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Abstract
Let us consider the sequence An of all positive integers whose fac-

torization is of the form ps1
1 p

s2
2 . . . psk

k where si ≥ 0 (i = 1, 2, . . . , k)
and p1, p2, . . . pk are distinct primes fixed. Let ψ(x) denote the number
of these integers not exceeding x. We prove the following well known
general result

ψ(x) =
lnk x

k! ln p1 . . . ln pk
+

1
(k − 1)!

ln
√
p1 . . . pk

ln p1 . . . ln pk
lnk−1 x+ o(lnk−1 x)

The result when k = 2 was obtained by Ramanujan (letter to Hardy),
Hardy and Littlewood, and others ( see [2], chapter V, and [3]).

D. H. Lehmer [4] was the first to consider the n-dimensional analogue
of the 2-dimensional problem considered by Ramanujan, Hardy and
Littlewood, and others.

D. C. Spencer [5], using complex function-theoretic methods, and F.
Beukers [1], using elementary methods, obtained this general result.

In this article we obtain this general result in a very elementary
and short form. We use mathematical induction ( as F. Beukers in his
paper) and combinatory. We also prove

An ∼ 1√
p1 . . . pk

exp( k
√
k! ln p1 . . . ln pkn)
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1 Preliminary results

Let us consider the linear inequality

r1x1 + r2x2 + . . .+ rnxn ≤ x (x ≥ 0) (1)
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Where the numbers ri > 0 (i = 1, 2, . . . , n) and n ≥ 2 are fixed.
Let Sn(x) be the number of solutions (x1, x2, . . . , xn) to the inequality (1)

where the xj (j = 1, 2, . . . , n) are positive integers.
The following result can be proved without difficulty by mathematical in-

duction.

Lemma 1.1 The following formula holds

Sn(x) =
1

n!

xn

r1r2 . . . rn
+ fn(x)xn−1 (x ≥ 0)

Where |fn(x)| < Kn in the interval [0,∞), Kn being a certain positive number.

The following theorem is a simple consequence of the results exposed in [2]
( chapter V). We shall use it as a fundamental lemma.

Lemma 1.2 Let us consider the inequality (1) when n = 2. If r1/r2 is an
irrational number, then the following formula holds

S2(x) =
1

2

x2

r1r2
− 1

2

r1 + r2
r1r2

x+ o(x) (x ≥ 0)

Now, it is well known if s is a nonnegative integer

K∑
i=0

is =
s+1∑
i=0

ai,sK
i (s = 0) (00 = 1),

K∑
i=0

is =
s+1∑
i=1

ai,sK
i (s ≥ 1)

If s ≥ 1 the first coefficient is as+1,s = 1/(s+ 1) and the second coefficient
is as,s = 1/2. There are many elementary proofs on this subject. For example,
mathematical induction.

Lemma 1.3 If M �= 0 and r are real numbers then

K∑
i=0

(Mi + r)s =
s+1∑
i=0

Ai,s(MK + r)i (s ≥ 0)

where A0,s = rs −∑s+1
i=1 Ai,sr

i and Ai,s = ai,sM
s−i (i = 1, 2, . . . , s+ 1)

Remark 1. Note if s ≥ 1 we find that the first coefficient is As+1,s =
1/(s+ 1)M and the second coefficient is As,s = 1/2.

Example 1.4 We have

K∑
i=0

i2 =
1

3
K3 +

1

2
K2 +

1

6
K

Hence
K∑

i=0

(Mi+ r)2 =
1

3M
(MK + r)3 +

1

2
(MK + r)2 +

M

6
(MK + r)

+
(
r2 − 1

3M
r3 − 1

2
r2 − M

6
r
)
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Proof. We proceed by mathematical induction. If s = 0 the theorem is
clearly true. Suppose the theorem is true for 0, 1, . . . , s−1 (s ≥ 1). We shall
prove it is true for s. If s ≥ 1 we have

(M (i− 1) + r)s+1 =

(
s∑

t=0

(
s+1
t

)
(Mi+ r)t (−M)s+1−t

)
+ (Mi+ r)s+1

Summing over 0 ≤ i ≤ K we get

K∑
i=0

(Mi+ r)s =
(MK + r)s+1

M(s + 1)
−
(

s−1∑
t=0

1

s+ 1

(
s+1
t

)
(−M)s−t

K∑
i=0

(Mi+ r)t

)

− (r −M)s+1

M(s + 1)
(2)

Equation (2) gives

K∑
i=0

(Mi+ r)s =
s+1∑
i=0

Ai,s(MK + r)i (3)

In equation (3) we have: 1) The left side is a polynomial in K. 2) The right
side is a polynomial in K. 3) Both polynomials are equal. 4) The coefficients
Ai,s do not depend of r ( i=1, 2, . . . , s+1).

If r = 0 equation (3) becomes

K∑
i=0

(Mi)s = Ms
K∑

i=0

is =
s+1∑
i=1

ai,sM
sKi =

s+1∑
i=1

Ai,s(MK)i =
s+1∑
i=1

Ai,sM
iKi

Therefore Ai,s = ai,sM
s−i (i = 1, 2, . . . , s+ 1).

If K = 0 in equation (3) we find that
∑K

i=0(Mi + r)s = rs = A0,s +∑s+1
i=1 Ai,sr

i. Lemma 1.3 is proved.

2 The main theorem

Theorem 2.1 Let us consider the inequality (1). If r1/r2 is an irrational
number, then

Sn(x) =
1

n!

xn

r1 . . . rn
− 1

2(n− 1)!

r1 + . . .+ rn

r1 . . . rn
xn−1 + o(xn−1) (x ≥ 0) (4)

Proof. We proceed by mathematical induction. If n = 2 the theorem is true
(lemma 1.2). Consider the inequality (1), that is

r1x1 + . . .+ rn−1xn−1 + rnxn ≤ x (x ≥ 0)
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Suppose the theorem is true for n− 1 (n ≥ 3). We shall prove it is also true
for n.

If we consider the inequality

r1x1 + . . .+ rn−1xn−1 ≤ a (a ≥ 0)

then (inductive hypothesis)

Sn−1(a) =
1

(n− 1)!

an−1

r1 . . . rn−1

+ fn−1(a)a
n−2 (5)

where |fn−1(a)| < Kn−1 in the interval [0,∞) (lemma 1.1), and the following
limit holds

lim
a→∞ fn−1(a) = − 1

2(n− 2)!

r1 + . . .+ rn−1

r1 . . . rn−1
= L (6)

We have from the inductive hypothesis the number of solutions to the inequal-
ity (1) will be ( for sake of simplicity in the notation we shall write b = x−rnxn)

Sn(x) =
[x/rn]∑
xn=1

Sn−1(b) =
1

(n− 1)!r1 . . . rn−1

[x/rn]∑
xn=1

bn−1 +
[x/rn]∑
xn=1

fn−1(b)b
n−2 (7)

The function f(xn) = bn−1 is decreasing in the interval 0 ≤ xn ≤ x/rn, besides
f(0) = xn−1 and f(x/rn) = 0. Therefore we have

1

(n− 1)!r1 . . . rn−1

[x/rn]∑
xn=1

bn−1 =
1

(n− 1)!r1 . . . rn−1

(∫ x/rn

0
bn−1dxn −G1(x)

)

=
xn

n!r1 . . . rn
− 1

(n− 1)!r1 . . . rn−1
G1(x) (8)

where 0 ≤ G1(x) ≤ xn−1. In the same form we obtain

[x/rn]∑
xn=1

bn−2 =
∫ x/rn

0
bn−2dxn −G2(x) =

xn−1

(n− 1)rn
−G2(x) (9)

where 0 ≤ G2(x) ≤ xn−2. Hence G2(x) = o(xn−1).
Equations (4), (7) and (8) give

fn(x) =
1

xn−1

⎛
⎝− 1

(n− 1)!r1 . . . rn−1
G1(x) +

[x/rn]∑
xn=1

fn−1(b)b
n−2

⎞
⎠ (10)

If s = n− 1 (n ≥ 3), M = −rn, r = x and K = [x/rn], lemma 1.3 gives

G1(x) =
xn

nrn
−

[x/rn]∑
xn=1

bn−1 =
1

2
xn−1 + o

(
xn−1

)
(11)
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Let ε > 0 be, then there exists x0 such that if x ≥ x0 we have ( see equation
(6))

L− ε < fn−1(x) < L+ ε (12)

The inequality b ≥ x0 is true if and only if xn = 1, 2, . . . , [(x− x0)/rn].
We have

[x/rn]∑
xn=[(x−x0)/rn]+1

bn−2 ≤ ([x/rn] − [(x− x0)/rn]) x
n−2
0 ≤ ((x0/rn) + 1)xn−2

0 (13)

and ∣∣∣∣∣∣
[x/rn]∑

xn=[(x−x0)/rn]+1

fn−1(b)b
n−2

∣∣∣∣∣∣ ≤ Kn−1((x0/rn) + 1)xn−2
0 (14)

Equation (12) gives

(L− ε)
[(x−x0)/rn]∑

xn=1

bn−2 ≤
[(x−x0)/rn]∑

xn=1

fn−1(b)b
n−2 ≤ (L+ ε)

[(x−x0)/rn]∑
xn=1

bn−2 (15)

Equations (9) and (13) give

[(x−x0)/rn]∑
xn=1

bn−2 =
xn−1

(n− 1)rn
−G2(x) +O(1) =

xn−1

(n− 1)rn
+ o

(
xn−1

)
(16)

Equations (15) and (16) give ( x large)

L

(n− 1)rn
− ε

(n− 1)rn
− ε ≤

∑[(x−x0)/rn]
xn=1 fn−1(b)b

n−2

xn−1

≤ L

(n− 1)rn
+

ε

(n− 1)rn
+ ε (17)

Finally equations (10), (11), (14), (17) and (6) give

lim
x→∞ fn(x) = − 1

2(n− 1)!r1 . . . rn−1
+

L

(n− 1)rn
= − 1

2(n− 1)!

r1 + . . .+ rn

r1 . . . rn

Theorem 2.1 is proved.

Let S ′
n(x) be the number of solutions (x1, . . . , xn) to the inequality (1) where

the xj (j = 1, ...., n) are nonnegative integers. From theorem 2.1 we obtain
without difficulty the following,

Corollary 2.2 Let us consider the inequality (1). If r1/r2 is an irrational
number, then

S ′
n(x) =

1

n!

xn

r1 . . . rn

+
1

2(n− 1)!

r1 + . . .+ rn

r1 . . . rn

xn−1 + o(xn−1) (x > 0)



1332 R. Jakimczuk

3 Integers of the form ps11 . . . p
sk
k

Let us consider the sequence An of all positive integers whose factorization is
of the form ps1

1 . . . psk
k where si ≥ 0 (i = 1, 2, . . . , k) and p1, . . . pk (k ≥ 2)

are distinct primes fixed. Let ψ(x) denote the number of these integers not
exceeding x. A direct consequence of corollary 2.2 is the following theorem,

Theorem 3.1 The following formula holds

ψ(x) =
lnk x

k! ln p1 . . . ln pk

+
1

(k − 1)!

ln
√
p1 . . . pk

ln p1 . . . ln pk

lnk−1 x+ o(lnk−1 x) (18)

Where x > 1.

From theorem 3.1 we obtain without difficulty the following corollary,

Corollary 3.2 If h > 1 the following asymptotic formula holds

ψ(hx) − ψ(x) ∼ lnh

(k − 1)! ln p1 . . . ln pk
lnk−1 x

Theorem 3.3 The following asymptotic formula holds

An ∼ 1√
p1 . . . pk

exp
(

k
√
k! ln p1 . . . ln pkn

Proof. Substituting x = An into (18) we obtain

k! ln p1 . . . ln pkn = lnk An + k ln
√
p1 . . . pk lnk−1An + o

(
lnk−1An

)
= (lnAn + ln

√
p1 . . . pk)

k + o
(
lnk−1An

)
That is

k

√
k! ln p1 . . . ln pkn = ln (

√
p1 . . . pkAn) k

√
1 + o

(
1

lnAn

)

= ln (
√
p1 . . . pkAn)

(
1 + o

(
1

lnAn

))

The theorem is proved.

Corollary 3.4 The following limit holds

lim
n→∞

An+1

An
= 1

Remark 2. a) We can consider the subsequence of all numbers whose
factorization is of the form pc1s1

1 pc2s2
2 . . . pcksk

k where c1, c2, . . . ck are positive
integer fixed. The section 3 can be rewritten for this subsequence. b) Let
us consider the sequence Bn of all numbers whose factorization is of the form
ps1

1 p
s2
2 . . . psk

k where si > 0 (i = 1, 2, . . . , k) and p1, p2, . . . pk (k ≥ 2) are
distinct primes fixed. The section 3 can be rewritten for this sequence using
theorem 2.1.
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