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Abstract

The m-order connectivity index "y (G) of a molecular graph G is
the sum of the weights (d;,d;, - - - dimH)_%, where d; d;, - - - d;,, ., TUns
over all paths of length m in G and d; denotes the degree of vertex
v;. Dendrimer is a polimer molecule with a distinctive structure that
resembles the crown of a tree. In this paper we compute second-order
and third-order connectivity indices of an infinite family of dendrimer
nanostars.
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1 Introduction

In 1975, Randi¢ introduced a molecular structure-descriptor in his study of
alkanes[1] which he called the branching indez, and is now called the the Randié
indez or the connectivity indexr . The Randi¢ index has been closely correlated
with many chemical properties (see [2]). Let G = (V, E) be a simple graph
with vertex set {vy, v, -+, v,}. For any two vertices v;,v; € V(G) with i < j,
we will use the symbol ij to denote the edge e = v;v;. For v; € V', the degree
of v;, written by d;, is the number of edges incident with v;. For an integer
m > 1, the m—order connectivity index of a graph G is defined as

"(G) = ) ! (1)
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where iyig - - - i1 runs over all paths( that is ig # i, for 1 < s <t <m+1)
of length m of G.

The higher order connectivity indices are of great interest in molecular
graph theory ([3-4]) and some of their mathematical properties have been
reported in [5-7].

In particular, the second order( or simply write as 2-order) connectivity and
the third order( or simply write as 3-order) connectivity indices are defined as

1 1
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Figure 1. The nanostar dendrimer NS[2]

Dendrimer is a synthetic 3-dimentional macromolecule that is prepared
in a step-wise fashion from simple branched monomer units. The nanostar
dendrimer is part of a new group of macromolecules that appear to be photon
funnels just like artificial antennas[8-10].

During the past several years, there are many papers dealing with the
topological indices of dendrimer nanostars, the readers may consult [10-14]
and references cited therein.

We shall consider the 2-order connectivity index and 3-order connectivity
indices of an infinite family of dendrimer nanostars N S[n] described in Figure
1[14].
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2 The 2-order and 3-order connectivity indices
of NS[n]

In the following, we shall compute the 2-order connectivity index and 3-order
connectivity index for the dendrimer nanostar NS[n| as shown in Figure 1.

Theorem 2.1 Let NS[n] be the dendrimer nanostar as shown in Figure 1.
Then

2X(NS[7”L]) = 3(213\/5 + 113\/§) + (% 4 70T\/§) (2n+1 . 4)

Proof. Firstly, we compute %y (NS[1]).

Let d;j, denotes the number of 2-path whose three consecutive vertices are

of degree i, j, k, resp. Similarly, we use dl(j,)C
Particularly, dl(j,l = d,(é)l
It is ease to see that

to mean d;;, in s — th stage.

sy = 48, dSy, = 32, dspy = 22, Sy = 60, diys = 10, dspy = 44.

Therefore, we have that
2X<NS[1]) = ¢2i82x2 + \/2:>3<22><3 + \/2>2<23><2 + \/2?<%><3 + \/3>1<%><3 + \/3§<Z§x3
= $(213v2+125V3)
Secondly, we establish the relation between 2y (NS[s]) and 2y (NS[s — 1])
for s > 2.
By simple reduction, we are ready to have,

Ay, = dSp" +18- 2%,

Ay = dSs" +20- 20,
Ay, = dbp" 41220,

diy = dig") +28-2°,
S s—1 s
d:(32)3 - d:(‘>23)+2‘2
dih = dsV +22.-20

and for any (i, j, k) # (222), (223), (232), (233), (323), (333) we have d_) =
0 or dij,)c =d YV =...=d% for s = 2,3,4,---,n. Thus,

rst ijk

_ 18x2" 20x2" 12x2n 28x 2"
*X(NS[n]) = 2)((5\7;5'[71 - 12]2 ‘5 \/2>><<2><2 + \/2>><<2><3 + \/2xx3><2 + \/2xx3><3
x2" x2"

+\/3><2><3 + V3x3x3
= 2X(NS[n— 1) + (%2 + B5)2"
From above recursion formula, we have
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2W(NS[n]) = 2x(NS[n —1]) + (432 4 46¥3)on
= 2\(NS[n —2]) + (Y2 4 163 (on 4 on-1)

— (NS (2 4 ) (04 2 g 2)
(213f+ 125\[) ( f+70f)(2”+1—4)

This completes the proof.

Theorem 2.2 Let NS[n] be the dendrimer nanostar as shown in Figure 1.
Then

X(NS[n]) = (222 + 94V6) + (99 + 44v/6) (2" — 4)

Proof. Let d;j;; denotes the number of 3-paths whose three consecutive
vertices are of degree i, j, k,[, resp. At the same time, we use dgj,)d to mean
dijr in s — th stage. Obviously, dijkl = dlkﬂ

Similar to the discussion way in Theorem 2.1, at the first, we compute
SN(NS[1]). Tt is easy to see that

d§12)22 = 32 d2223 = 32 d2232 = 32, dglz)z?) = 32, d%)23 = 12, d%):n =24 d%)s:s =
64, 0Bl = 12, b, = 28, dll), = 48

Thus,

3 _ 32 32 32 32 24
X(NS[l]) o \/2><2><624><2 + \/2><2><122><3 + \/2><2><238><2 + \/2X2X438X3 + V2x3x3x2

+\/2><3><3><3 + V3X2x3x2 + V3X2x3x3 + V3x3x3x3
= $(222+ 94V0)
Secondly, we compute X(N S[n]).

The relations between dijkl and dijkll) for s > 2 are

dsphy = dsip) +12 % 29,
dsphs = dsy) +12 % 29,
A5l + 20 x 29,
Sy = dSys +20 x 22,
i) +8 % 2°,
gy = dSpg +32 % 2°
s = dpss) +4 % 2°
A% = dSd) +24 x 20,

R
ne
e

I

RN
wZ
e

I

For any (i, j, k,1) # (2222), (2223), (2232), (2233), (2332), (2333), (3233), (3333),
dz(j’)ﬂl =0or dgj,)d = dz(j’;ll) S — dg;,)gl for s =2,3,4,---,n
Thus,
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3x(NS[n]) — 3x(NS[n— 1]) + 1222” 4 12><2" 4 2g\></%" + 2022” + 8><62”
32x2" 4x2" 8x2m 24 x2"

e T e Y T
= 3Y(NS[n —2]) + 2-(99 + 44V/6)

— Sy(NS[L) + (99 + 446) (20 +2v '+ 2)
1(222 4+ 94V/6) + 5 (99 + 44/6) (21 — 4)

This completes the proof.
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