there exists
γ′ in C such that δ is equidistant from γ and from γ′. There exists also α0

in [0, 1] such that the trajectories of two particles starting at γ and γ′ when
α = 0 are continuous arcs until the point of their meeting on the line segment
θ = arg (δ) when α = α0. When α moves from α0 to 1, the two roots remain on
the segment θ = arg (δ), one of them goes to 0 and the other tends to δ. Fell
shows in [4] that all the trinomial arcs solutions of (1) in the case 0 ≤ α ≤ 1
with δ ∈ D∩E are such that the feasible angles θ belong to intervals of length
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less than or equal to π/n and bounded on the one side by arg (δ) with δ is
both an kth root of −1 and an (n− k)th root of unity and on the other side by
arg (γ) with γ is an nth root of unity. There are so two types of arcs in this
case; the first type is such that θ belongs to [arg (γ) , arg (δ)] where γ ∈ C and
the second type is such that θ belongs to [arg (δ) , arg (γ′)] where γ′ ∈ C, such
that δ is equidistant from γ and from γ′. Then, we can set arg (γ) = 2πr/n
where r is a nonzero integer, it follows that arg (γ′) = 2(r + 1)π/n. Moreover,
we can put arg (δ) = (2p + 1)π/k = 2πq/(n− k) where p is an integer and q is
a nonzero integer.

Lemma 3.1 For any trinomial arc solutions of equation (1) with 0 ≤ α ≤ 1
and the feasible angles are bounded by arg (γ) and arg (δ), where γ is an nth

root of unity and δ is both an kth root of −1 and an (n − k)th root of unity,
the integer k verify that k = (2p + 1)n/(2r + 1) = (2p + 1)n/(2[p + q] + 1),
where p is an integer and q and r are nonzero integers such that arg (δ) =
(2p + 1)π/k = 2πq/(n − k) and arg (γ) = 2πr/n.

Proof. We assume that arg (δ) = (2p+1)π/k = 2πq/(n−k) and arg (γ) =
2πr/n, where p is an integer and q and r are nonzero integers. By first, from the
equality (2p+1)π/k = 2πq/(n−k) stems immediately that the integer k verify
k = (2p + 1)n/(2[p + q] + 1). In addition, according to Fell [4], there exists an
nth root of unity γ′ such that δ is equidistant from γ and from γ′. We have so
arg (γ′) = 2(r+1)π/n such that (2p+1)π/k−2πr/n = 2(r+1)π/n−(2p+1)π/k.
Then, we deduce that the integer k satisfy k = (2p + 1)n/(2r + 1).

Remark 3.2 By Lemma 3.1, the integer k verify that k = (2p + 1)n/(2r +
1) = (2p + 1)n/(2[p + q] + 1). Therefore, q = r − p. Because q is a nonzero
integer, we deduce that the integers p and r satisfy the condition r ≥ p + 1.

In [3], Dubuc and Zaoui were interested in some particular trinomial arcs
denoted by Bm and defined as the set of roots of (1) with 0 ≤ α ≤ 1, n = m,
k = m − 2, where m is an odd integer larger than 2 and the feasible angles
belong to the interval [π − π/m, π]. They have showed in [3] that ρ (θ) is a
decreasing function on [π − π/m, π] for the arcs Bm. Because m is an odd
integer, we can say that γ such that arg (γ) = π − π/m is an nth root of unity
and δ such that arg (δ) = π is both an kth root of −1 and an (n − k)th root of
unity. Dubuc and Zaoui have so solved the problem of monotonicity of ρ (θ),
pointed out in [4], for some particular trinomial arcs, namely Bm, solutions of
(1) in the case 0 ≤ α ≤ 1 with δ ∈ D ∩ E and θ ∈ [arg (γ) , arg (δ)]. In this
paper, our objective is to study the monotonicity of ρ (θ) for all trinomial arcs
corresponding to this case. So, these arcs, which will be denoted by I(p, k, r, n),
will be defined on the intervals of the form [2πr/n, (2p + 1)π/k] where p is an
integer and r is a nonzero integer.
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Remark 3.3 The cases α = 0 and α = 1 are two particular cases for
the trinomial equation (1). When α = 0, equation (1) becomes zn = 1.
So, its solutions are the nth roots of unity. In the case α = 1, (1) becomes

zk
[
zn−k − 1

]
= 0. Then, the n roots of (1) are the (n − k)th roots of unity,

which are simple roots and 0; a root of multiplicity k.

When n = 2, the trajectories of roots of equation (1) with 0 < α < 1 are
linear, then we define the family of trinomial arcs I(p, k, r, n) as follows :

Definition 3.4 If n is an integer greater than or equal to 3, so I(p, k, r, n) is
the set of roots of equation (1) with 0 < α < 1 and the feasible angles belong to
the interval [2πr/n, (2p + 1)π/k], where p is an integer, r is a nonzero integer
verifying r ≥ p + 1 and k is an integer such that k = (2p + 1)n/(2r + 1).

Remark 3.5 In the definition of I(p, k, r, n), we use that arg (δ) = (2p +
1)π/k. Notice that all the next results for the arcs I(p, k, r, n) which will be
showed in this paper can be proved by using arg (δ) = 2πq/(n − k) where q is
a nonzero integer.

This family of arcs I(p, k, r, n) (see the picture below) exists in view of the
following lemma.

Trinomial arcs I(p, k, r, n) inside the upper half unit disk

Lemma 3.6 If n is an integer greater than or equal to 3 and 0 < α < 1,
then in the trinomial equation (1) with the integer k verify k = (2p+1)n/(2r+
1), where p is an integer, r is a nonzero integer such that r ≥ p + 1, any angle
of the interval [2πr/n, (2p + 1)π/k] is feasible.

Proof. Let k be an integer satisfying k = (2p + 1)n/(2r + 1). Let be
2πr/n < θ < (2p + 1)π/k. It follows that 2πr < nθ < (2r + 1)π and that
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sin nθ > 0. On the other side, we have 2πrk/n < kθ < (2p + 1)π. Because
r ≥ p + 1, we get 2πp < 2r(2p + 1)π/(2r + 1) = 2πrk/n, so sin kθ > 0.
Finally, we have 2πr(1 − k/n) < (n − k)θ < (2p + 1)π(n/k − 1). As k =
(2p + 1)n/(2r + 1), one has 4r(r − p)π/(2r + 1) < (n− k)θ < 2(r − p)π. Since
[2(r − p) − 1]π < 4r(r − p)π/(2r + 1), then sin(n − k)θ < 0. The conditions
(6) are so fulfilled.

Remark 3.7 From the proof of Lemma 3.6, for each trinomial arc I(p, k, r, n),
we have sinnθ > 0, sin kθ > 0 and sin(n − k)θ < 0 for any θ in the interval
]2πr/n, (2p + 1)π/k[.

4 Derivability of the function ρ (θ) for the arcs

I(p, k, r, n)

Now, we will prove that the derivative dρ/dθ exists and it is well-defined for
the trinomial arcs I(p, k, r, n).

Proposition 4.1 For each trinomial arc I(p, k, r, n), the function ρ(θ) is
derivable for any feasible angle in the interval ]2πr/n, (2p + 1)π/k[.

Proof. Let I(p, k, r, n) be a trinomial arc. By equation (3), we have
ρk(θ) = (1 − 1/α) sinnθ/ sin(n − k)θ. According to Remark 3.7, the feasible
angles θ are such that sin nθ > 0 and sin(n − k)θ < 0. If we put f (θ) =
(1 − 1/α) sinnθ/ sin(n − k)θ and as 0 < α < 1, the denominator of f (θ) is
never zero. The function f (θ) is so well-defined. In addition, f is derivable

and positive. So, the function ρ(θ) = [f (θ)]1/k is derivable. Therefore, its
derivative dρ/dθ exists and it is well-defined.

5 Monotonicity of the function ρ (θ) for the

arcs I(p, k, r, n)

In this section, our main interest is to show that ρ(θ) is a monotonic function,
i.e. that the derivative dρ/dθ is never zero, for each trinomial arc I(p, k, r, n).
Then, in equation (4), differentiating both sides with respect to θ, we obtain[

(n − k) ρn−k−1 sinnθ − n ρn−1 sin(n − k)θ
]

dρ/dθ

= k cos kθ + (n − k) ρn cos(n − k)θ − n ρn−k cos nθ.
Supposing that dρ/dθ = 0, we will consider ρn and ρn−k as solutions of the

system :

{
k cos kθ + (n − k) ρn cos(n − k)θ − n ρn−k cosnθ = 0

ρn−k sinnθ − ρn sin(n − k)θ − sin kθ = 0
.
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This system is equivalent to the following system :

{
R (θ) · ρn−k = N1 (θ)

R (θ) · ρn = N2 (θ)
(7)

where
R(θ) = (n − k) sin kθ − k cosnθ sin(n − k)θ
N1(θ) = (n − k) sinnθ − n sin(n − k)θ cos kθ
N2(θ) = (n − k) sinnθ cos kθ − n sin(n − k)θ.

The difference of the two equalities of (7) leads to the equation :

R(θ) [ρn − ρn−k] = U(θ) [1 − cos kθ] (8)

with
U(θ) = −[n sin(n − k)θ + (n − k) sin nθ].

In what follows, the question is to contradict the hypothesis dρ/dθ = 0 for
the family of trinomial arcs I(p, k, r, n). For that, we need the two following
lemmas.

Lemma 5.1 For any integer k such that k = (2p + 1)n/(2r + 1), we have
R(θ) = (n − k) sin kθ − k sin(n− k)θ cosnθ > 0 for any feasible angle θ in the
interval ]2πr/n, (2p + 1)π/k[.

Remark 5.2 For the feasible angles θ, we have 2πr < nθ < (2r + 1)π.
Then, cosnθ = 0 if and only if θ = (4r+1)π/2n. Moreover, we have cosnθ > 0
for θ < (4r + 1)π/2n and cos nθ < 0 for θ > (4r + 1)π/2n.

Proof. Let θ be a feasible angle in the interval ]2πr/n, (2p + 1)π/k[,
where k is an integer verifying k = (2p + 1)n/(2r + 1). By Remark 3.7, we
have sin kθ > 0 and sin(n − k)θ < 0. From Remark 5.2, we get R(θ) > 0
for any θ in ]2πr/n, (4r + 1)π/2n]. In the other case, i.e. when θ belongs to
](4r + 1)π/2n, (2p + 1)π/k[, remarking that R (θ) can be expressed as R(θ) =
(n− k) sinnθ cos (n − k) θ− n sin(n− k)θ cos nθ, we will consider the function
K (θ) = R(θ)/ cosnθ cos(n − k)θ = (n − k) tannθ − n tan(n − k)θ. In this
case, we have cosnθ < 0. In addition, we have (2r + 1/2)π(1 − k/n) <
(n − k)θ < (2p + 1)π(n/k − 1). As k = (2p + 1)n/(2r + 1), one gets 2(2r +
1/2)(r − p)π/(2r + 1) < (n − k)θ < 2(r − p)π. Because [2(r − p) − 1/2] π <
2(2r + 1/2)(r − p)π/(2r + 1), we obtain that cos(n − k)θ > 0. The sign
of R(θ) is so opposed to the sign of K (θ), which is derivable with K ′(θ) =
n(n − k) [tan2 nθ − tan2(n − k)θ]. Since tan nθ < 0 and tan(n − k)θ < 0, the
zeros of K ′(θ) verify the equation tannθ = tan(n−k)θ. Therefore, the unique
solution of this equation is of the form θ = lπ/k where l is an integer. However,
lπ/k ∈ ](4r + 1)π/2n, (2p + 1)π/k[ if and only if (2r+1/2)k/n < l < (2p+1).
As k = (2p + 1)n/(2r + 1) and r > p, we get (2p + 1/2) < (2r + 1/2)(2p +
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1)/(2r + 1) = (2r + 1/2)k/n. We have so (2p + 1/2) < l < (2p + 1), which
is not possible because l is an integer. We conclude that K ′(θ) is never zero.
Moreover, K(θ) goes to −∞ as θ tends on the right to (4r + 1)π/2n and
K((2p + 1)π/k) = 0. It follows that K(θ) < 0 and that R(θ) > 0 for any θ in
](4r + 1)π/2n, (2p + 1)π/k[. Therefore, R(θ) > 0 for any feasible angle θ in
the interval ]2πr/n, (2p + 1)π/k[.

Lemma 5.3 For any integer k such that k = (2p + 1)n/(2r + 1), we have
U(θ) = −[n sin(n − k)θ + (n − k) sinnθ] > 0 for any feasible angle θ in the
interval ]2πr/n, (2p + 1)π/k[.

Proof. Let θ be an angle in ]2πr/n, (2p + 1)π/k[, where the integer k
is such that k = (2p + 1)n/(2r + 1). The function U(θ) is derivable, with
U ′(θ) = −n(n − k)[cos(n − k)θ + cosnθ]. The zeros of U ′(θ) are of the form
θ = (2l − 1)π/k or of the form θ = (2l + 1)π/(2n − k) where l is an integer.
However, (2l − 1)π/k ∈ ]2πr/n, (2p + 1)π/k[ if and only if rk/n + 1/2 <
l < (p + 1). As r > p, we obtain that (p + 1/2) < rk/n + 1/2. Then,
(p+1/2) < l < (p+1), which is impossible as l is an integer. On the other side,
(2l+1)π/(2n−k) ∈ ]2πr/n, (2p + 1)π/k[ if and only if 2r(1−k/2n)−1/2 < l <
(2p+1)(n/k−1/2)−1/2, i.e. [r(4r−2p+1)/(2r+1)]−1/2 < l < (2r−p). But
(2r−p−1) < [r(4r−2p+1)/(2r+1)]−1/2, which is not possible. It follows that
U ′(θ) is never zero. In addition, because U(2πr/n) > 0 and U((2p+1)π/k) = 0,
we deduce that U(θ) > 0 for any angle θ in ]2πr/n, (2p + 1)π/k[.

Thus, by using the two lemmas above, we can prove the next main result
for the trinomial arcs I(p, k, r, n).

Theorem 5.4 The function ρ(θ) is monotonic on the interval of feasible
angles [2πr/n, (2p + 1)π/k], for the trinomial arcs I(p, k, r, n).

Proof. Consider an arc I(p, k, r, n). From Lemmas 5.1 and 5.3 stems
respectively that R(θ) > 0 and U(θ) > 0 for any θ in ]2πr/n, (2p + 1)π/k[.
Therefore, the relation R(θ)[ρn − ρn−k] = U(θ)[1− cos kθ] given by (8) implies
that ρn − ρn−k > 0, which is impossible as ρ < 1. We have so proved that for
each trinomial arc I(p, k, r, n), we have dρ/dθ �= 0, i.e. ρ(θ) is a monotonic
function, for any angle θ in ]2πr/n, (2p + 1)π/k[. Thus, we achieve the proof.

In the end, Theorem 5.4 allows us to state the following main result.

Theorem 5.5 ρ(θ) is a decreasing function on the interval of feasible angles
[2πr/n, (2p + 1)π/k], for the trinomial arcs I(p, k, r, n).
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Proof. Let I(p, k, r, n) be a trinomial arc. According to Theorem 5.4,
the function ρ(θ) is monotonic on [2πr/n, (2p + 1)π/k]. Moreover, if we put
θ = 2πr/n in the equation ρn−k sinnθ − ρn sin(n − k)θ − sin kθ = 0 given by
(4), we get (ρn − 1) sin(2πrk/n) = 0. As k = (2p + 1)n/(2r + 1) and r > p,
one has 2πp < 2πrk/n < (2p + 1)π, then sin(2πrk/n) �= 0. It follows that
ρ(2πr/n) = 1. Since ρ (θ) is less than or equal to 1 for any feasible angle θ, we
deduce that ρ(θ) is a decreasing function on the interval [2πr/n, (2p + 1)π/k].

6 Conclusion

In this work, we have studied the behavior of the family of trinomial arcs
I(p, k, r, n), composed of all solutions of equation (1) in the case 0 < α < 1
with the feasible angles θ in the interval [arg (γ) , arg (δ)], where γ is an nth

root of unity and δ is both an kth root of −1 and an (n−k)th root of unity. The
problem of monotonicity of the trinomial arcs is completely solved in this case.
During the description and definition of I(p, k, r, n), we have evoked an other
type of trinomial arcs, defined as the solutions of (1) in the case 0 < α < 1
with the feasible angles θ in the interval [arg (δ) , arg (γ′)], where δ is both an
kth root of −1 and an (n − k)th root of unity and γ′ is an nth root of unity. A
later study of the behavior of this family of arcs would be interesting.
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