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Abstract

The aim of this paper is to provide some results for stochastic con-
volutions corresponding to stochastic Volterra equations in separable
Hilbert space. We study convolution of the form WΨ(t) :=

∫ t
0 S(t −

τ)Ψ(τ)dW (τ), t ≥ 0, where S(t), t ≥ 0, is so-called resolvent for
Volterra equation considered, Ψ is an appropriate process and W is a
cylindrical Wiener process.

Mathematics Subject Classification: primary: 60H20; secondary: 60H05,
45D05

Keywords: Stochastic Volterra equation, resolvent, stochastic convolution

1 Definitions and notation

In the paper we consider the following stochastic Volterra equation in a sepa-
rable Hilbert space H :

X(t) = X(0) +

∫ t

0

a(t − τ)AX(τ) dτ +

∫ t

0

Ψ(τ) dW (τ), (1)

where t ∈ R+, a ∈ L1
loc(R+), A is a closed unbounded linear operator in H with

a dense domain D(A), Ψ is an adapted integrable stochastic process specified
below, W is a cylindrical Wiener process with respect to t and X(0) belongs
to H .
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The stochastic Volterra equations have been studied in connection with
applications to problems arising in mathematical physics, particularly in vis-
coelasticity and heat conduction in materials with memory. We refer to the
papers [3], [4] and [5]. Let us note that the equation (1) is a generalization of
stochastic heat and wave equations and stochastic linear Navier-Stokes system.

The above equation (1) is a stochastic version of the deterministic Volterra
equation of the form

u(t) =

∫ t

0

a(t − τ)Au(τ)dτ + f(t), (2)

where elements in (2) are the same as in (1), and f is an appropriate H-valued
mapping.

By S(t), t ≥ 0, we shall denote the family of resolvent operators corre-
sponding to the Volterra equation (2) and defined as follows.

Definition 1 (see, e.g. [13])
A family (S(t))t≥0 of bounded linear operators in the space H is called resol-

vent for (2) if the following conditions are satisfied:

1. S(t) is strongly continuous on R+ and S(0) = I;

2. S(t) commutes with the operator A, that is, S(t)(D(A)) ⊂ D(A) and
AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;

3. the following resolvent equation holds

S(t)x = x +

∫ t

0

a(t − τ)AS(τ)xdτ (3)

for all x ∈ D(A), t ≥ 0.

Proposition 1 ( [13, Proposition 1.1]) The equation (2) is well-posed if and
only if (2) admits a resolvent S(t). If this is the case then, in addition,
R(a � S(t)) ⊂ D(A) for all t ≥ 0 and

S(t)x = x + A

∫ t

0

a(t − τ)S(τ)xdτ for all x ∈ H, t ≥ 0. (4)

Comment: Let us emphasize that the resolvent S(t), t ≥ 0, is determined by
the operator A and the function a. Moreover, as a consequence of the strong
continuity of S(t) we have for any T > 0

sup
t≤T

||S(t)|| < +∞ , (5)
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where || · || denotes the operator norm.
In the paper we shall assume that the equation (2) is well-posed what means

that (2) admits a resolvent S(t).
The so-called resolvent approach to the Volterra equation (2) has been

introduced many years ago, probably by Friedman and Shinbrot [8], but re-
cently has been presented in details in the great monograph by Prüss [13]. The
resolvent approach is a generalization of the semigroup approach. In the con-
sequence, problems concerning convolutions with resolvents (defined below by
(8)) are more difficult than in previous case because of lack of the semigroup
property.

The main aim of the paper is to provide some introductory regularity results
for stochastic convolutions with resolvent operators, analogous to that obtained
in e.g. [6], [14] and [7], that is, to extend semigroup approach for our, non-
semigroup case.

In order to make the paper self-contained, we formulate definitions and
auxiliary lemmas necessary for understanding the main results.

Assume that (Ω,F , P ) is a probability space equipped with an increasing
family of σ-fields (Ft), t ∈ [0, T ] called filtration. We shall denote by Ft+ the
intersection of all σ-fields Fs, s > t. We say that filtration is normal if F0

contains all sets B ∈ F with measure P (B) = 0 and if Ft = Ft+ for any t ∈ I,
that is, the filtration is right continuous.

In the paper we assume that filtration (Ft)t∈I is normal. This assumption
enables to choose modifications of considered stochastic processes with required
measurable properties.

We will use the following well-known result, see e.g. [7].

Proposition 2 Let X(t), t ∈ [0, T ], be a stochastically continuous and adap-
ted process with values in H. Then X has a progressively measurable modifi-
cation.

In the paper stochastic processes Ψ and W are defined as follows. We
consider two separable Hilbert spaces H and U and a Wiener process W on
(Ω,F , (Ft)t≥0, P ), having values in some superspace of U with the nonnegative
covariance operator Q ∈ L(U). (By L(U,H), L(U) we denote spaces of linear
bounded operators from U into H and in U , respectively.) We assume that the
process W is a cylindrical one, that is, we do not assume that Tr Q < +∞. In
this case, the process W has continuous paths in some other Hilbert space (for
details, see [7] or [10]). Assume that there exists a complete orthonormal set
{ek} ⊂ U of eigenvectors of the operator Q with corresponding eigenfunctions
λk, k = 1, 2, . . . ; so TrQ =

∑∞
k=1 λk. We shall use the following expansion

of the process W (t) =
∑∞

k=1 ekβk(t), where βk(t) are independent real Wiener
processes with E(β2

k(t)) = λkt. We will need the subspace U0 := Q1/2(U) of the
space U , which endowed with the inner product 〈u, v〉U0 := 〈Q−1/2u, Q−1/2v〉U
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forms a Hilbert space. Here and in the whole paper we write explicitely indexes
indicating the appropriate space in norms | · |(·) and inner products 〈·, ·〉(·) .

This is apparently well-known fact that the construction of the stochastic
integral with respect to cylindrical Wiener process requires some particular
terms. Among others, an important role is played by the space of Hilbert-
Schmidt operators. A linear, bounded operator C acting from U0 into H
is called a Hilbert-Schmidt if

∑+∞
k=1 |Cuk|2H < +∞, where {uk} ⊂ U0 is an

orthonormal base in U0. The set L2(U0, H) of all Hilbert-Schmidt operators
from U0 into H , equipped with the norm |C|L2(U0,H) := (

∑+∞
k=1 |Cuk|2H)1/2, is

a separable Hilbert space. For abbreviation we denote L0
2 := L2(U0, H). (For

more details concerning that space we refer to [2] or [7].)
Let Φ(t), t ∈ [0, T ], be a measurable L0

2-valued process. We introduce the
norms

||Φ||t :=

{
E

(∫ t

0

|Φ(τ)|2L0
2
dτ

)}1
2

=

{
E

∫ t

0

[
Tr(Φ(τ)Q

1
2 )(Φ(τ)Q

1
2 )∗

]
dτ

} 1
2

, t ∈ [0, T ].

By N 2(0, T ; L0
2) we shall denote a Hilbert space of all L0

2-predictable pro-
cesses Φ such that ||Φ||T < +∞.

According to the theory of stochastic integral with respect to cylindrical
Wiener process (see [7] or [10]) we have to assume that Ψ belongs to the
space N 2(0, T ; L0

2). There is possible to consider a more general class of in-
tegrands, that is, the class of L0

2-predictable processes satisfying condition

P
(∫ T

0
|Ψ(τ)|2

L0
2
dτ < +∞

)
= 1. Such processes are called stochastically inte-

grable on [0, T ] and create a linear space denoted by N (0, T ; L0
2). But, in our

opinion, it is not worthwhile to study the general case, because this assump-
tion makes all formulations of results much more complicated. Moreover, it
produces a new level of difficulty additionally to problems related to long time
memory of the system.

In the whole paper we shall use the following Volterra Assumptions
(abbr. (VA)):

1. A : D(A) ⊂ H → H , is a closed linear unbounded operator with the
dense domain;

2. a ∈ L1
loc(R+);

3. the equation (2) is well-posed and S(t), t ≥ 0, are resolvent operators for
the Volterra equation (2) determined by the operator A and the function
a.
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For h ∈ D(A) we define the graph norm as follows: |h|D(A) := (|h|2H +

|Ah|2H)
1
2 . Because H is a separable Hilbert space and A is a closed operator,

the space (D(A), | · |D(A)) is a separable Hilbert space.
Moreover, we shall study the equation (1) under the following Probabil-

ity Assumptions (abbr. (PA)):

1. X(0) is an H-valued, F0-measurable random variable;

2. Ψ belongs to the space N 2(0, T ; L0
2), where the finite interval [0, T ] is

fixed.

Now, we introduce the definitions of solutions to the stochastic Volterra
equation (1).

Definition 2 Assume that conditions (VA) and (PA) hold. An H-valued pre-
dictable process X(t), t ∈ [0, T ], is said to be a strong solution to (1), if
X has a version such that P (X(t) ∈ D(A)) = 1 for almost all t ∈ [0, T ]; for
any t ∈ [0, T ],

∫ t

0
|a(t− τ)AX(τ)|Hdτ < +∞, P -a.s. and for any t ∈ [0, T ] the

equation (1) holds P -a.s.

Comment: Because the integral
∫ •

0
Ψ(τ) dW (τ) is a continuous H-valued

process then the above definition yields continuity of the strong solution.
Let A∗ denote the adjoint of the operator A, with dense domain D(A∗) ⊂ H

and the graph norm | · |D(A∗) defined as follows: |h|D(A∗) := (|h|2H + |A∗h|2H)
1
2 ,

for h ∈ D(A∗). The space (D(A∗), | · |D(A∗)) is a separable Hilbert space.

Definition 3 Let conditions (VA) and (PA) hold. An H-valued predictable
process X(t), t ∈ [0, T ], is said to be a weak solution to (1), if
P (

∫ t

0
|a(t− τ)X(τ)|Hdτ < +∞) = 1 and if for all ξ ∈ D(A∗) and all t ∈ [0, T ]

the following equation holds

〈X(t), ξ〉H = 〈X(0), ξ〉H + 〈
∫ t

0

a(t − τ)X(τ) dτ, A∗ξ〉H

+ 〈
∫ t

0

Ψ(τ) dW (τ), ξ〉H, P−a.s.

Definition 4 Assume that (VA) are satisfied and X(0) is an H-valued F0-
measurable random variable. An H-valued predictable process X(t), t ∈ [0, T ],
is said to be a mild solution to the stochastic Volterra equation (1), if

E

(∫ t

0

|S(t − τ)Ψ(τ)|2L0
2
dτ

)
< +∞ for t ≤ T (6)

and, for arbitrary t ∈ [0, T ],

X(t) = S(t)X(0) +

∫ t

0

S(t − τ)Ψ(τ) dW (τ), P − a.s. (7)
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In some cases weak solutions to the equation (1) coincide with mild solu-
tions to (1). In consequence, having results for the convolution

WΨ(t) :=

∫ t

0

S(t − τ)Ψ(τ) dW (τ), t ∈ [0, T ], (8)

where S(t) and Ψ are the same as in (7), we obtain results for weak solution
to (1).

2 Introductory results

In this section we collect some basic properties of the stochastic convolution
of the form

W B(t) :=

∫ t

0

S(t − τ)B dW (τ) (9)

in the case when B ∈ L(U,H).

Lemma 1 Assume that the operators S(t), t ≥ 0, and B are as above, S∗(t),
B∗ are their adjoints, and

∫ T

0

|S(τ)B|2L0
2
dτ =

∫ T

0

Tr[S(τ)BQB∗S∗(τ)] dτ < +∞. (10)

Then we have:

(i) the process W B is Gaussian, mean-square continuous on [0,T] and then
has a predictable version;

(ii)

Cov W B(t) =

∫ t

0

[S(τ)BQB∗S∗(τ)] dτ, t ∈ [0, T ]; (11)

(iii) trajectories of the process W B are P-a.s. square integrable on [0,T].
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Proof:

(i) Gaussianity of the process W B follows from the definition and properties
of stochastic integral. Let us fix 0 ≤ t < t + h ≤ T . Then

W B(t + h) − W B(t) =

∫ t

0

[S(t + h − τ) − S(t − τ)]BdW (τ)

+

∫ t+h

t

S(t + h − τ)BdW (τ).

Let us note that the above integrals are stochastically independent. Us-
ing the extension of the process W (mentioned in section 1) and prop-
erties of stochastic integral with respect to real Wiener processes (see,
e.g., [9]), we have

E|W B(t + h) − W B(t)|2H =

+∞∑
k=1

λk

∫ t

0

|[S(t+h−τ)−S(t−τ)]Bek|2H dτ

+

+∞∑
k=1

λk

∫ t+h

t

|S(t + h − τ)Bek|2H dτ

:= I1(t, h) + I2(t, h) .

Then, invoking (5), the strong continuity of S(t) and the Lebesgue dom-
inated convergence theorem, we can pass in I1(t, h) with h → 0 under
the sum and integral signs. Hence, we obtain I1(t, h) → 0 as h → 0.

Observe that

I2(t, h) =

∫ t+h

t

||S(t + h − τ)BQ
1
2 ||2HS dτ ,

where || · ||HS denotes the norm of Hilbert-Schmidt operator. By the
condition (10) we have∫ T

0

||S(t)BQ
1
2 ||2HS dt < +∞ ,

what follows that limh→0 I2(t, h) = 0.

The proof for the case 0 ≤ t − h < t ≤ T is similar. Existence of a pre-
dictable version is a consequence of the above continuity and Proposition
2.

(ii) Covariance (11) follows from theory of stochastic integral.
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(iii) From the definition (9) and assumption (10) we have the following esti-
mate

E

∫ T

0

|W B(τ)|2H dτ =

∫ T

0

E|W B(τ)|2H dτ =

=

∫ T

0

E

∣∣∣∣∫ τ

0

S(τ − r)BdW (r)

∣∣∣∣2
H

dτ =

∫ T

0

∫ τ

0

|S(r)B|2L0
2
dr dτ < +∞ .

Hence, the function W B(·) may be regarded like random variable with
values in the space L2(0, T ; H). �

Comment: Let us emphasize that Clément and Da Prato (see [3] and [4]) ob-
tained Hölderianity of the trajectories of the stochastic convolutions WA,a(t) :=∫ t

0
S(t − τ)dW (τ) in the case when A is a self-adjoint negative operator in H

fulfilling some technical assumptions and when a ∈ L1
loc(R+) is a completely

positive function. In that case the operator norm ||S(t)|| ∈ [0, 1] for any
t ∈ [0, T ].

Analogously like in the theory of evolution equation we can obtain the
following result.

Theorem 1 Assume that the operators S(t), t ≥ 0, and B are as above and
the condition (10) holds. Let X(0) be a F0-measurable random variable with
values in D(A). Then the stochastic Volterra equation (1) has exactly one weak
solution which is given by the formula

X(t) = S(t)X(0) +

∫ t

0

S(t − τ)BdW (τ).

Now, we formulate an auxiliary result which will be used in the next section.

Lemma 2 Let Volterra assumptions hold with the kernel function a ∈
W 1,1(R+). Assume that X is a weak solution to (1) in the case when Ψ(t) = B,
where B ∈ L(U,H) and trajectories of X are integrable w.p. 1 on [0, T ]. Then,
for any function ξ ∈ C1([0, t]; D(A∗)), t ∈ [0, T ], the following formula holds

〈X(t), ξ(t)〉H = 〈X(0), ξ(0)〉H +

∫ t

0

〈(ȧ � X)(τ) + a(0)X(τ), A∗ξ(τ)〉Hdτ

+

∫ t

0

〈ξ(τ), BdW (τ)〉H +

∫ t

0

〈X(τ), ξ̇(τ)〉Hdτ, (12)

where dots above a and ξ mean time derivatives and � means the convolution.
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Proof: First, we consider functions of the form ξ(τ) := ξ0ϕ(τ), τ ∈ [0, T ],

where ξ0 ∈ D(A∗) and ϕ ∈ C1[0, T ]. For simplicity we omit index H in the
inner product. Let us denote Fξ0(t) := 〈X(t), ξ0〉, t ∈ [0, T ].

Using Itô’s formula to the process Fξ0(t)ϕ(t), we have

d[Fξ0(t)ϕ(t)] = ϕ(t)dFξ0(t) + ϕ̇(t)Fξ0(t)dt, t ∈ [0, T ]. (13)

Because X is weak solution to (1), we have

dFξ0(t) = 〈
∫ t

0

ȧ(t − τ)X(τ)dτ + a(0)X(t), A∗ξ0〉dt + 〈BdW (t), ξ0〉
= 〈(ȧ � X)(t) + a(0)X(t), A∗ξ0〉dt + 〈BdW (t), ξ0〉. (14)

From (13) and (14), we obtain

Fξ0(t)ϕ(t) = Fξ0(0)ϕ(0) +

∫ t

0

ϕ(s)〈(ȧ � X)(s) + a(0)X(s), A∗ξ0〉ds

+

∫ t

0

〈ϕ(s)BdW (s), ξ0〉 +

∫ t

0

ϕ̇(s)〈X(s), ξ0〉ds

= 〈X(0), ξ(0)〉H +

∫ t

0

〈(ȧ � X)(s) + a(0)X(s), A∗ξ(s)〉ds

+

∫ t

0

〈BdW (s), ξ(s)〉 +

∫ t

0

〈X(s), ξ̇(s)〉ds.

Hence, we proved the formula (12) for functions ξ of the form ξ(s) = ξ0ϕ(s),
s ∈ [0, T ]. Because such functions form a dense subspace in the space
C1([0, T ]; D(A∗)), the lemma is true. �

3 Properties in general case

In this section we consider weak and mild solutions to the equation (1).
First we study the stochastic convolution defined by (8), that is,

WΨ(t) :=

∫ t

0

S(t − τ)Ψ(τ) dW (τ), t ∈ [0, T ].

Proposition 3 Assume that S(t), t ≥ 0, are (as earlier) the resolvent oper-
ators corresponding to the Volterra equation (2). Then, for arbitrary process
Ψ ∈ N 2(0, T ; L0

2), the process WΨ(t), t ≥ 0, given by (8) has a predictable
version.
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Proof: Because proof of Proposition 3 is analogous to some schemes in theory

of stochastic integral (see,e.g., [12, Chapter 4]) we provide only an outline of
proof.

First, let us notice that the process S(t−τ)Ψ(τ), where τ ∈ [0, t], belongs to
N 2(0, T ; L0

2), because Ψ ∈ N 2(0, T ; L0
2). Then we may use the apparently well-

known estimate (see, e.g., Proposition 4.16 in [7]): for arbitrary a > 0, b > 0
and t ∈ [0, T ]

P (|W Ψ(t)|H > a) ≤ b

a2
+ P

(∫ t

0

|S(t − τ)Ψ(τ)|2L0
2
dτ > b

)
. (15)

Because the resolvent operators S(t), t ≥ 0, are uniformly bounded on compact
itervals (see [13]), there exists a constant C > 0 such that ||S(t)|| ≤ C for
t ∈ [0, T ]. So, we have |S(t − τ)Ψ(τ)|2

L0
2
≤ C2|Ψ(τ)|2

L0
2
, τ ∈ [0, T ].

Then the estimate (15) may be rewritten as

P (|W Ψ(t)|H > a) ≤ b

a2
+ P

(∫ t

0

|Ψ(τ)|2L0
2
dτ >

b

C2

)
. (16)

Let us consider predictability of the process WΨ in two steps. In the first
step we assume that Ψ is an elementary process understood in the sense given
in section 4.2 in [7]. In this case the process WΨ has a predictable version by
Lemma 1, part (i).

In the second step Ψ is an arbitrary process belonging to N 2(0, T ; L0
2).

Since elementary processes form a dense set in the space N 2(0, T ; L0
2), there

exists a sequence (Ψn) of elementary processes such that for arbitrary c > 0

P

(∫ T

0

|Ψ(τ) − Ψn(τ)|2L0
2
dτ > c

)
n→+∞−→ 0 . (17)

By the previous part of the proof the sequence WΨ
n of convolutions

WΨ
n (t) :=

∫ t

0

S(t − τ)Ψn(τ)dW (τ)

converges in probability. Hence, it has a subsequence converging almost surely.
This implies the predictability of the convolution WΨ(t), t ∈ [0, T ]. �

Proposition 4 Assume that Ψ ∈ N 2(0, T ; L0
2). Then the process WΨ(t), t ≥

0, defined by (8) has square integrable trajectories.

Proof: We have to prove that E
∫ T

0
|W Ψ(t)|2Hdt < +∞. From Fubini’s theo-
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rem and properties of stochastic integral

E

∫ T

0

∣∣∣∣∫ t

0

S(t − τ)Ψ(τ)dW (τ)

∣∣∣∣2
H

dt =

∫ T

0

[
E

∣∣∣∣∫ t

0

S(t − τ)Ψ(τ)dW (τ)

∣∣∣∣2
H

]
dt

=

∫ T

0

∫ t

0

|S(t − τ)Ψ(τ)|2L0
2

dτdt ≤ M

∫ T

0

∫ t

0

|Ψ(τ)|2L0
2
dτdt < +∞.

(from boundness of operators S(t) and since Ψ(τ) are Hilbert-Schmidt)

�
In the below result, the notions ”parabolic” and ”3-monotone” are under-

stood in the sense defined by Prüss [13, Section 3].

Proposition 5 Assume that (1) is parabolic, (VA) are satisfied and the ker-
nel function a is 3-monotone. Let X be a predictable process with integrable
trajectories. Assume that X has a version such that P (X(t) ∈ D(A)) = 1 for
almost all t ∈ [0, T ] and (6) holds. If for any t ∈ [0, T ] and ξ ∈ D(A∗)

〈X(t), ξ〉H = 〈X(0), ξ〉H +

∫ t

0

〈a(t − τ)X(τ), A∗ξ〉Hdτ (18)

+

∫ t

0

〈ξ, Ψ(τ)dW (τ)〉H, P − a.s.,

then

X(t) = S(t)X(0) +

∫ t

0

S(t − τ)Ψ(τ)dW (τ), t ∈ [0, T ]. (19)

Proof: For simplicity we omit index H in the inner product. First, we see,

analogously like in Lemma 2, that if (18) is satisfied, then

〈X(t), ξ(t)〉 = 〈X(0), ξ(0)〉 +

∫ t

0

〈(ȧ � X)(τ) + a(0)X(τ), A∗ξ(τ)〉dτ

+

∫ t

0

〈Ψ(τ)dW (τ), ξ(τ)〉 +

∫ t

0

〈X(τ), ξ̇(τ)〉dτ, P − a.s. (20)

holds for any ξ ∈ C1([0, t], D(A∗)) and t ∈ [0, T ].
Because (1) is parabolic and a is 2-regular (what is implied by 3-monotone),

then, by [13, Theorem 3.1], there exists a resolvent S ∈ C1((0, +∞); L(H))
for (1).

Now, let us take ξ(τ) := S∗(t−τ)ζ with ζ ∈ D(A∗), τ ∈ [0, t]. The equation
(20) may be written like

〈X(t), S∗(0)ζ〉 = 〈X(0), S∗(t)ζ〉+
∫ t

0

〈(ȧ � X)(τ)+a(0)X(τ), A∗S∗(t − τ)ζ〉dτ

+

∫ t

0

〈Ψ(τ)dW (τ), S∗(t − τ)ζ〉 +

∫ t

0

〈X(τ), (S∗(t − τ)ζ)′〉dτ,
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where derivative ()’ in the last term is taken over τ .
Next, using S∗(0) = I, we rewrite

〈X(t), ζ〉 = 〈S(t)X(0), ζ〉+
∫ t

0

〈S(t−τ)A

[∫ τ

0

ȧ(τ−σ)X(σ)dσ+a(0)X(τ)

]
, ζ〉dτ

+

∫ t

0

〈S(t − τ)Ψ(τ)dW (τ), ζ〉 +

∫ t

0

〈Ṡ(t − τ)X(τ), ζ〉dτ. (21)

To prove (19) it is enough to show that the sum of the first integral and the
third one in the equation (21) gives zero.

We use properties of resolvent operators and the derivative Ṡ(t − τ) with
respect to τ . Then

I :=

〈∫ t

0

Ṡ(t − τ)X(τ)dτ, ζ

〉
=

〈
−

∫ t

0

Ṡ(τ)X(t − τ)dτ, ζ

〉
=

〈
−
(∫ t

0

[∫ τ

0

ȧ(τ−s)AS(s)ds

]
X(t−τ)dτ−

∫ t

0

a(0)AS(τ)X(t−τ)dτ

)
, ζ

〉
= 〈−([A(ȧ � S)(τ) � X](t) + a(0)A(S � X)(t)), ζ〉.

The kernel function a is 3-monotone, so a ∈ C1(R+), and then has bounded
variation. Hence, the convolution (a � S)(τ) has sense (see [13, Section 1.6]
or [1]).

Since∫ t

0

〈a(0)AS(t − τ)X(τ), ζ〉dτ =

∫ t

0

〈a(0)AS(τ)X(t − τ), ζ〉dτ

and

J :=

∫ t

0

〈S(t − τ)A

[∫ τ

0

ȧ(τ−σ)X(σ)dσ

]
, ζ〉dτ =

∫ t

0

〈AS(t−τ)(ȧ � X)(τ), ζ〉dτ

= 〈A(S � (ȧ � X)(τ))(t), ζ〉 = 〈A((S � ȧ)(τ) � X)(t), ζ〉 for any ζ ∈ D(A∗),

so J = −I, hence J + I = 0. This means that (19) holds for any ζ ∈ D(A∗).
Since D(A∗) is dense in H∗, then (19) holds. �
Remark: In Proposition 5, the assumption that a is 3-monotone may be
replaced by both: 2-regularity of a and a ∈ BVloc(R+).
Comment: Proposition 5 shows that under particular conditions a weak so-
lution to (1) is a mild solution to the equation (1).

Proposition 6 Let Volterra assumptions be satisfied. If the process
Ψ ∈ N 2(0, T ; L0

2), then the stochastic convolution WΨ fulfills the equation (18).
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Proof: Let us notice that the process WΨ has integrable trajectories. For

any ξ ∈ D(A∗) we have∫ t

0
〈a(t − τ)WΨ(τ), A∗ξ〉Hdτ ≡ (from (8))

≡
∫ t

0

〈a(t − τ)

∫ τ

0

S(τ − σ)Ψ(σ)dW (σ), A∗ξ〉Hdτ =

(from Dirichlet’s formula and stochastic Fubini’s theorem)

=

∫ t

0

〈
[∫ t

σ

a(t − τ)S(τ − σ)dτ

]
Ψ(σ)dW (σ), A∗ξ〉H

=

∫ t

0

〈A
[∫ t−σ

0

a(t − σ − z)S(z)dz

]
Ψ(σ)dW (σ), ξ〉H

(where z := τ − σ and from definition of convolution)

= 〈
∫ t

0

A[(a � S)(t − σ)]Ψ(σ)dW (σ), ξ〉H =

(from the equation (4), because A(a � S)(t − σ)x = (S(t − σ) − I)x,

where x ∈ H)

= 〈
∫ t

0

[S(t − σ) − I]Ψ(σ)dW (σ), ξ〉H =

= 〈
∫ t

0

S(t − σ)Ψ(σ)dW (σ), ξ〉H − 〈
∫ t

0

Ψ(σ)dW (σ), ξ〉H.

Hence, we obtained the following equation

〈W Ψ(t), ξ〉H =

∫ t

0

〈a(t − τ)WΨ(τ), A∗ξ〉Hdτ +

∫ t

0

〈ξ, Ψ(τ)dW (τ)〉H

for any ξ ∈ D(A∗). �

Corollary 1 Let Volterra assumptions hold with a bounded operator A.
If Ψ belongs to N 2(0, T ; L0

2) then

WΨ(t) =

∫ t

0

a(t − τ)AWΨ(τ)dτ +

∫ t

0

Ψ(τ)dW (τ) . (22)

Comment: The formula (22) says that the convolution WΨ is a strong solu-
tion to (1) if the operator A is bounded.

The below theorem is a consequence of the results obtained up to now.

Theorem 2 Suppose that (VA) and (PA) hold. Then a strong solution (if ex-
ists) is always a weak solution of (1). If, additionally, assumptions of Proposi-
tion 5 are satisfied, a weak solution is a mild solution to the Volterra equation
(1). Conversely, under conditions of Proposition 6, a mild solution X is also
a weak solution to (1).
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4 Some estimates

In this section we provide two estimates for stochastic convolution (8). Some
considerations (see, e.g. [11], where maximal type inequalities for the equation
(1) were studied) show that in general case, that is when (VA) are supposed
only, it is very difficult to say something interesting about regularity of the
convolution (8). Similar situation was in the semigroup case, see [7], where
regularity results have been received under additional assumptions on semi-
groups, for instance when contractions or analytical semigroups were studied.

As we have already written, Clément and Da Prato (see, [3] and [4]) ob-
tained some regularity results in the case when A was a self-adjoint operator
satisfying some technical assumptions, the function a was completely positive
and when Ψ(t) ≡ I, that is for the convolution W̃ (t) :=

∫ t

0
S(t− τ)dW (τ). In

their case, ||S(t)|| ≤ 1, what is a resolvent analogon of contraction semigroup.

Theorem 3 If Ψ ∈ N 2(0, T ; L0
2) then the following estimate holds

sup
t≤T

E(|WΨ(t)|H) ≤ C MT E

(∫ T

0

|Ψ(t)|2L0
2
dt

) 1
2

, (23)

where C is a constant and MT = supt≤T ||S(t)||.

Comment: The estimate (23) seems to be rather coarse. It comes directly
from the definition of stochastic integral. Since (23) reducest to the Davis
inequality for msrtingales if S(·) = I, the constant C appeared on the right
hand side. Unfortunately, we can not use more refined tools, for instance Itô’s
formula (see, e.g. [14] for Tubaro’s estimate), because the process WΨ is not
enough regular.

The next theorem is a consequence of Theorem 3.

Theorem 4 Assume that Ψ ∈ N 2(0, T ; L0
2). Then

sup
t≤T

E(|WΨ(t)|H) ≤ C̃(T ) |Ψ|N 2(0,T ;L0
2),

where a constant C̃(T ) depends on T .

Proof: From (8) and property of stochastic integral we have

E(|WΨ(t)|H) = E

(
|
∫ t

0

S(t − τ)Ψ(τ)dW (τ)|H
)

≤ C E

(∫ t

0

|S(t − τ)Ψ(τ)|2L0
2
dτ

) 1
2
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(from writing out the Hilbert-Schmidt norm)

≤ C E

(∫ t

0

||S(t − τ)||2 |Ψ(τ)|2L0
2
dτ

) 1
2

≤ C MT E

(∫ t

0

|Ψ(τ)|2L0
2
dτ

) 1
2

≤ (by the Hölder inequality)

≤ C MT

(
E

∫ t

0

|Ψ(τ)|2L0
2
dτ

) 1
2

≤ C̃(T ) |Ψ|N 2(0,T ;L0
2)

,

where MT is as above and C̃(T ) = C MT . �

Summing up the paper, it is worth to emphasize that better and more
sophisticated regularity results should be obtained for exponentially bounded
and analytical resolvents. The situation is similar to that for semigroup case,
when the best results are reached for analytical semigroups.
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