# Rational curves in Grassmannians and their Plücker embeddings

## E. Ballico<sup>1</sup>

Dept. of Mathematics, University of Trento 38050 Povo (TN), Italy ballico@science.unitn.it

**Abstract.** Fix integers  $k > n \ge 2$  and  $a_1 \ge \cdots \ge a_n$  such that  $a_n \ge \lfloor \binom{k}{n} - 1 \rfloor / n \rfloor$  and  $a_1 + \cdots + a_n + 1 \ge \binom{k}{n}$ . Set  $E := \bigoplus_{i=1}^n \mathcal{O}_{\mathbf{P}^1}(a_i)$ . Let V be a general k-dimensional linear subspace of  $H^0(\mathbf{P}^1, E)$ . Here we prove that for all n-dimensional linear subspace W of V the evaluation map  $W \otimes \mathcal{O}_{\mathbf{P}^1} \to E$  is an injection of sheaves. Equivalently, the natural map  $\bigwedge^k(V) \to H^0(\mathbf{P}^1, \det(E))$  is injective.

Mathematics Subject Classification: 14H60; 14M15

**Keywords:** vector bundle on  $\mathbf{P}^1$ ; Grassmannian; spanned vector bundle; Plücker embedding

### 1. Introduction

**Theorem 1.** Fix integers  $k > n \ge 2$  and  $a_1 \ge \cdots \ge a_n$  such that  $a_n \ge \lfloor \binom{k}{n} - 1 \rfloor / n \rfloor$  and  $a_1 + \cdots + a_n + 1 \ge \binom{k}{n}$ . Set  $E := \bigoplus_{i=1}^n \mathcal{O}_{\mathbf{P}^1}(a_i)$ . Let V be a general k-dimensional linear subspace of  $H^0(\mathbf{P}^1, E)$ . Then for all n-dimensional linear subspace W of V the evaluation map  $W \otimes \mathcal{O}_{\mathbf{P}^1} \to E$  is an injection of sheaves. Equivalently, the natural map  $\bigwedge^k(V) \to H^0(\mathbf{P}^1, \det(E))$  is injective.

**Remark 1.** The equivalence of the two statements appearing in Theorem 1 was pointed out by M. Teixidor i Bigas in [2]. Take E, V as in the statement of Theorem 1. Since E is spanned, k > n, and V is general, V spans E. Hence the pair (E, V) induces a morphism  $h_{E,V}: \mathbf{P}^1 \to G(n, k)$ , where G(n, k) denote the Grassmannian of all (k - n)-dimensional linear subspaces of the vector space  $\mathbb{K}^n$ . Let  $u_{n,k}: G(n,k) \to \mathbf{P}^{N(n,k)}, N(n,k) := \binom{n}{k} - 1$ , be the Plücker embedding. In [2] M. Teixidor i Bigas also proved that Theorem 1 is equivalent

<sup>&</sup>lt;sup>1</sup>The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

E. Ballico

to show that  $u_{n,k} \circ h_{E,V}(\mathbf{P}^1)$  spans  $\mathbf{P}^{N(n,k)}$ . We will prove Theorem 1 proving the non-degeneracy of the curve  $u_{n,k} \circ h_{E,V}(\mathbf{P}^1)$  inside  $\mathbf{P}^{N(n,k)}$ .

For a smooth curve of genus  $g \geq 2$  a result similar to Theorem 1 was proved in [1] when E is a general degree n stable vector bundle with sufficiently high degree. We stress that in Theorem 1 we do not require that E is rigid, i.e. we do not require the inequality  $a_1 \leq a_n - 1$ .

We work over an algebraically closed field  $\mathbb{K}$ .

# 2. Proof of Theorem 1

For all integers b > a > 0 let G(a, b) denote the Grassmannian of all ((b-a)-dimensional linear subspaces of  $\mathbb{K}^{\oplus b}$ . Thus  $\dim(G(a, b)) = a(b-a)$  and there is a tautological exact sequence of vector bundles on G(a, b)

(1) 
$$0 \to S_{G(a,b)} \to \mathcal{O}_{G(a,b)}^{\oplus b} \to Q_{G(a,b)} \to 0$$

with  $\operatorname{rank}(Q_{G(a,b)}) = b$ ,  $\operatorname{rank}(S_{G(a,b)}) = b - a$  and  $\det(Q_{G(a,b)}) \cong \det(S_{G(a,b)})^* \cong$  $\mathcal{O}_{G(a,b)}(1)$ , where  $\mathcal{O}_{G(a,b)}(1)$  denotes the positive generator of  $\operatorname{Pic}(G(a,b) \cong \mathbb{Z}$ .  $\mathcal{O}_{G(a,b)}(1)$  is very ample and the associated complete linear system  $|\mathcal{O}_{G(a,b)}(1)|$ induces the Plücker embedding  $u_{a,b}$  of G(a,b) into  $\mathbf{P}^{N(a,b)}$ ,  $N(a,b) := {b \choose a} - 1$ . We have  $TG(a,b) \cong Q_{G(a,b)} \otimes S_{G(a,b)}^*$ . For all subscheme Z of G(a,b) let  $N_{Z,G(a,b)}$  denote its normal sheaf in G(a,b). Notice that  $N_{Z,G(a,b)}$  is a spanned vector bundle if Z is smooth. We will often see G(a,b) as the set of all  $\mathbf{P}^{a-1}$ 's contained in  $\mathbf{P}^{b-1}$ . G(a,b) is a homogeous variety which contains many lines with respect to the Plücker embedding. Any such line is obtained in this way. Fix an a-dimensional linear subspace B of  $\mathbf{P}^{b-1}$  and a codimension two linear  $G(a,b):A\subset D\subset B$ . D(A,B) is a line of G(a,b) and the group  $\operatorname{Aut}(G(a,b))$ acts transitively on the set  $\Gamma(a,b)$  of all lines contained in G(a,b). Take  $D \in \Gamma$ . The vector bundle  $Q_{S(a,b)}|D$  is a direct sum of one line bundle of degree 1 and a-1 line bundles of degree 0. The vector bundle  $S_{S(a,b)}|D$  is a direct sum of one line bundle of degree -1 and b-a-1 line bundles of degree 0. Thus TG(a,b)|D is a direct sum of one line bundle of degree 2, (a+b-2) line bundles of degree 1 and (a-1)(b-a-1) line bundles of degree 0. Thus  $N_{D,G(a,b)}$  is a direct sum of (a+b-2) line bundles of degree 1 and (a-1)(b-a-1) line bundles of degree 0.

The following lemma is well-known (see e.g. [1], §2).

**Lemma 1.** Let  $T \subset G(a,b)$  a reduced, connected and nodal curve such that  $p_a(T) = 0$  and each irreducible component of T is a line. Then T is a smooth point of the Hilbert scheme Hilb(G(a,b)) of G(a,b). Furthermore, T is smoothable, i.e. it is the flat limit of a family of smooth and connected rational curves contained in G(a,b).

**Remark 2.** Fix integers b > a > 0 and d > 0. Let R(a, b, d) denote the set of all smooth and connected degree d rational curves contained in G(a, b). For

any  $Z \in R(a, b, d)$  the vector bundle  $N_{Z,G(a,b)}$  is a spanned vector bundle on  $Z \cong \mathbf{P}^1$ . Thus  $h^1(Z, N_{Z,G(a,b)}) = 0$ . Thus Z is a smooth point of the Hilbert scheme Hilb(G(a,b)). Furthermore, the vector bundles  $Q_{G(a,b)}|Z$  and  $S_{G(a,b)}|Z$  are rigid for any general element Z of any irreducible component of R(a,b,d) (use the universal properties of the Grassmannians G(a,b) and G(b-a,a) and that every vector bundle on  $\mathbf{P}^1$  is a flat limit of a family of rigid vector bundles).

**Lemma 2.** Fix general P, Q in G(a,b). There is a chain of b-a lines joining Q with P, i.e. b-a lines  $D_1, \ldots, D_{b-a}$  such that  $P \in D_1$ ,  $Q \in D_{b-a}$ ,  $D_i \cap D_{i+1} \neq \emptyset$  for all  $i \in \{1, \ldots, b-a-1\}$ ,  $T := D_1 \cup \cdots \cup D_{b-a}$  is connected and nodal and  $p_a(T) = 0$ .

*Proof.* Since  $G(a, a + 1) \cong \mathbf{P}^a$ , the case b = a + 1 is trivial. Use induction on b and the description of all lines contained in G(a, b).

**Lemma 3.** Fix integers b > a > 0. Then there exists a reduced, connected and nodal curve such that  $\deg(T) = \binom{b}{a} - 1$ ,  $p_a(T) = 0$ , each irreducible component of T is a line and  $u_{a,b}(T)$  spans  $\mathbf{P}^{N(a,b)}$ .

*Proof.* Since  $G(a, a+1) \cong \mathbf{P}^a$ , the case b=a+1 is trivial. Use induction on b and Lemma 2.

Proof of Theorem 1. Set  $x := \lfloor \binom{k}{n} - 1 / n \rfloor$  and  $y := \binom{k,n}{-} 1 - nx$ . Let F be the rank n vector bundle on  $\mathbf{P}^1$  isomorphic to the direct sum of y line bundles of degree x + 1 and n - y line bundles of degree x, i.e. the rigid line bundle with rank n and degree  $\binom{k}{n}$ . Notice that  $h^0(\mathbf{P}^1, F) = \binom{k}{n} + n - 1 \ge k$ . Our assumptions on  $a_n$  and  $a_1 + \cdots + a_n$  imply the existence of an inclusion of sheaves  $j : F \to E$ . The map j induces an inclusion  $j_* : H^0(\mathbf{P}^1, F) \to H^0(\mathbf{P}^1, E)$ . By semicontinuity it is sufficient to prove the result for one k-dimensional linear subspace, e.g. one of the form  $j_*(M)$  with M a general k-dimensional linear subspace of  $H^0(\mathbf{P}^1, F)$ . Apply Lemmas 1 and 3, Remark 2 and the interpretation of Theorem 1 given in the last part of Remark 1.

### References

- [1] E. Ballico, Curves in Grassmannians and Plücker embeddings: the injectivity range, Math. Nachr. 242 (2002), 38–45.
- [2] M. Teixidor i Bigas, Curves in Grassmannians, Proc. Amer. Math. Soc. 126 (1998), 1597–1603.

Received: November 26, 2005