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Abstract

We study nonlinear singular integral equation of Volterra type in
Banach space of real functions defined and continuous on a bounded
and closed interval. Using a suitable measure of noncompactness we
prove the existence of monotonic solutions. Also a generalized result is
taken in the consideration.
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1 Preliminaries and Introduction

In this paper, we are going to study the solvability of a nonlinear singular
integral equation of Volterra type of the form:
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x(t):a(t)+:1:(t)/ %ds, (1)

0
wheret € I = [0, M], M <oo and 0<a<1.

We look for solutions of that equation in the Banach space of real functions
being defined and continuous on a bounded and closed interval. The main tool
used in our investigations is a special measure of noncompactness constructed
in such a way enable us to study the solvability of considered equations in the
class of monotonic functions.

For further purposes, we collect a few auxiliary results which will be needed
in the sequel.

Assume that (E,||.||) is an infinite-dimensional Banach space with the zero
element 0. Denote by B (z,7) the closed ball centered at z and with radius r.
The symbol B, stands for the ball B (0,r).

If X is a subset of E , then X , Conv X denote the closure and convex
closure of X | respectively.

We use the symbols AX and X + Y to denote the algebraic operations on
sets. The family of all nonempty and bounded subsets of F will be denoted
by My and its subfamily consisting of all relatively compact sets is denoted

Throughout this section, we accept the following definition of the notion of
a measure of noncompactness.

Definition 1.1 A function p: Mp — Ry = [0, 00) is said to be a measure
of noncompactness in E if it satisfies the following conditions:

19 the family ker p = {X € Mg : p(X) = 0} is nonempty and ker 1 C Ng;
X XCY = uX)<uly);

3° 1 (X) = p(Conv X) = u(X);

PP pAX+A=-NY) <M (X)+ 1 =N puY), forxzel0,1];

50 if (X,) is a sequence of closed sets from Mg such that X, 1 C X,,for
n=12,...,

and if lim p(X,) = 0,then the set Xoo = (| X, is nonempty.

n—s00 n=1
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The family ker 4 described in 1° is called the kernel of the measure of
noncompactness .

Further facts concerning measures of noncompactness and its properties
may be found in [4].

For our further purposes, we shall only need the following fixed-point the-
orem [8].

Theorem 1.2 Let ) be a nonempty bounded closed convex subset of the
space E and let F : QQ — Q be a continuous transformation such that p(FX) <
Ku (X) for any nonempty subset X of Q, where K € [0,1) is a constant. Then
F has a fized point in the set ().

Remark 1.3 Under the assumptions of the above theorem, it can be shown
that the set FixF' of fived points of F belonging to ) is a member the family
ker i . This fact permits us to characterize solutions of considered operator
equations.

In what follows, we shall work in the classical Banach space C'[0, M] con-
sisting of all real functions defined and continuous on the interval [0, M]. For
convenience, we write I = [0, M] and C (I) = C'[0, M]. The space C (1) is
furnished by the standard norm ||z|| = max {|z (¢)| : t € I}.

Now, we recall the definition of a measure of noncompactness in C' (1) which
will be used in our further investigations. That measure was introduced and
studied in [4].

To do this, let us fix a nonempty and bounded subset X of C' (I). For
x € X and € > 0 denoted by w (x, €), the modulus of continuity of the function
x, i.e.,

w(z,e) =sup{lz(t) —z (1) t,7 e L, |t — 7| <e}.
Further, let us put
w(X,e) = sup{w(z,e):x€ X},
W, (X) hmw(X g).

8*)

Next, let us define the following quantities:

= sup{le(r)—z(t)|—[z(1)—x (@) : t,7€,t <71},
sup{|z (t) =z (7)| =[xz () —a(7)] : t, 7 € [,t < 7},
sup{d(z):x € X},
= sup{i(x):z € X}.

o

A/\AA

<o R R

S— N N N
I
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Observe that d(X) = 0 if and only if all functions belonging to X are
nondecreasing on /. In a similar way, we can characterize the set X with
i (X) = 0. Finally, we define the function x on the family ¢y by putting

1(X) = w, (X) +d (X))

It can be shown (see [4]) that the function p is a measure of noncompactness
in the space C'(I).

The kernel ker i of this measure contains nonempty and bounded sets X
such that functions from X are equicontinuous and nondecreasing on the
interval I.

Remark 1.4 The above described properties of the kernel ker pu of the mea-
sure of noncompactness p in conjunction with Remark ( 1.3) allow us to char-
acterize solutions of the nonlinear integtal equation considered in the next sec-
tion.

Remark 1.5 Observe that, in a similar way, we can define the measure of
noncompactness associated with the set quantity i (X) defined above. We omit
the details concerning that measure.

2 Main Results

In this section, we shall study the solvability of nonlinear quadratic singular
integral equation of Volterra type( 1).

We shall look for solutions of that equation in the Banach space of real func-
tions being defined and continuous on a bounded and closed interval.

The tool used in our investigations is a special measure of noncompactness
constructed in such a way that its use enables us to study the solvability of
considered equation in the class of monotonic fuctions.

First, in equation( 1)we notice that the functions a = a (t) and v = v (¢, s, x)
are given while x = z (¢) is unknown function.

We shall investigate equation ( 1) assuming that the following set of hy-
potheses is satisfied:

(1) a € C(I) and the function a is nondecreasing and nonnegative on I;

(17) v : IxI xR — Ris a continuous function such that v : IxI xR, — R,
and for arbitrary fixed s € I and x € Ry the function t — v (¢, s,z) is
nondecreasing on I;

(737) there exists a nondecreasing function f : Ry — R, such that the
inequality

v (t,s,2)] < f (|=])
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holds for all t,s € I and x € R;
(iv) the inequality

11—«

flr)<r

M
Jall + 73

Ml—a
-«

has a positive solution 7y such that f (ro) < 1. Now, we can formulate

our main existence result.

Theorem 2.1 Under assumptions (i) — (iv) , equation( 1)has at least one
solution x = x (t) which belonging to the space C (I) and is nondecreasing on
the interval 1.

Proof. Let us consider the operator A defined on the space C (I) in the
following way:

(Az) (t) =a(t) +x (t)/ %d&

0

In view of assumptions (i) and (i7), it follows that the function Az is
continuous on [ for any function z € C' (1), i.e., A transforms the space C (1)
into itself.

Moreover, keeping in mind assumptions (#ii), we get:

[ o),

(t—s)"

<l + el | FEzas

(Az) (O] < a (@) + [ ()]

t
< lall+ Ll £ ) | 6= as
H—a
S Il + el (e
<l + el $— (el
Hence,
-«
JAz] < flall + 2l T— f el

Thus, taking into account assumption (iv) , we infer that there exists 7o > 0
with 2—"f (r,) < 1 and such that the operator A transforms the ball B, into

1
l—«a

itself.
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In what follows, we shall consider the operator A on the subset B, of the ball
B, defined in the following way:

BY ={re€B,, :x(t) >0, forteI}.

Obviously, the set B, is nonempty , bounded , closed and convex. In view
of these facts and assumptions (i) and (i7) , we deduce that A transforms the
set B into itself.

Now, we shall show that A is contiguous on the set B;f . To do this, let us fix
€ > 0 and take arbitrary x,y € B such that ||z —y|| <e.
Then, for t € I, we derive the following estimates:

(A2) (1) - (Ay) (8] < w)/otwds_y(t)/ot%ds
< x(t)/ot%ds—y(t)/ot%ds
4 y(t)/ot%ds—y(t)/ot%i)(j))ds
e e
< ef) | (s ds o, (0) / (- sy ds
< err) 2 g, @2

where we denoted

Br, (€) = sup{[v(t,s,2) —v(t,s,y)| : t,s € L,y €[0,r0], [x —y| < e}

Obviously, 3, (¢) — 0 as ¢ — 0 which is a simple consequence of the
uniform continuity of the function v on the set I x I x [0,7,].
From the above estimate, we derive the following inequality:

Ml—a Ml—a

— <
HAx Ay“ <ef(ro) I — o + 700, (5) I—a

Y

which implies the continuity of the operator A on the set B .
In what follows, let us take a nonempty set X C B;. Further, fix arbitrary
number ¢ > 0 and choose € X and ¢,7 € [0, M] such that |t — 7] < e.
Without loss of generality, we may assume that ¢t < 7.
Then, in view of our assumptions we obtain

(Az) () — (Az) (1)) < |a<7>_a(t>|+x<T>/Odes_x<t>/o olts,z(s)) g

(1 —35)"
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In
g
)
NLY
_|_

o) [ [,

o (r—o"
A N =
e [y [t
. a:(t)/OTU((i;ii)(j))ds x(t)/ ((ttS_ﬂSC)(j))ds
< wiae) +la(r) —a( '“”’_“’”(j)
. / v (7,5, ( T_—Sv (t sT:c(ss))|dS

4 |/ v (¢, 5,2 (s {7_5) —(t_ls)a]ds

+ xt/vt,s,xs {ﬁ}ds
! o=

< w(ajg)w(g;’g)/;f(ro)ﬁdwro/;m (E)ﬁds
v ro/OTfW [(T_ls)a R0 —15)“]“”‘)[“”) [(t—%)“] o
< w(ae) +w@e) f(r) 171__(; + 7o, () 1__(;

+ rof (1) _f __a+ (t[i);a - f__a rof (1) l‘“]ij
< wlae) +—w (z,€) f (ro) % + oY, (€) JY::

s ol [T - 2]

where we have denoted

Yo (€) =sup{|v(1,s,2) —v(t,s,x)|: t,7 € I,|T —t| <e,x€[0,r,]}.

rl-a tl—«a

By applying The Mean Value Theorem on the bracket [17(1 — 17@(] , We

get

forall t<d<T.
Then we get

11—« l—«a

E‘H“ oYro (€)

|(Az) (1) — (Az) ()] < w (a,€)+w (2,€) f (ro)
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Notice that, in view of the uniform continuity of the function v on the set

I x1Ix10,7,], we have ~, (¢) — 0 as e — 0.

Now, fix arbitrary x € X and ¢t,7 € I such that t < 7.

following chain of estimates:

(Az) (1) = (Az) ()] = [(Az) (1) — (Az) (¢)]

< o -a@l-la -a@l+ o0 [ P Na g
[ To(r,s,x(s)) Lo (t,s,x(s))
- -J)(T)/O st—x(t)/o st},

Then we have the

and since a (t) is nondecreasing, we can deduce, according to the definition

of d(z), that:

d(C(I))=sup{d(a):acC(I)} =0.

Then,
|(Az) (1) — (Az) ()| = [(Az) (1) — (Az) ()]

< xm[wczs—x(w/otwds\

G T
(t)ATU((Zii)(S))dS‘
+ a:(t)/;wds—m(t)/otwds‘

(r—s)" (t—s)"

o [zt

IN
8
—
\‘
S~—
B‘
4
ISy
| | =
RS
\-//_\
Q|
N—
S~—

QL
)

|

3

IN
B
—~

3
~—

I

8
~
-

O\\]
<
—~
I
\’CIJ
8
w
N

QU

Va)

_|_
E)
—~

~
=

IN
[mt)

)
o
SN~—

|

&
—~

-
-

|
B
—~

\]
SN~—

|

)
=~
P
—

4
5
»

8
—~

)
S~—

QL




Quadratic Singular Integral Equations 97

/OT |v(7,s,x(s))—v(t,s,x(s))ut—s)“ds+/;”((tt’s_’7i)ﬁf))}ds

2@ {/TU(T,S,:E(S)) [(T—s)*“ - (t—s)*“} ds

0
+ / [ (5,2 (s) — v (t 5,2 (s))] (t—s)—adH/Tw}d&
0 t (t—s)
Again,as above, let us applying The Mean Value Theorem on the bracket
(7T —3s)"* = (t —s)"%], we get

[(T —s) Y —(t— s)_a} = —a(g%:at) < —a(S;a,

for all ¢t < d; < 7. Then we obtain the following inequality:
|(Az) (1) — (Az) ()] — [(Az) (T) — (A )(t)]

< e —z(t) - [ }/

+ 2%%:]5@) /OTU(T s,z (s))ds

T—S

+ z(¥) /OT {lv(r,8,2(s)) —v(t,s,2(s))] = [v(r,8,2(s)) —v(t,s,x(s))]}(t—s) “ds.

Taking into account that the last term in the above inequality will be vanished
(notice that the function ¢t — v (¢, s, z) is nondecreasing on I).
Finally we get

|(Az)(7) = (Az)(1)] = [(Az)(7) = (Az)(?)]

11—«

T f(ro) + 2a51ia x(t) /OTU(T, s, z(s))ds.
(3)

By adding Eq.( 2) and Eq.( 3) and taking the supremum of the resultant
inequality then let ¢ — 0, keeping in mind the definition of the measure of
noncompactness (X ) = w,(X) + d(X), therefore we obtain

< Ala(r) = z(®)] = [o(r) — =(8)]}

-«

p(AX) < f(ro) (X))

Now, taking into account the above inequality and the fact that
1 and applying Theorem( 1.2), we complete the proof.

M2 f () <

Remark 2.2 Taking into account Remarks ( 1.3) and ( 1.4) and the de-
scription of the kernel of the measure of noncompactness p given in section 1,
we deduce easily from the proof of Theorem ( 2.1) that the solutions of the in-
tegral equation (1) belonging to the set B,f are nondecreasing and continuous
on the interval I.

Moreover, those solutions are also positive provided a (t) > 0 for t € I.
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3 Generalized Results

The results in this section generalize and complete the results in section ( 2).
We consider the following nonlinear singular integral equation of Volterra

type:

e =a 0+ Ba) ) [ s (@)

0
where the operator B satisfies the following set of conditions:

(i) The operator B : C (I) — C (I) is continuous and satisfies the condi-
tions of Theorem ( 1.2) for the measure of noncompactness p with a constant
K and, moreover, B is a positive operator, i.e., Bx > 0 if x > 0.

(z’i/) There exist nonnegative constants b and ¢ such that:

((Bz) ()] <b+cllz],

for each x € C'(I) and t € 1.

We replace the assumption (iv) in Section ( 2) with the following assump-
tion:

(m/) The inequality

M
lal| + (b+ cr) N

flr)y<r

has a positive solution r, such that K ]\ffaa f(ro) <1.
By connection between the assumptions (i) — (ii¢) , in Section ( 2), and the

assumptions (z/) — (zu/) we can formulate the following existence result.

Theorem 3.1 Under assumptions (i) — (iii) and (i') — (iii'), the equation
( 4) has at least one solution x = x (t) which belongs to the space C' (I) and is
nondecreasing on the interval I.

Proof. Let us consider the operator V' defined on the space C (I) in the
following way:

ot s (s
(Vo) (t) = a(t) + (Bx) (t) / vltiszl)y,
o (t—s)
In a similar way as in Proof of Theorem ( 2.1), we get the following esti-
mates:

-«

Lo |(Va) ()] < llall + (0 + cl))

£l

11—«
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which proves that V' transforms the space C' (/) into itself.

2 (V) (6) = (Vi) ()] < B = Bl £ (ro) S 4 (bt 0r) B, (2) 7

1—a’

and from the uniform continuity of the function v on the set I x1x[0, r,] and
the continuity of V', the last inequality implies the continuity of the operator
V on the set B}

3. (V) (1) = (Vy) (1)

< ) -al+ @) o) [ i @ [ LD

Tu(r,s,x(s)) Tu(r,s,x(s))

< w(a,€)+’(Bx)(T)/0 a0 —(B:z:)()/o a0

+ (Bo) @) /0 ) %ds—(m) (t) /0 T“((tf_’i‘/’;;f”ds’
+ B o) /07%615—(33:) (t) /OTW%
+ (Bx)(t)/(j%d (Bx)()/t%iii)(j))ds
< wla,e) +|(Ba) (r) - (Br) ( I/ v :ii(f)
R |/ |v7'sx T_—Svtsx(s))|ds

+ |(Bz)( y/o\v t,s,2(s) \[(T_S)a—(t_s)a]ds

# 1B O [ ot s o)) | = s

< wl(a,e)+w(Bz,e) /OT f(ry) ﬁds + (b+cry) /OT Vro (€) ﬁds

4 (b—i—cro)/OTf(ro) [(T_ls)a - (t—ls)a] ds+(b+cr0)[f(ro) [(t_ls)a} ds

l—«a l—«a

< w(a,) +w(Br,e) f(r) T+ b+ er) %, () T+ b+er) £ () =
Hence, we get
(Va) (r) = (V) (&)
< (@,6)+w (B2, €) f (1) Tt (b 1), (€) T (b c7) £ () o
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Notice that, in view of the uniform continuity of the function v on the set

I x1Ix]10,7,], we have 7, (¢) — 0 as e — 0.

4. |(Va) (1) = (Va) ()] = [(Vz) (1) = (Vi) (1)]

= e+ @ [ A - mo [ 1ot
- e+ @ [ HEEE i - o)
—a —la(1t) —a x) (1 v(rs
< ()= a0~ o) —a (0]} +|(Ba) () [ L2
- Jwom [ Ut s [ L2,
< |@ae [(HE2E i [ Dy
- @ [ Ut g [ 12D,
L A R e
Cu(rsa(s) Lyt (s)
+ (Bx)(t)/o 5" ds (Bx)(t)/o =" d‘

< A{l(Bz)(r) = (Bx)(t)| = [(Bz)(7) — (Bz)(t)]}

€ T
+ QQW(Bx)(t)/O v(1,s,x(s))ds

+ (Bx)(t) /OT {lo(rs,2(s) —v(t,s,2(s))] = [v(r,8,2(s) —v (t, 5,2 ()]} (t—5)""ds

= (Bz) (1) = (Bz) (t)| = [(Bz) () = (Bz) ()]} T—

Ml—a

o f(ro)
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+ Za%(Bx)(t) /OTU(T,s,x(s))ds.

Hence, we get

(V) (1) = (V) ()] = [(Va) (1) = (Vi) (¢)]

< {I(Bx) (7) — (Bx) ()] — [(Bx) (r) — (Ba) ()]} T—

f(ro)

—I—ZQ%(Bx)(t) / v (T, s,2(s))ds. (6)
1 0

Finally (as in the pervious section), by adding Eq.( 5) and Eq.( 6)and
keeping in mind the definition of the measure of noncompactness p, we obtain

-« -«

fro) p(BX) < 3——f (ro) Ku(X).

p(VX) <5

M

L2 f (ro) K <

Now, taking into account the above inequality and the fact that
1 and applying Theorem ( 1.2),we complete the proof.
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