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Abstract

The purpose of this paper is to present a new method to solve fuzzy
Fredholm integral equations with degenerate kernel. Our results are
given to demonstrate the proposed method and based on the concept
concerning the crisp integral equations with degenerate kernel.
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1 Introduction

Fuzzy Fredholm integral equations have been solved with different methods [1-
7]. The most remarkable properties of fuzzy set are that they are employed in
many different research fields ranging from artificial intelligence and robotics,
image processing, biological and medical science, applied operations research,
economics and geogeraphy, quantum optics and gravity, socialogy, psychology
and some more restricted topics.

2 Preliminaries

In this section the most used basic notations in fuzzy calcules are introduced.

Definition 1. A fuzzy number is a fuzzy set u : R −→ [0, 1] which satisfies:
1. u is upper semi-continuous.
2. u(x) = 0 outside some interval [c, d].
3. there are real numbers a and b: c ≤ a ≤ b ≤ d for which,

3.1 u(x) is monotonic increasing on [c, a],
3.2 u(x) is monotonic decreasing on [b, d],
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3.3 u(x) = 1, a ≤ x ≤ b.

An alternative parametric form of a fuzzy number which is equivalent to defi-
nition 1 is as follows: a fuzzy number u is completely determined by any pair
(u, u) of functions u(r) and u(r), 0 ≤ r ≤ 1, which satisfying the following
three conditions:
i. u(r) is a bounded monotonic increasing left-continuous function.
ii. u(r) is a bounded monotonic decreasing left-continuous function.
iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary u = (u, u) and k ∈ R we define addition and multiplication by k
as:
addition:

(u + v)(r) = u(r) + v(r), (u + v)(r) = u(r) + v(r),

scalar multiplication:

(ku)(r) =

{
ku(r), k ≥ 0
ku(r), k < 0

(ku)(r) =

{
ku(r), k ≥ 0
ku(r), k < 0

The collection of all the fuzzy numbers with the addition and multiplication
is denoted by E1 and is a convex cone.

Definition 2. For arbitrary fuzzy numbers u = (u, u) and v = (v, v) the
quantity

D(u, v) = sup
0≤r≤1

{max(|u(r) − v(r)|, |u(r) − v(r)|)}

is the distance between u and v.

Definition 3. A function f : R −→ E1 is called a fuzzy function if for
arbitrary fixed t0 ∈ R and ε > 0 there exist a δ > 0 such that

|t − t0| < δ =⇒ D(f(t), f(t0)) < ε,

f is said to be continuous.
We now define the integral of fuzzy function using the Riemann integral con-
cept which is employed in the next section.

Definition 4. Let f : [a, b] −→ E1 for each partition P = {t0, t1, ..., tn} of
[a, b] and for arbitrary ξi, ti−1 ≤ ξi ≤ ti, 1 ≤ i ≤ n, let

Rp =
n∑

i=1

f(ξi)(ti − ti−1), λp = max{|ti − ti−1| : 1 ≤ i ≤ n},
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that 1 ≤ p ≤ n, then definite integral of f(t) over [a, b] is

∫ b

a

f(t)dt = lim
λp→0

Rp,

provided that this limit exists in the metric D.
If the fuzzy function f(t) is continuous in the metric D, its definite integral
exists. Furthermore,

(

∫ b

a

f(t, r)dt) =

∫ b

a

f(t, r)dt, (1)

(

∫ b

a

f(t, r)dt) =

∫ b

a

f(t, r)dt. (2)

Remark 1. Let u(r) = (u(r), u(r)), 0 ≤ r ≤ 1, be a fuzzy number, we take

Su(r) =
u(r) + u(r)

2
, Du(r) =

u(r) − u(r)

2
.

It is clear that u(r) = Su(r) − Du(r) and u(r) = Su(r) + Du(r).

Remark 2. Let u(r) = (u(r), u(r)) and v(r) = (v(r), v(r)), 0 ≤ r ≤ 1, and
also k and s are arbitrary real numbers. If w = ku + sv then

Sw(r) = kSu(r) + sSv(r), Dw(r) = |k|Du(r) + |s|Dv(r).

Now by referring to remark 1, we have

|u(r) − v(r)| ≤ |Su(r) − Sv(r)| + |Du(r) − Dv(r)|,
|u(r) − v(r)| ≤ |Su(r) − Sv(r)| + |Du(r) − Dv(r)|.

Hence for all r ∈ [a, b],

max{|u(r) − v(r)|, |u(r) − v(r)|} ≤ |Su(r) − Sv(r)| + |Du(r) − Dv(r)|,
so definition 2 yields

D(u, v) ≤ sup
0≤r≤1

{|Su(r) − Sv(r)| + |Du(r) − Dv(r)|}.

Subsequently, |Su(r) − Sv(r)| → 0 and |Du(r) − Dv(r)| → 0 implies that
D(u, v) → 0.
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3 Illustration of the method

In this section we present a new method for solving the linear fuzzy Fred-
holm integral equation with degenerate kernel. The proposed approach will be
illustrated in terms of the following equation:

F (t) = f(t) + λ

∫ b

a

k(s, t)F (s)ds, (3)

with λ > 0. It is assumed that kernel k(s, t) is degenerate, that is,

k(s, t) =

n∑
i=1

ai(s)bi(t),

where ai(s) and bi(t), i = 1, 2, ..., n, are linearly independent functions. In
Eq. 3, if f is a crisp function then the solution is crisp as well, and in the case
that f is a fuzzy function, we have Fredholm fuzzy integral equation of the
second kind which may only process fuzzy solutions. Sufficient conditions for
existence of a unique solution to the equation (1), where f is a fuzzy function,
are given in [5].

Now we introduce parametric form of the fuzzy integral Eqs. (3) with respect
to definition 2. Let (f(t, r), f(t, r)) and (F (t, r), F (t, r)) (0 ≤ r ≤ 1, a ≤ t ≤ b)
are parametric form of f(t) and F (t) respectively, then the parametric form of
the fuzzy integral Eqs. (3) is as follows:

F (t, r) = f(t, r) + λ

∫ b

a

k(s, t)F (s, r)ds, (4)

F (t, r) = f(t, r) + λ

∫ b

a

k(s, t)F (s, r)ds, (5)

where,

k(s, t)F (s, r) =

{
k(s, t)F (s, r), k(s, t) ≥ 0
k(s, t)F (s, r), k(s, t) < 0

k(s, t)F (s, r) =

{
k(s, t)F (s, r), k(s, t) ≥ 0
k(s, t)F (s, r), k(s, t) < 0

By the above assumptions the Eqs. (4) and (5) will become in the following
forms respectively.

F (t, r) = f(t, r) + λ
n∑

i=1

∫ b

a

ai(s)bi(t)F (s, r)ds, (6)
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F (t, r) = f(t, r) + λ
n∑

i=1

∫ b

a

ai(s)bi(t)F (s, r)ds. (7)

If we denote by Ai, i = 1, 2, ..., n the set of union on subintervals of [a, b] that
ai(s) is nonnegative on these subintervals and by Bi, i = 1, 2, ..., n the set of
union on subintervals of [a, b] that ai(s) is negative on these subintervals. It is
clear that Ai ∪ Bi = [a, b], i = 1, 2, ..., n.
Without loosing generality, we suppose that bi(t) is nonnegative for fixed t
and 1 ≤ i ≤ n. By the above assumptions we can rewrite Eqs. (6) and (7)
respectively as follows:

F (t, r) = f(t, r) + λ
n∑

i=1

(
∑
Ii∈Ai

∫
Ii

ai(s)bi(t)F (s, r)ds +
∑

Ji∈Bi

∫
Ji

ai(s)bi(t)F (s, r)ds),

(8)

F (t, r) = f(t, r) + λ

n∑
i=1

(
∑
Ii∈Ai

∫
Ii

ai(s)bi(t)F (s, r)ds +
∑

Ji∈Bi

∫
Ji

ai(s)bi(t)F (s, r)ds).

(9)

By remark 1, remark 2 and above Eqs. we can affirm that

SF (t, r) = Sf(t, r) + λ
n∑

i=1

∫ b

a

ai(s)bi(t)SF (s, r)ds, (10)

DF (t, r) = Df(t, r) + λ

n∑
i=1

∫ b

a

|ai(s)||bi(t)|DF (s, r)ds. (11)

Note that in the negative case of bi(t) for some i that same results as the above
equations are obtained. It emerges that the technique of solving Eqs. (8) and
(9) are dependent on the definitions of

ci =

∫ b

a

ai(s)SF (s, r)ds,

di =

∫ b

a

|ai(s)|DF (s, r)ds.

By substituting ci and di in (10) and (11) respectively, we obtain

SF (t, r) = Sf(t, r) + λ
n∑

i=1

cibi(t), (12)
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DF (t, r) = Df(t, r) + λ
n∑

i=1

di|bi(t)|. (13)

By substituting (12) into ci we obtain

n∑
i=1

cibi(t) =
n∑

i=1

bi(t)

∫ b

a

ai(s)SF (s, r)ds

=

n∑
i=1

bi(t)

∫ b

a

ai(s)(Sf(s, r) + λ

n∑
k=1

ckbk(s))ds,

therefore we get

n∑
i=1

bi(t){ci −
∫ b

a

ai(s)(Sf (s, r) + λ

n∑
k=1

ckbk(s))ds} = 0,

in a similar manner we get

n∑
i=1

|bi(t)|{di −
∫ b

a

|ai(s)|(Df(s, r) + λ

n∑
k=1

dk|bk(s)|)ds} = 0.

Since the functions bi(t) and consequently |bi(t)|, i = 1, 2, ..., n are linearly
independent, therefore,

ci −
∫ b

a

ai(s)(Sf(s, r) + λ
n∑

k=1

ckbk(s))ds = 0, (14)

di −
∫ b

a

|ai(s)|(Df(s, r) + λ

n∑
k=1

dk|bk(s)|)ds = 0. (15)

For these computations in the sense of the unknowns, we simplify the problems
by using the following notations

f
(1)
i =

∫ b

a

ai(s)Sf(s, r)ds, a
(1)
ik =

∫ b

a

ai(s)bk(s)ds,

f
(2)
i =

∫ b

a

|ai(s)|Df(s, r)ds, a
(2)
ik =

∫ b

a

|ai(s)||bk(s)|ds,

where the constant f
(1)
i , f

(2)
i , a

(1)
ik and a

(2)
ik (1 ≤ i, k ≤ n) are known then Eqs.

(14) and (15) become respectively

ci − λ
n∑

k=1

a
(1)
ik ck = f

(1)
i , i = 1, 2, ..., n, (16)
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di − λ
n∑

k=1

a
(2)
ik dk = f

(2)
i , i = 1, 2, ..., n, (17)

which are two systems of n algebraic Eqs. for the unknowns ci and di. Therefore
the problem reduces to finding the quantities ci and di, i = 1, 2, ..., n. The
determinants of these systems are two polynomials in term of λ of degree at
most n. For all values of λ for which the determinants are not equal to zero the
algebraic systems (16) and (17) have solution and thereby the fuzzy integral
Eqs. (3) have a unique solutions. We can use Eqs. (12) and (13) and remark
1 to obtain the fuzzy solution of the problem.

4 Experimental results

This section illustrates how to implement the proposed method in order to
obtain the solutions of the fuzzy Fredholm integral equations with degenerate
kernel.

Example 1 [7]: Consider the fuzzy Fredholm integral equation with

f(t, r) = sin(
t

2
)(

13

15
(r2 − r) +

2

15
(4 − r3 − r)),

f(t, r) = sin(
t

2
)(

2

15
(r2 + r) +

13

15
(4 − r3 − r)),

k(s, t) =
1

10
sin(s) sin(

t

2
), 0 ≤ s, t ≤ 2π,

also a=0, b = 2π and λ=1. Using the assumptions described in the previous
sections, we have

Sf(t, r) =
1

2
sin(

t

2
)(4 + r2 − r3)

Df(t, r) =
11

30
sin(

t

2
)(4 − 2r − r2 − r3).

By considering a1(s) = 1
10

sin(s), b1(t) = sin( t
2
) and using Eqs. (16) and (17),

we have

c1 = 0, d1 =
4

30
(4 − 2r − r2 − r3).

From Eqs. (9) and (10),

Sf(t, r) = Sg(t, r) =
1

2
sin(

t

2
)(4 + r2 − r3),

Df(t, r) = Dg(t, r) + d1|b1(t)| =
1

2
sin(

t

2
)(4 − 2r − r2 − r3)
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hence by using remark 1, the solution is obtained

f(t, r) = (4 − r − r3) sin(
t

2
),

f(t, r) = (r + r2) sin(
t

2
),

which is the exact solution of the problem.

Example 2 [constructed]: Consider the fuzzy Fredholm integral equation
with

f(t, r) = rt − r − r2, f(t, r) = r − rt − t2,

k(s, t) = s + t, 0 ≤ s, t ≤ 1,

and a=0, b=1 and λ=1. Using remark 1, we have

Sf(t, r) = −t2, Df (t, r) = r − rt.

By considering a1(s) = s, a2(s) = 1, b1(t) = 1, b2(t) = t and using Eqs. (16)
and (17) we obtain

c1 =
17

6
, c2 = 5,

d1 = −3r, d2 = 5r,

from Eqs.(9) and (10) Sf(t, r) and Df(t, r) are obtained

Sf (t, r) = −t2 + 5t +
17

6
,

Df(t, r) = −2r − 6rt.

Hence by using remark 1, the solution is obtained

f(t, r) = −t2 + 5t + 6rt + 2r +
17

6
,

f(t, r) = −t2 + 5t − 6rt − 2r +
17

6
,

which is the exact solution of the problem.
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