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Abstract
Let us consider the sequence A,, of all positive integers whose fac-
torization is of the form pi*p5?...p}* where s; > 0 (i = 1,2,... k)
and p1,pa, ... px are distinct primes fixed. Let ¢ (x) denote the number
of these integers not exceeding x. We prove the following well known

general result

In¥ 1 In/pr-- Pk, k1 -
v k”np1~--1npk+(k—l)!lnpl...lnpk 0"z + o(In™ z)

The result when k = 2 was obtained by Ramanujan (letter to Hardy),
Hardy and Littlewood, and others ( see [2], chapter V, and [3]).

D. H. Lehmer [4] was the first to consider the n-dimensional analogue
of the 2-dimensional problem considered by Ramanujan, Hardy and
Littlewood, and others.

D. C. Spencer [5], using complex function-theoretic methods, and F.
Beukers [1], using elementary methods, obtained this general result.

In this article we obtain this general result in a very elementary
and short form. We use mathematical induction ( as F. Beukers in his
paper) and combinatory. We also prove
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1 Preliminary results

Let us consider the linear inequality

Xy + rolo + ...+ rpx, < x (x> 0) (1)
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Where the numbers r; >0 (i =1,2,...,n) and n > 2 are fixed.

Let S,(x) be the number of solutions (xy, z3,...,x,) to the inequality (1)
where the z; (j =1,2,...,n) are positive integers.

The following result can be proved without difficulty by mathematical in-
duction.

Lemma 1.1 The following formula holds
1 "
Sp(z) = ——— + fro(x)2™! >0
(%) n!rlrg...rn+f (z)a (x20)
Where | f,(x)| < K, in the interval [0,00), K, being a certain positive number.
The following theorem is a simple consequence of the results exposed in [2]
( chapter V). We shall use it as a fundamental lemma.

Lemma 1.2 Let us consider the inequality (1) when n = 2. If ri/rq is an
wrrational number, then the following formula holds
B 1 22 1r; +1ry

27“17”2 2 172

SQ(I)

+ o(x) (x >0)

Now, it is well known if s is a nonnegative integer

s+1 s+1

K K
S =Y ank (s=0) (=1, Y= a.k (s=1)
i=0 i=0 i=0 i=1

If s > 1 the first coefficient is as41s = 1/(s + 1) and the second coefficient
is a; s = 1/2. There are many elementary proofs on this subject. For example,
mathematical induction.

Lemma 1.3 If M # 0 and r are real numbers then

K s+1
SN (Mi+r)*=> A (MK +r)" (s>0)
i=0 i=0

where Ags =15 — S5 A ort and Ay = a; M0 (i=1,2,...,5+1)

Remark 1. Note if s > 1 we find that the first coefficient is As11 5 =
1/(s 4+ 1)M and the second coefficient is Ag s = 1/2.

Example 1.4 We have
1 1 1

K
'2:_K3 _K2 _K
;Z 3 TN TG
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Proof. We proceed by mathematical induction. If s = 0 the theorem is
clearly true. Suppose the theorem is true for 0,1,...,s—1 (s > 1). We shall
prove it is true for s. If s > 1 we have

(M (i—1)+7r)" = <§: <5¥1> (Mi+7)' (_M)s+1t> + (Mi + 7)™

t=0

Summing over 0 <1 < K we get

Sai+ry = ST (S (F) e o)

i=0 M(s+1) ios+1 i=0

. s+1

(=M (2)

M(s+1)
Equation (2) gives

K s+1 )
Z(Mi—i—r)s = ZAi,S(MK—G—T)Z (3)
i=0 i=0

In equation (3) we have: 1) The left side is a polynomial in K. 2) The right
side is a polynomial in K. 3) Both polynomials are equal. 4) The coefficients
A, s do not depend of r (1i=1, 2, ..., s+1).

If r = 0 equation (3) becomes

K K s+1 . s+1 . s+1 o
STMiy = MY i =S 0, MUK =3 A (MK) =Y A MK
1=0 1=0 i=1 i=1 i=1

Therefore A; = a; M (i=1,2,...,s+1).
If K = 0 in equation (3) we find that S5 (Mi +7)* = r® = Ao, +
S5 A;ort. Lemma 1.3 is proved.

2 The main theorem

Theorem 2.1 Let us consider the inequality (1). If r1/ry is an irrational
number, then
1 " 1 it T

Sn() = e, 2= 1. 7" o) (x20) (4)

Proof. We proceed by mathematical induction. If n = 2 the theorem is true
(lemma 1.2). Consider the inequality (1), that is

ML+ oo F T Tp1 + Ty < T (x >0)
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Suppose the theorem is true for n — 1 (n > 3). We shall prove it is also true
for n.
If we consider the inequality

MTy+ .. T 1T < a (a>0)
then (inductive hypothesis)

1 an—l

(n—l)!rl...rn,l

Sn_1(a) = + fuoi(a)a"™? (5)

where |f,—1(a)] < K,—; in the interval [0, 00) (lemma 1.1), and the following
limit holds

1 A,
lim fnfl(&) _ .+ + Tno1

_ =1L 6
a—00 2(n—2)! .o (6)

We have from the inductive hypothesis the number of solutions to the inequal-
ity (1) will be ( for sake of simplicity in the notation we shall write b = x—r,xy,)

[€/7n] 1 [z/7n] 1 [z/7n] 2
= 2 )= b B (7
xnzz:l 1( ) (n — 1)!T1 R | xnzz:l + xnzz:l f 1( ) ( )

The function f(z,) = b"! is decreasing in the interval 0 < z,, < z/r,, besides
f(0) =z""!and f(z/r,) = 0. Therefore we have

1 [z/7n] 1 x/rn
St = < / v tdx, — Gl(.r)>
Tn—1 0

(n—=Drycorn 22 (n—Dlry. ooy,
z" 1
= - Gi(z)  (8)

nlryooor, (n—1D)ryoorp

where 0 < G4(z) < 2" !. In the same form we obtain

olrad e el
=1 n

where 0 < Gg( ) < n=2, Hence Gy(z) = o(z" ).

Equations (4 ) give

[z/75]
o1 (D)0 10
( (n—1 '7“1 T )+ 2 ) (10)

Tn=1
Ifs=n-—1 >3), M = —r,,r=x and K = [z/r,], lemma 1.3 gives

[/7n]

Gy () :——anl "1+o("1) (11)



S1,.52

Integers of the form pi'p5* ... pF 1331

Let € > 0 be, then there exists zy such that if > xy we have ( see equation

(6))

L—e< foi(x)<L+e (12)
The inequality b > zq is true if and only if z,, = 1,2, ..., [(z — x¢) /7).
We have
[z/7n]

> 0" < ([a/ra] = [(z = @) /ra]) 257 < ((wo/7n) + D) ag ™" (13)

zn=[(z—z0)/rn]+1

and o/
Z fn_l(b)bn_2 S Kn—l((xO/rn) + 1) l‘g_Q (14)

zn=[(z—0)/rn]+1

Equation (12) gives

[(x—x0)/rn] [(—20)/rn] [(x—20)/rn]
(L—¢) > %< Z faca V"2 < (L4+e) > b2 (15)
rn=1 Tn=1

Equations (9) and (13) give

[(z—z0)/7n] n—1 n—1

S o= 7(7;5_ oy~ Gala) +0(1) = 7(;— o+ (1) (16)

Tn=1

Equations (15) and (16) give ( z large)

I ¢ Ex:,xo)/rn] Fo1(b )bn—2

— —e <
(n—1r, (n—1r, €= zn-1
L €

(n—1r, - (n—1r,
Finally equations (10), (11), (14), (17) and (6) give

li f( ) 1 + L 1 r+...+7,
im f,(x) = — =—
2—00 2(n—Vlryooorper - (n— 1Dy 2(n =1 .o,

+e (17)

Theorem 2.1 is proved.

Let S/ (z) be the number of solutions (z1,...,z,) to the inequality (1) where
the z; (j =1,....,n) are nonnegative integers. From theorem 2.1 we obtain
without difficulty the following,

Corollary 2.2 Let us consider the inequality (1). If r1/rq is an irrational
number, then
| 1 (ST S o L

! - — n—1
Sul@) = nlry.. rn+2(n—1)! ... Ty S G (z>0)
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3 Integers of the form pi'...p*

Let us consider the sequence A,, of all positive integers whose factorization is
of the form pi'...p* where s; >0 (1 =1,2,...,k) and p1,...pr (kK > 2)
are distinct primes fixed. Let ¢ (x) denote the number of these integers not
exceeding x. A direct consequence of corollary 2.2 is the following theorem,

Theorem 3.1 The following formula holds

In* 2 1 In\/p1--Pr , &
_ 1 —1 1 k—1 18
() Ellnpy ... Inpg + (k—1)!np;...Inpg i w o) (18)
Where x > 1.

From theorem 3.1 we obtain without difficulty the following corollary,

Corollary 3.2 If h > 1 the following asymptotic formula holds
Inh Bl

Yhe) = w(w) ~ (k—1)!np;...Inpy ™

Theorem 3.3 The following asymptotic formula holds

1
A, ~ ————ex <kk!ln o nppn
P Dr p \/ b1 Dk

P1---
Proof. Substituting z = A,, into (18) we obtain

Bl Inpgn = Ay + ko peln™™ Ay o (0" 4,)

= (InA,+Inyp;.. .pk)k +o0 (lnk_1 An)
That is

1

\Vk!lnpl...lnpkn = In(\/p1-. - Peds) k1+0(lnA )
1

= In(\/p1-. Peds) (1+0(1nA ))

The theorem is proved.

Corollary 3.4 The following limit holds
AnJrl

n

=1

lim

n—oo

Remark 2. a) We can consider the subsequence of all numbers whose
factorization is of the form p**'p5** ...pi*°* where ¢y, ca,...cp are positive
integer fixed. The section 3 can be rewritten for this subsequence. b) Let
us consider the sequence B,, of all numbers whose factorization is of the form
pipst ... ppF where s; > 0 (1 = 1,2,...,k) and py,pe,...px (K > 2) are
distinct primes fixed. The section 3 can be rewritten for this sequence using
theorem 2.1.
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