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Abstract

The m-order connectivity index mχ(G) of a molecular graph G is
the sum of the weights (di1di2 · · · dim+1)

− 1
2 , where di1di2 · · · dim+1 runs

over all paths of length m in G and di denotes the degree of vertex
vi. Dendrimer is a polimer molecule with a distinctive structure that
resembles the crown of a tree. In this paper we compute second-order
and third-order connectivity indices of an infinite family of dendrimer
nanostars.
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1 Introduction

In 1975, Randić introduced a molecular structure-descriptor in his study of
alkanes[1] which he called the branching index, and is now called the the Randić
index or the connectivity index . The Randić index has been closely correlated
with many chemical properties (see [2]). Let G = (V, E) be a simple graph
with vertex set {v1, v2, · · · , vn}. For any two vertices vi, vj ∈ V (G) with i < j,
we will use the symbol ij to denote the edge e = vivj. For vi ∈ V , the degree
of vi, written by di, is the number of edges incident with vi. For an integer
m ≥ 1, the m−order connectivity index of a graph G is defined as

mχ(G) =
∑

i1i2···im+1

1√
di1di2 · · · dim+1

(1)
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where i1i2 · · · im+1 runs over all paths( that is is �= it for 1 ≤ s < t ≤ m + 1)
of length m of G.

The higher order connectivity indices are of great interest in molecular
graph theory ([3-4]) and some of their mathematical properties have been
reported in [5-7].

In particular, the second order( or simply write as 2-order) connectivity and
the third order( or simply write as 3-order) connectivity indices are defined as

2χ(G) =
∑

i1i2i3

1√
di1di2di3

, 3χ(G) =
∑

i1i2i3i4

1√
di1di2di3di4

(2)

Figure 1. The nanostar dendrimer NS[2]
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Dendrimer is a synthetic 3-dimentional macromolecule that is prepared
in a step-wise fashion from simple branched monomer units. The nanostar
dendrimer is part of a new group of macromolecules that appear to be photon
funnels just like artificial antennas[8-10].

During the past several years, there are many papers dealing with the
topological indices of dendrimer nanostars, the readers may consult [10-14]
and references cited therein.

We shall consider the 2-order connectivity index and 3-order connectivity
indices of an infinite family of dendrimer nanostars NS[n] described in Figure
1[14].
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2 The 2-order and 3-order connectivity indices

of NS[n]

In the following, we shall compute the 2-order connectivity index and 3-order
connectivity index for the dendrimer nanostar NS[n] as shown in Figure 1.

Theorem 2.1 Let NS[n] be the dendrimer nanostar as shown in Figure 1.
Then

2χ(NS[n]) = 1
9

(
213

√
2 + 113

√
3
)

+
(

19
√

2
2

+ 70
√

3
9

)(
2n+1 − 4

)

Proof. Firstly, we compute 2χ(NS[1]).

Let dijk denotes the number of 2-path whose three consecutive vertices are

of degree i, j, k, resp. Similarly, we use d
(s)
ijk to mean dijk in s − th stage.

Particularly, d
(s)
ijk = d

(s)
kji.

It is ease to see that

d
(1)
222 = 48, d

(1)
223 = 32, d

(1)
232 = 22, d

(1)
233 = 60, d

(1)
323 = 10, d

(1)
333 = 44.

Therefore, we have that
2χ(NS[1]) = 48√

2×2×2
+ 32√

2×2×3
+ 22√

2×3×2
+ 60√

2×3×3
+ 10√

3×2×3
+ 44√

3×3×3

= 1
9
(213

√
2 + 125

√
3)

Secondly, we establish the relation between 2χ(NS[s]) and 2χ(NS[s − 1])
for s ≥ 2.

By simple reduction, we are ready to have,

d
(s)
222 = d

(s−1)
222 + 18 · 2s,

d
(s)
223 = d

(s−1)
223 + 20 · 2s,

d
(s)
232 = d

(s−1)
232 + 12 · 2s,

d
(s)
233 = d

(s−1)
233 + 28 · 2s,

d
(s)
323 = d

(s−1)
323 + 2 · 2s

d
(s)
333 = d

(s−1)
323 + 22 · 2s.

and for any (i, j, k) �= (222), (223), (232), (233), (323), (333) we have d
(s)
ijk =

0 or d
(s)
ijk = d

(s−1)
rst = · · · = d

(1)
ijk for s = 2, 3, 4, · · · , n. Thus,

2χ(NS[n]) = 2χ(NS[n − 1]) + 18×2n√
2×2×2

+ 20×2n√
2×2×3

+ 12×2n√
2×3×2

+ 28×2n√
2×3×3

+ 2×2n√
3×2×3

+ 22×2n√
3×3×3

= 2χ(NS[n − 1]) + (19
√

2
2

+ 70
√

3
9

)2n

From above recursion formula, we have
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2χ(NS[n]) = 2χ(NS[n − 1]) + (43
√

2
6

+ 46
√

3
9

)2n

= 2χ(NS[n − 2]) + (43
√

2
6

+ 46
√

3
9

)(2n + 2n−1)
...

= 2χ(NS[1]) + (19
√

2
2

+ 70
√

3
9

)
(
2n + 2n−1 + · · ·+ 22

)

= 1
9

(
213

√
2 + 125

√
3
)

+
(

19
√

2
2

+ 70
√

3
9

)(
2n+1 − 4

)

This completes the proof.

Theorem 2.2 Let NS[n] be the dendrimer nanostar as shown in Figure 1.
Then

3χ(NS[n]) = 1
9

(
222 + 94

√
6
)

+ 1
9

(
99 + 44

√
6
)(

2n+1 − 4
)

Proof. Let dijkl denotes the number of 3-paths whose three consecutive

vertices are of degree i, j, k, l, resp. At the same time, we use d
(s)
ijkl to mean

dijkl in s − th stage. Obviously, d
(s)
ijkl = d

(s)
lkji.

Similar to the discussion way in Theorem 2.1, at the first, we compute
3χ(NS[1]). It is easy to see that

d
(1)
2222 = 32, d

(1)
2223 = 32, d

(1)
2232 = 32, d

(1)
2233 = 32, d

(1)
2323 = 12, d

(1)
2332 = 24, d

(1)
2333 =

64, d
(1)
3232 = 12, d

(1)
3233 = 28, d

(1)
3333 = 48.

Thus,
3χ(NS[1]) = 32√

2×2×2×2
+ 32√

2×2×2×3
+ 32√

2×2×3×2
+ 32√

2×2×3×3
+ 24√

2×3×3×2

+ 64√
2×3×3×3

+ 12√
3×2×3×2

+ 28√
3×2×3×3

+ 48√
3×3×3×3

= 1
9
(222 + 94

√
6)

Secondly, we compute 3χ(NS[n]).

The relations between d
(s)
ijkl and d

(s−1)
ijkl for s ≥ 2 are

d
(s)
2222 = d

(s−1)
2222 + 12 × 2s,

d
(s)
2223 = d

(s−1)
2223 + 12 × 2s,

d
(s)
2232 = d

(s−1)
2232 + 20 × 2s,

d
(s)
2233 = d

(s−1)
2233 + 20 × 2s,

d
(s)
2332 = d

(s−1)
2332 + 8 × 2s,

d
(s)
2333 = d

(s−1)
3233 + 32 × 2s

d
(s)
3233 = d

(s−1)
3233 + 4 × 2s

d
(s)
3333 = d

(s−1)
3233 + 24 × 2s.

For any (i, j, k, l) �= (2222), (2223), (2232), (2233), (2332), (2333), (3233), (3333),

d
(s)
ijkl = 0 or d

(s)
ijkl = d

(s−1)
ijkl = · · · = d

(1)
ijkl for s = 2, 3, 4, · · · , n.

Thus,
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3χ(NS[n]) = 3χ(NS[n − 1]) + 12×2n

4
+ 12×2n

2
√

6
+ 20×2n

2
√

6
+ 20×2n

6
+ 8×2n

6

+32×2n

3
√

6
+ 4×2n

6
+ 8×2n

3
√

6
+ 24×2n

9

= 3χ(NS[n − 2]) + 2n

9
(99 + 44

√
6)

...

= 3χ(NS[1]) + 1
9
(99 + 44

√
6)

(
2n + 2n−1 + · · ·+ 22

)

= 1
9

(
222 + 94

√
6
)

+ 1
9

(
99 + 44

√
6
)(

2n+1 − 4
)

This completes the proof.
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