On the Decomposition of δ^* - β -I-open Set and Continuity in the Ideal Topological Spaces

Y. Yazlik¹ and E. Hatir¹

¹Selcuk University, Science Faculty, 42075, Campus, Konya, Turkey yyazlik@selcuk.edu.tr

²Selcuk University, Education Faculty, 42090, Meram, Konya, Turkey hatir10@yahoo.com

Abstract

In this paper, we define δ^* - β -I-open set, δ^*_{β} -B-set and δ^*_{β} -t-set, and also investigate relationships between these sets and other sets given in literature. By using these sets, we obtained new decomposition of continuity.

Mathematics Subject Classification: 54C08, 54C10

Keywords: δ^* - β -I-open set, δ^*_{β} -B-set, δ^*_{β} -t-set

1 Introduction

Mashhour, Abd El-Monsef And El-Deeb [1], in 1982, introduced the notion of pre-open set in topological spaces. Raychaudhuri and Mukherjee [7], in 1993, defined the notions of δ-preopen set and δ-almost continuity in topological spaces. Hatir and Noiri [4], in 2006, described the concepts of δ-β-open, δ_{β} -t-set, δ_{β} -B-set, δ -β-continuity and δ_{β} -B-continuity and obtained decompositions of continuity and comlete continuity. Then, Ekici E. [3], in 2009, defined new classes of sets called β^* -I-open set, pre*-I-open set, strongly t-I-set, β^* -t-I-set, strongly B-I-set and B*-I-set and obtained new decomposition of continuity in ideal topological spaces.

In this paper, we introduce the notions δ^* - β -I-open set, δ^*_{β} -B-set and δ^*_{β} -t-set. Also, we investigate further their important properties. By using these sets, we obtain new decomposition of continuity.

2 Preliminaries

Throughout the present paper, X and Y are always mean topological spaces. Let A be a subset of a topological space (X, τ) . A subset A is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp.A = Cl(Int(A))), where Cl(A) and Int(A) point out the closure and the interior of A, respectively. In [6], a point $x \in X$ is called a δ -cluster point of A if $A \cap V \neq \emptyset$ for every regular open set V containing X. The set of all δ -cluster point of A is called the δ -closure of A and denoted by $Cl_{\delta}(A)$. If $Cl_{\delta}(A) = A$, then A is said to be δ -closed. The complement of a δ -closed set is said to be δ -open. The set $\{x \in X : x \in V \subset A \text{ for some regular open set } V \text{ of } X \}$ is called the δ -interior of A and is denoted by $Int_{\delta}(A)$. In [2], Janković and Hamlett is defined an ideal I on a topological space (X, τ) , such that I is nonemty collection of subsets of X satisfying the following two conditions:

```
A \in I \text{ and } B \subset A \text{ implies } B \in I,

A \in I \text{ and } B \in I \text{ implies } A \cup B \in I.
```

if I is an ideal on X, then (X, τ, I) is called an ideal topological space or simply an ideal space. A local function [5] of A with respect to τ and I is defined follows: $A^*(I,\tau) = \{x \in X : U \cap A \notin I, \text{ for every } x \in U \text{ and } U \in \tau\}$, for $A \subset X$. It is well known that $Cl^*(A) = A \cup A^*(I,\tau)$ describes a Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$,[2]. When there is no chance for confisuon, we will simply write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$.

A subset A of an ideal space (X, τ, I) is said to be R-I-open [8] if $A = Int(Cl^*(A))$. A point x in ideal space (X, τ, I) is called a δ -I-cluster point of A if $A \cap Int(Cl^*(V)) \neq \emptyset$ for each neighborhood V is of x. The set of all δ -I-cluster points of A is called δ -I-cluster of A and is denoted by $Cl_{\delta I}(A)$. A is said to be δ -I-closed [8] if $Cl_{\delta I}(A) = A$.

Definition 1 A subset A of in ideal topological space (X, τ, I) is said to be

- a) pre-open [1] if $A \subset Int(Cl(A))$,
- **b)** δ -pre-open [7] if $A \subset Int(Cl_{\delta}(A))$,
- c) pre*-I-open [3] if $A \subset Int(Cl_{\delta I}(A))$,
- **d)** β^* -I-open [3] if $A \subset Cl^* (Int (Cl_\delta (A)))$,
- e) δ - β -open [4] if $A \subset Cl(Int(Cl_{\delta}(A)))$,
- **f)** strongly t-I-set [3] if $Int(A) = Int(Cl_{\delta I}(A))$,
- g) strongly B-I-set [3] if there exist a $U \in \tau$ and a strongly t-I-set V in X such that $A = U \cap V$,

- **h)** β^* -t-I-set [3] if $Int(A) = Cl^*(Int(Cl_\delta(A)))$,
- 1) B^* -I-set [3] if there exist a $U \in \tau$ and a β^* -t-I-set V in X such that $A = U \cap V$,
- j) δ_{β} -t-set [4] if $Int(A) = Cl(Int(Cl_{\delta}(A)))$,
- **k)** δ_{β} -B-set [4] if there exist a $U \in \tau$ and a δ_{β} -t-set V in X such that $A = U \cap V$.

Lemma 1 (Janković and Hamlett, [2]) Let (X, τ, I) be an ideal topological space and A, B be subset of X.

- a) If $A \subset B$, then $Cl^*(A) \subset Cl^*(B)$
- **b)** $(A \cap B)^* \subset A^* \cap B^*$
- d) $A^* = Cl(A^*) \subset Cl(A)$
- c) $(A \cup B)^* \subset A^* \cup B^*$
- e) If $U \in \tau$, then $U \cap A^* \subset (U \cap A)^*$

Lemma 2 ([8]) Let (X, τ, I) be an ideal topological space and $A, B \subset X$.

- a) $A \subset Cl_{\delta I}(A)$
- **b)** if $A \subset B$, then $Cl_{\delta I}(A) \subset Cl_{\delta I}(B)$.

Lemma 3 ([9])Let (X, τ, I) be an ideal topological space and $A^* \subset A$, then $A^* = Cl(A^*) = Cl^*(A) = Cl(A)$.

3 δ^* - β -I-sets

Definition 2 A subset A of in ideal topological space (X, τ, I) is said to be δ^* - β -I-open if $A \subset Cl^*$ (Int $(Cl_{\delta I}(A))$). The complement of a δ^* - β -I-open set is said to be δ^* - β -I-closed set.

Proposition 4 For a subset of in ideal topological space the following satisfiys:

- a) Every pre*-I-open set is δ^* - β -I-open.
- b) Every δ^* - β -I-open set is β^* -I-open.
- c) Every β^* -I-open set is δ - β -open.

Proof.

a) Let A be a pre*-I-open set. Then, we write

$$A \subset Int(Cl_{\delta I}(A)) \subset Cl^*(Int(Cl_{\delta I}(A)))$$
.

This shows that A is δ^* - β -I-open set.

Proof of (b) and (c) done similar to (a)

Remark 1 For several sets defined above, the following diagram holds for a subset A of an ideal topological space (X, τ, I) :

$$\delta^*$$
- β - I -open $\longrightarrow \beta^*$ - I -open $\longrightarrow \delta$ - β -open \uparrow

 $\uparrow \qquad \qquad \uparrow \\ \text{open} \longrightarrow \text{pre-open} \longrightarrow \text{pre*-}I\text{-open} \longrightarrow \delta\text{-pre-open}$

None of these suggestions is inversible, as exhibited in the following examples.

Example 1 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $I = \{\emptyset, \{c\}\}$. Then the set $A = \{a, b, d\}$ is both δ^* - β -I-open and β^* -I-open but it is neither pre^* -I-open and nor δ -pre-open.

Example 2 [3]Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then, the set $A = \{b, c\}$ is both β^* -I-open and δ -pre-open but it is neither δ^* - β -I-open and nor pre*-I-open.

Example 3 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\} \}$ and $I = \{\emptyset, \{b\}\} \}$. Then the set $A = \{a, b, d\}$ is δ - β -open but it is not β *-I-open.

Proposition 5 Let (X, τ, I) be ideal topological space. If $A \subset B \subset Cl_{\delta I}(A)$ and B is $\delta^* - \beta - I$ -open, then A is $\delta^* - \beta - I$ -open.

Proof. Let $A \subset B \subset Cl_{\delta I}(A)$ and B be $\delta^*-\beta - I$ -open set. Then, we write $Cl_{\delta I}(A) = Cl_{\delta I}(B)$. Thus $A \subset B \subset Cl^*(Int(Cl_{\delta I}(B))) = Cl^*(Int(Cl_{\delta I}(A)))$ and hence A is $\delta^*-\beta - I$ -open.

By $\delta^*\beta IO(X)$, we denote the family of all δ^* - β -I-open sets of (X, τ, I) .

Proposition 6 Let (X, τ, I) be ideal topological space and A, B subsets of X. If $U_{\alpha} \in \delta^* \beta IO(X)$, for each $\alpha \in \Delta$, then $\bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \delta^* \beta IO(X)$.

Proof. Since $U_{\alpha} \in \delta^* \beta IO(X)$, we write $U_{\alpha} \subset Cl^*(Int(Cl_{\delta I}(U_{\alpha})))$ for each $\alpha \in \Delta$. Thus by using Lemma 1, we obtain

$$\bigcup U_{\alpha} \subset \bigcup Cl^{*}(Int\left(Cl_{\delta I}\left(U_{\alpha}\right)\right))
= \bigcup \left\{ (Int\left(Cl_{\delta I}\left(U_{\alpha}\right)\right))^{*} \cup Int\left(Cl_{\delta I}\left(U_{\alpha}\right)\right) \right\}
\subset (Int\left(Cl_{\delta I}\left(\bigcup U_{\alpha}\right)\right)^{*} \cup Int(Cl_{\delta I}\left(\bigcup U_{\alpha}\right))
= Cl^{*}(Int\left(Cl_{\delta I}\left(\bigcup U_{\alpha}\right)\right)).$$

This shows that $\bigcup U_{\alpha} \in \delta^* \beta IO(X)$.

Remark 2 The intersection of any two δ^* - β -I-open sets needn't be a δ^* - β -I-open as given in the following example.

Example 4 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $I = \{\emptyset, \{d\}\}$. Then the set $A = \{a, b, d\}$ and $B = \{a, c\}$ are δ^* - β -I-open sets but the set $A \cap B = \{a\}$ is not δ^* - β -I-open.

• Consequently, the family of sets $\delta^*\beta IO(X)$ doesn't form a topological space.

Lemma 7 (Jankovič and Hamlett [2]). Let (X, τ, I) be an ideal topological space and B, A subsets of X such that $B \subset A$. Then $B^*(\tau_{|A}, I_{|A}) = B^*(\tau, I) \cap A$.

Proposition 8 Let (X, τ, I) be an ideal topological space. If $U \in \tau$ and $A \in \delta^* \beta IO(X)$, then $U \cap A \in \delta^* \beta IO(U, \tau_{|U}, I_{|U})$.

Proof. If U is open, we write $Int_U(A) = Int(A)$ for any subset A of U.By using this fact and Lemma 7, we write

$$U \cap A \subset U \cap Cl^*(Int(Cl_{\delta I}(A))) = U \cap [(Int(Cl_{\delta I}(A)))^* \cup Int(Cl_{\delta I}(A))]$$

$$= [U \cap (Int(Cl_{\delta I}(A)))^*] \cup [U \cap Int(Cl_{\delta I}(A))]$$

$$\subset [U \cap (Int(U \cap Cl_{\delta I}(A)))^*] \cup [U \cap (Int(U \cap Cl_{\delta I}(A)))]$$

$$= (Int_U(U \cap Cl_{\delta I}(A)))^* \cup (Int_U(U \cap (Cl_{\delta I}(A))))$$

$$\subset [U \cap (Int_U((Cl_{\delta I})_U(U \cap A)))^*] \cup [U \cap (Int_U((Cl_{\delta I})_U(U \cap A)))]$$

$$= Cl_U^*(Int_U((Cl_{\delta I})_U(U \cap A))).$$

4
$$\delta^*$$
-B-sets and δ^*_{β} -t-sets

Definition 3 A subset A of in ideal topological space (X, τ, I) is said to be

- a) δ_{β}^{*} -t-set if $Int(A) = Cl^{*}(Int(Cl_{\delta I}(A)))$,
- **b)** δ_{β}^* -B-set if there exist a $U \in \tau$ and a δ_{β}^* -t-set V in X such that $A = U \cap V$.

Proposition 9 Let (X, τ, I) be an ideal topological space and A a subset of X is δ^*_{β} -t-set. Then the following hold:

- a) Let $I = \{\emptyset\}$. Then A is both δ_{β} -t-set and β^* -t-I-set.
- b) Let I = P(X). Then A is strongly t-I-set.

Proof.

a) Let $I = \{\emptyset\}$. For $\forall A \subset X$, we write $Cl_{\delta I}(A) = Cl_{\delta}(A)$ and $A^* = Cl(A)$. That is, $Cl^*(A) = A \cup A^* = Cl(A)$. Since A is a δ_{β}^* -t-set, then

$$Int(A) = Cl^* (Int(Cl_{\delta I}(A)))$$

$$= Cl^* (Int(Cl_{\delta}(A)))$$

$$= Cl (Int(Cl_{\delta}(A))).$$

Hence, A is both δ_{β} -t-set and β^* -t-I-set.

b) Let I = P(X). For $\forall A \subset X$, then $A^* = \emptyset$. Since A is a δ_{β}^* -t-set, then we have

$$Int(A) = Cl^* (Int(Cl_{\delta I}(A)))$$

$$= Int(Cl_{\delta I}(A)) \cup (Int(Cl_{\delta I}(A)))^*$$

$$= Int(Cl_{\delta I}(A)).$$

Thus, A is strongly t-I-set.

Proposition 10 For a subset of in ideal topological space the following hold:

- a) Every δ_{β}^* -t-set is δ_{β}^* -B-set.
- **b)** Every β^* -t-set is δ^*_{β} -t-set.
- c) Every δ_{β}^* -t-set is strongly t-I-set.
- d) Every δ_{β} -t-set is β^* -t-I-set.

Proof.

- a) Since A is δ_{β}^* -t-set and $X \in \tau$, proof is obvious.
- **b)** Let A be a β^* -t-I-set. Then, we write $Int(A) = Cl^*(Int(Cl_\delta(A)))$. By using $Cl_{\delta I}(A) \subset Cl_\delta(A)$, we have

$$Int(A) \subset Cl^*(Int(Cl_{\delta I}(A))) \subset Cl^*(Int(Cl_{\delta}(A))) = Int(A)$$
.

Hence, A is δ_{β}^* -t-set.

Proof of (c) and (d) are done similar to (b).

Proposition 11 For a subset of in ideal topological space the following hold:

- a) Every B^* -I-set is δ_{β}^* -B-set.
- **b)** Every δ_{β}^* -B-set is strongly B-I-set.
- c) Every δ_{β} -B-set is B^* -I-set.

Proof. From Definitions 1, 3 and Proposition 10, proofs of (a), (b) and (c) are obvious. ■

Remark 3 For several sets defined above, the following diagram holds for a subset A of an ideal topological space (X, τ, I) :

Remark 4 The converse of Propositions 10 and 11 needn't be true, as exhibited in the following examples.

Example 5 [3]Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then the set $A = \{b, c\}$ is both δ_{β}^* -t-set and δ_{β}^* -B-set but it is neither β^* -t-I-set nor B^* -I-set.

Example 6 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}\}$ and $I = \{\emptyset, \{d\}\}\}$. Then the set $A = \{a, b, d\}$ is both strongly t-I-set and strongly B-I-set but it is neither δ_{β}^* -t-set nor δ_{β}^* -B-set.

Example 7 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}\}$. Then the set $A = \{a, c\}$ is both β^* -t-I-set and B^* -I-set but it is neither δ_{β} -t-set and nor δ_{β} -B-set.

Proposition 12 Every open set in ideal topological space (X, τ, I) is δ_{β}^* -B-set.

Proof. Proof is clearly seen by using Propositions 10, 11 and Definition 3. By δ_{β}^* -t-(I), we denote the family of all δ_{β}^* -t-set of (X, τ, I) .

Proposition 13 Let $A, B \subset X$ in ideal topological space (X, τ, I) . If A and B are δ_{β}^* -t-set, then $A \cap B$ is a δ_{β}^* -t-set.

Proof. Let A and B be δ_{β}^* -t-set. Then, we have

$$Int(A \cap B) \subset Int(Cl_{\delta I}(A \cap B) \subset Cl^*(Int(Cl_{\delta I}(A \cap B)))$$

$$\subset Cl^*(Int(Cl_{\delta I}(A) \cap Cl_{\delta I}(B)))$$

$$= Cl^*(Int(Cl_{\delta I}(A) \cap Int(Cl_{\delta I}(A)))$$

$$\subset Cl^*(Int(Cl_{\delta I}(A) \cap Cl^*(Int(Cl_{\delta I}(B))))$$

$$= Int(A) \cap Int(B) = Int(A \cap B).$$

Remark 5 The union of any two δ_{β}^* -t-set needn't be a δ_{β}^* -t-set as given in the following example.

Example 8 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then, the sets $A = \{a\}$ and $B = \{b\}$ are δ_{β}^* -t-set but the set $A \cup B = \{a, b\}$ is not δ_{β}^* -t-set.

• Consequently, the family of sets δ_{β}^* -t-(I) doesn't form a topological space.

Remark 6 In ideal topological space (X, τ, I) , δ_{β}^* -B-set needn't be δ^* - β -I-open set as given in the following example.

Example 9 In Example 2, the set $A = \{b, c\}$ is δ^*_{β} -B-set but it is not δ^* - β -I-open.

Remark 7 In ideal topological space (X, τ, I) , δ^* - β -I-open set needn't be δ^*_{β} -B-set as seen in the following example.

Example 10 In Example 4, the set $A = \{a, b, d\}$ is δ^* - β -I-open but it is not δ^*_{β} -B-set.

Theorem 14 A subset A of space (X, τ, I) is open set if and only if A is both δ^* - β -I-open and δ^*_{β} -B-set.

Proof. \Rightarrow : Let A is open set, then necessary condition is obvious from Propositions 10, 11 and Definition 3

 \Leftarrow : Let A is both δ^* - β -I-open and δ^*_{β} -B-set, then there exist a $U \in \tau$ and a δ^*_{β} -t-set V in X such that $A = U \cap V$. Therefore, we write

$$A = U \cap A \subset U \cap Cl^* \left(Int \left(Cl_{\delta I} \left(A \right) \right) \right)$$

$$= U \cap Cl^* \left(Int \left(Cl_{\delta I} \left(U \cap V \right) \right) \right)$$

$$\subset U \cap Cl^* \left(Int \left(Cl_{\delta I} \left(U \right) \right) \right) \cap Cl^* \left(Int \left(Cl_{\delta I} \left(V \right) \right) \right)$$

$$= U \cap Cl^* \left(Int \left(Cl_{\delta I} \left(V \right) \right) \right) = U \cap Int \left(V \right)$$

$$= Int \left(U \cap V \right)$$

$$= Int \left(A \right).$$

Thus, A is an open set.

5 Decomposition of Continuity

Definition 4 A function $f:(X,\tau,I) \longrightarrow (Y,\sigma)$ is said to be pre-continuous[1] $(resp.\delta-almost\ continuous[7],\ \beta^*-I-continuous[3],\ pre^*-I-continuous[3] \ and <math>\delta_{\beta}$ -B-continuous[4]) if for every $V \in \sigma$, $f^{-1}(V)$ is a pre-open $(resp.\ \delta-pre-open,\ \beta^*-I-open,\ pre^*-I-open\ and\ \delta_{\beta}$ -B-open) of (X,τ,I) .

Definition 5 A function $f:(X,\tau,I) \longrightarrow (Y,\sigma)$ is called δ^* - β -I-continuous if for every $V \in \sigma$, $f^{-1}(V)$ is a δ^* - β -I-open of (X,τ,I) .

Remark 8 For several continuous function defined above, we can give the following diagram.

Remark 9 None of these suggestions is inversible, as exhibited in the following examples.

Example 11 Let
$$Y = X = \{a, b, c, d\}$$
, $\sigma = \tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}\}$ and $I = \{\emptyset, \{c\}\}.$ Let $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined as follows: $f(a) = b$, $f(b) = b$, $f(c) = c$, $f(d) = b$. Then f is both δ^* - β - I -continuous and β^* - I -continuous but f is neither pre*- I -continuous nor δ -almost continuous.

Example 12 [3]Let $Y = X = \{a, b, c\}$, $\sigma = \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}.$ Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined as follows: f(a) = c, f(b) = c, f(c) = a. Then f is both δ -almost continuous and β^* -I-continuous but f is neither δ^* - β -I-continuous nor pre*-I-continuous.

Example 13 Let $Y = X = \{a, b, c, d\}$, $\sigma = \tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}\}$ and $I = \{\emptyset, \{b\}\}$. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined as follows: f(a) = b, f(b) = b, f(c) = c, f(d) = b. Then f is δ - β -continuous but f is not β *-I-continuous

Proposition 15 Let $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ be $\delta^* - \beta - I$ -continuous and $U \in \tau$. Then the restriction $f_{|U}: (U, \tau_{|U}, I_{|U}) \longrightarrow (Y, \sigma)$ is $\delta^* - \beta - I$ -continuous.

Proof. Let $V \in \sigma$. Since f is δ^* - β -I-continuous, $f^{-1}(V) \in \delta^*\beta IO(X)$ and Proposition 8 $f_{|U}^{-1} = U \cap f^{-1}(V) \in \delta^*\beta IO(U, \tau_{|U}, I_{|U})$. It is clearly seen that $f_{|U}: (U, \tau_{|U}, I_{|U}) \longrightarrow (Y, \sigma)$ is δ^* - β -I-continuous.

Definition 6 A function $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ is said to be

- a) strongly B-I-continuous if $f^{-1}(V)$ is a strongly B-I-set in (X, τ, I) for every $V \in \sigma$ [3].
- **b)** B^* -I-continuous if $f^{-1}(V)$ is a B^* -I-set in (X, τ, I) for every $V \in \sigma$ [3].
- c) δ_{β} -B-continuous if $f^{-1}(V)$ is a δ_{β} -B-set in (X, τ, I) for every $V \in \sigma$ [4].

Definition 7 A function $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ is called δ_{β}^* -B-continuous if $f^{-1}(V)$ is a δ_{β}^* -B-set in (X, τ, I) for every $V \in \sigma$.

Remark 10 For several continuous function defined above, we can give the following diagram.

 δ_{β} -B-continuous $\to B^*$ -I-continuous $\to \delta_{\beta}^*$ -B-continuous \to strongly B-I-continuous

Remark 11 None of these suggestions is inversible, as exhibited in the following examples.

Example 14 Let $Y = X = \{a, b, c, d\}$, $\sigma = \tau = \{\emptyset, X, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined—as follows: f(a) = a, f(b) = b, f(c) = a, f(d) = b. Then f is B^* -I-continuous but f is not δ_{β} -B-continuous.

Example 15 [3]Let $Y = X = \{a, b, c\}$, $\sigma = \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\}$ and $I = \{\emptyset, \{a\}\}$. Let $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined as follows: f(a) = c, f(b) = c, f(c) = a. Then f is δ_{β}^* -B-continuous but f is not B^* -I-continuous

Example 16 Let $Y = X = \{a, b, c, d\}$, $\sigma = \tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $I = \{\emptyset, \{d\}\}$. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function defined as follows: f(a) = b, f(b) = b, f(c) = c, f(d) = b. Then f is strongly B-I-continuous but f is not δ_{β}^* -B-continuous.

Theorem 16 Let $f:(X,\tau,I)\longrightarrow (Y,\sigma)$ be a function. f function is continuous if and only if f function is both δ^* - β -I-continuous and δ^*_{β} -B-continuous.

Proof. Proof is obvious from Theorem 14 and Definition 5.

References

- [1] A. S. Mashhour, M. E. Abd El-Monsef And S. N. El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, vol. 53 (1982), 47-53.
- [2] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [3] E. Ekici and T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, The arabian journal for science and engineering, vol(34) (2009), number 1A, 165.
- [4] E. Hatir and T. Noiri, Decomposition of continuity and complete continuity, Acta. Math. Hungar., 113 no.(4) (2006), 281-287.
- [5] K. Kuratowski, Topology, Vol. 1 (transl.), Academic Press, New York, 1966.
- [6] N.V. Velićko, H-closed topological spaces, Am. Math. Soc. Transl. 1968; 2 (78):103–18.
- [7] S. Raychaudhuri and M.N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
- [8] S. Yuksel, A. Acıkgoz and T. Noiri, On δ -I-continuous functions, Turk J Math., 29 (2005), 39-51.
- [9] V.R. Devi, D. Sivaraj, and T.T. Chelvam, "Codense and Completely Codense Ideals", Acta Math. Hungar.,108 (2005), pp. 195–204.
- [10] Y. Yazlik, On the Distribution of δ^* - β -I-Open Set and Continuity in the Ideal Topological Spaces, Master Thesis, Selcuk University, (2009).

Received: September, 2010