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Abstract
A standard canonical form is established for a class of neutral delay-
differential systems. It is shown that strict system equivalence provides
the connection between a given strongly controllable polynomial system
matrix and the resulting canonical form. Using this canonical form, an
algorithm is given for the eigenstructure assignment of a class of neutral
delay-differential systems.
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1 Introduction

Consider the class of linear neutral delay differential system of the form:

p p q
> Eii(t—ih) =» Aw(t—ih)+ Y Bju(t — jh)
i=0 i=0 =0

y(t) =) Cia(t —kh) + > Dyult — nh) (1)

where x(t) is an n-vector of state variables, u(t) is an [-vector of controlled
variables, y(t) is a p-vector of observed variables, and h is a positive real
constant.

The system of differential-difference equations (1) may be rewritten as a
so-called generalized linear system over R|[z]:

sB(z) — A(z) B(2) } { z(t) } B [ 0 }

—C(2) D(z) —u(t) (2)
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where E(z), A(z), B(z) and C(z) are respectively n x n,n xn,n x [, and pxn
matrices over R[z], s = — denotes a differential operator and z a backward
shift operator i.e., zz(t) = z(t — h).

Neutral delay-differential equations of the type (1) may arise in the study
of lumped parameter networks interconnected by transmission lines (see for
example Byrnes et al. [1]). The main motivation behind studying equations of
the form (1) in the context of the theory of linear systems over commutative
rings is the desire for a unified algebraic treatment of retarded, neutral and
constant coefficient systems.

It is assumed in equations (2) that E(z) is atomic at zero ie. |E(0)| # 0.
This is necessary in general to guarantee causality. The system matrix P(s, 2)
corresponding to (2) is the (n + p) X (n + [) polynomial matrix:

_ | sB(x) —A(z) B(2)
The transfer function of (2), or equivalently of (3) is the p x [ rational matrix
given by:

G(s,2) = O(2) [sE(2) = A(2)] " B(2) + D(2) (4)

In his pioneering work, Rosenbrock [7] introduced the concept of strict-
system-equivalence (SSE) for system matrices over R[s| describing ordinary
differential /difference systems. This concept is extended for system matrices
of the type (3) as follows.

Definition 1.1 Two system matrices Pi(s, z) and Py(s, z) of the form (3)
having the same size are SSE if there they are related by:

{M(s,z) 0 } {sEl(z) —Ai(2) Bi(z) } _

X(s,2) I —Cl(z>v Di(z) |
[sEQ 2 ) B } [N(s,z) Y(s,z)} (5)
| “0) . Du2) L o I

@)

where M(s,z) and N(s,z) are n x n unimodular matrices over Rls, z] and
X(s,z2),Y(s, z) are polynomial matrices of appropriate dimensions.

Following the terminology of Rosenbrock, Spong [9] introduced the concepts
of restricted-system-equivalence (RSE) and weak-restricted-system-equivalence
(WRSE) for system matrices of the type (3). These are defined as follows:
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Definition 1.2 Two system matrices Pi(s, z) and Py(s, z) of the form (3)
are RSE (WRSE) if there exist unimodular n x n matrices M(z) and N(z)
over R[z](R(2)) such that:

0 2[4 53]

-~

k)|

Py(s,z)

Clearly SSE = RSE =— WRSE.

Both RSE and WRSE preserve the form of the system matrix , the system
order and the transfer function of the system (1). Zerz [10] pointed out that
the controllability and observability of a system (1) is closely related to its zero
structure. The zero structure of a polynomial system matrix (3) is completely
captured by the determinantal ideals as defined by the following.

Definition 1.3 Let P(s, z) € R"*"™[s, 2|, the ith order determinantal ideal
yadd of the polynomial matriz P(s,z) is the ideal generated by the ith order

minors of P(s,z).

The determinantal ideals IZ[P] of P(s, z) satisfy the following inclusion
R[S,Z]Qzl QIQQIH (7)
where 1 is the normal rank of P(s, z).

Lemma 1.4 [6]
Suppose that two polynomial matrices P(s,z) and Q(s,z) € R™*"2[s 2], are
related by SSE and let IJ[-P}, I][-Q], j =1,...,h = min(r,re) denote the
determinantal ideal of order j generated by the j X j minors of P(s,z) and

Q(s, z) respectively. Then
T =19 vi=0,... . h (8)

Lemma 1.5 [4]
The transformation of SSE given in (5) preserves the transfer function of
P(s, z) and the determinantal ideals of the matrices:

sE(z) — A(z), P(s, 2), [ sE(z) — A(z) B(2) ] ,
[ sE(z) — A(z) } (9)
—C(2)
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Using the definitions given by Zerz [10], the system (1) is said to be strongly
controllable if the matrix:

C=[sE(z) - A(z) B()] (10)

has full rank for all (s, z) € C* and canonical if furthermore the matrix:

o= | =

has no non-trivial factors in Rs, z|.

2 Reduction to standard canonical form

In what follows, we will consider the problem of realization for linear neutral
delay-differential systems. Our approach is influenced by results obtained in
the context of systems over a commutative ring. For background on the prob-
lem of realization of linear systems over commutative rings, see for example,
Kamen [5], Rouchaleau and Sontag [8], and Eising and Hautus [2]. Spong [9]
has given some results on the realization of neutral systems from an algebraic
approach. He used the concept of WRSE to obtain a two-step realization pro-
cedure for the construction of canonical neutral realizations for a large class of
transfer functions. In the following, we present a direct method for the canon-
ical realization of a large class of neutral delay-differential transfer functions.
Although the SISO case is used, the method can readily be extended to the
MIMO case.

Theorem 2.1 Let P(s,z) be an (n+ 1) x (n+ 1) canonical system matriz
in the form (3) with B(z) having no zeros. Also, let

|sE(z) — A(2)| = Zei(z)s"ﬂ, (eo(2) monic) (12)

and the transfer function of P(s,z) be given by:

g(s,2) = ZE; 3 +r(2) (13)

where,

d(87 Z) = eO(Z)Sn + 61(Z)Sn_1 4+ ...+ en(z)’
n(s,z) = c1(2)+e2(2)s+...+cn(z)s" !
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have no common non-trivial factors in Rls,z]. Then, P(s,z) is SSE to the
standard canonical form:

= [ sE(2) = F(2) E,
P(s,z) = l Za(2) r(2) } (15)

where

F(z) is the n X n_companion matrix:

[0 1 0 0]
0 0 1 0
F(z) = : : : S (17)
0 0 0 1
| —en(2) —en1(2) —ena(z) - —e(z) |

t(z)=[alz) elz) - alz)],r(z)=D(z). (18)
and E,, is the nth column of the identity matriz I,,.

Proof. It can be easily verified that P(s,z) and P(s,z) both are canonical
and give rise to the same transfer function g(s, z). Therefore by a result given
by Frost and Boudellioua [3], P(s,z) and P(s,z) are SSE since both can be
reduced by SSE to the same polynomial system matrix:

I, 00
S(s,z) = 0 d(s,z) |1 (19)
0 —n(s,2)]0

Example 2.2 Consider the system matrix:

S 0 1
P(s,z) = 0 s(z+1)+1] -1 (20)
—1 —z ‘

It can be easily verified that P(s, z) is canonical and that the transfer function

of P(s,z) is:

s+1

2 (z+1)+s (21)

g(svz) =
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By wvirtue of Theorem 2.1, P(s,z) is SSE to the standard canonical system
matrix:

s -1 0
P(s,z) = 0 s(z+1)+1]|1 (22)
~1 -1 |0

as both P(s,z) and P(s,z) are SSE to the system matriz:

1 0 0
S(s,2)= 10 s*(z+1)+s|1 (23)
0 —s—1 |0

The transformations that reduce P(s, z) to P(s, z) is one of SSE in which,

1 1|07

[A)?((jg ?]: 0 —1]0 (24)
’ 0 0|1 |

and

[ N(s,2) Y(s2)

1 24110
T

=10 -1 |0 (25)

0 0 |1

It should be pointed out that despite the fact that P(s,2) and P(s, z) have
the same form (3), the transformation of SSE between P(s, z) and P(s,2) is
over R[s, z] and cannot be in general replaced by a transformation involving
only matrices over R|[z].

3 Eigenstructure Assignment

Having established a standard canonical form (15) for system matrices in state-
space form (3), we now discuss the usefulness of this canonical form in the
eigenstructure assignment problem.

Byrnes et al. [1] presented a solution to the problem of feedback stabiliza-
tion of neutral delay differential systems using an associated Riccati equation.
However, to our knowledge the problem of eigenstructure assignment for neu-
tral systems has not been studied so far. In the following we present a sufficient
condition for the eigenstructure of a SISO system matrix (3) to be arbitrarily
assigned using polynomial state feedback.

Let P(s,z) bea (n+1) x (n+ 1) system matrix over R[s, z] in the form
(4.35). Then the closed-loop system matrix is given by

sE(z) — A(z) + B(2)K(s,z) B(z)

Fels,2) = —C(2) 0

(26)
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where K (s, z) is a n x n state feedback matrix over Rs, z|.
Now, it can be shown that:

n

|sE(z) — A(2)| = Zei(z)s”_i (27)

i=0
where €y(z) is monic and e;(z) € R[s,z],7 = 0,1,... ,n. The system matrix
P(s, z) is said to be eigenstructure-assignable over R[s, z| if for any A (z), A2(2),

., An(2) belonging to R[z] there exists a matrix K (s, z) over R[s, z] such that

[SE(2) — A(z) + B(z)K (s.2)] = M eo(2) [s — A(2)] (28)
Theorem 3.1 If the system matriz P(s, z) is strongly controllable then it

18 eigenstructure assignable.

Proof. Since P(s,z) is strongly controllable, there exist n x n unimodular
matrices M (s, z) and N(s, z) over R[s, z| such that

M(s,z) [ sE(z) — A(2) + B(2)K(s,z) B(z) | N(s,2)
= [ sE(2) — F(2) + E,K'(2) E, |
where K'(z) = K(s,2)N(s,z) and sE(z) — F(z) has the canonical form (15).
Let the feedback matrix
K'(z) = | kn(2) ky(2) - Ki(2) ] (30)
and the last row of sE(z) — F(z) be given by
[ en(2) en-1(z) -+ e(z) ] (31)

Then the matrix sE(z) — F(z) + E,K’'(z) has the same canonical form as
sE(z) — F(z) except for the last row

(29)

[ en(2) +h(2) en-1(2) + ki, a(2) o er(z) +K1(2) ] (32)
Since
K'(z) = K(s,2)N(s, 2), (33)
it follows that the desired feedback matrix
K(s,z) = K'(z)N~'(s,2) (34)

Let ki(2) = eo(2)ki(2) —ei(2), (i=1,2,...,n).
Then the last row of sE(z) — F(z) + E,K'(z) becomes

[ eo(2)kn(2) eo(2)hi,_1(2) - -eolz) [s+ Ki(2)] ] (35)
so that k/(2), (i = 1,2,... ,n) is obtained by equating the coefficients of s in

n

"R ()8 T L+ E(2) = ‘Ho [s — Ai(2)] (36)

1=
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Example 3.2 Consider the SISO polynomial system matriz P(s, z) given
in Example 2.2, i.e.,

5 0 1
P(s,z) = 0 s(z+1)+1| -1 (37)
-1 —z ‘ 0

The characteristic polynomial associated with P(s, z) is
p(s,2) = |sE(z) — A(2)| = s*(z + 1) + s (38)

Suppose we wish the poles of the closed loop system to be —1 and —2 so that
the closed loop characteristic polynomaial is

pe(s,2) = (2 +1)(s* + 35+ 2) (39)
It follows that
ki(z) =3, Kky(z)=2 (40)
Using the matriz N(s, z) in Example 2.2,
K(z) :=K'(z)N(s,2) = [ 2(z+1) 2z(2+1) ] (41)

It is easy to verify that the closed loop system matriz

s+2(z+1) 22(z+1) 1
P.s,z)=| —2(z+1) s(z+1)—(z+1)(2z—-1)|—-1 (42)
-1 -z ‘ 0

does have the desired eigenstructure.

4 Conclusions

In this paper a standard canonical form is established for polynomial sys-
tem matrices arising from a class of neutral delay-differential systems. The
standard form is canonical in the sense given by Zerz [10]. Using this canon-
ical form, conditions are given under which a system matrix is eigenstructure
assignable. An algorithm is given for the eigenstructure assignment of the
system.
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