Factorable Matrix Transforms of Summability Domains of Cesàro Matrices

A. Aasma

Department of Economics, Tallinn University of Technology Akadeemia Road 3-456, 12618 Tallinn, Estonia ants.aasma@tseba.ttu.ee

Abstract

In this paper some classes of triangular factorable matrices, transforming the summability domain of Cesàro matrix into the summability domain of a matrix B with real or complex entries, are described.

Mathematics Subject Classification: 40C05, 40G05

Keywords: Matrix transforms, Factorable matrices, Summability method of Cesàro

1 Introduction

In the present paper the transforms of summability domains of Cesàro matrices by triangular factorable matrices are studied. Let $A = (a_{nk})$ be a matrix with real or complex entries. Throughout this paper we assume that indices and summation indices run from 0 to ∞ unless otherwise specified. A sequence $x := (x_k)$ or a series $x := \sum_k x_k$ is said to be A-summable if the sequence $Ax = (A_n x)$ is convergent, where

$$A_n x := \sum_k a_{nk} x_k.$$

Let

$$c := \left\{ x = (x_k) \mid \exists \lim_k x_k \right\}, \quad cs := \left\{ x = (x_k) \mid \exists \lim_n \sum_{k=0}^n x_k \right\}$$
$$l := \left\{ x = (x_k) \mid \sum_k |x_k| < \infty \right\}, \quad c_A := \left\{ x = (x_k) \mid Ax \in c \right\}.$$

A matrix A is called sequence-to-sequence conservative (shortly, Sq-Sq conservative) if $Ax \in c$ for each $x \in c$. If $Ax \in c$ for each $x \in cs$, then a matrix

2202 A. Aasma

A is called series-to-sequence conservative (shortly, Sr-Sq conservative). A matrix A is said to be series-to-sequence regular (shortly, Sr-Sq regular) if $\lim_n A_n x = \lim_n \sum_{k=0}^n x_k$ for every $x \in cs$.

Let \mathcal{M} be the set of all lower triangular factorable matrices $M=(m_{nk})$, where

$$m_{nk} = r_n v_k, \ k \le n; \ r_n, v_k \in \mathcal{C},$$

Let $C^{\alpha} = (a_{nk}), \alpha \in \mathcal{C} \setminus \{-1, -2, ...\}$, be a series-to-sequence Cesàro matrix, i.e. (see [4] or [5])

$$a_{nk} := \begin{cases} \frac{A_{n-k}^{\alpha}}{A_n^{\alpha}} & (k \le n), \\ 0 & (k > n), \end{cases}$$

where $A_n^{\alpha} = \binom{n+\alpha}{n}$ are Cesàro numbers. In [1] and [8] necessary and sufficient conditions for a matrix M with real or complex entries to be a transform from $c_{C^{\alpha}}$ into c_B for certain $\alpha \in \mathcal{C}$ and certain triangular matrix B are described. Moreover, in [3] this problem is considered for the special case $B = C^{\beta}$, and in [2] one class of triangular matrices M, transforming $c_{C^{\alpha}}$ into $c_{C^{\beta}}$, is described.

In the present paper some classes of triangular factorable matrices M, transforming $c_{C^{\alpha}}$ into $c_{C^{\beta}}$, are described. The paper is organized as follows. In Section 2 some auxiliary results are presented, which are needed later. In Section 3 sufficient conditions for $M \in \mathcal{M}$ to be a transform from c_A into c_B are found. In Section 4 some classes of triangular factorable matrices M from \mathcal{M} , transforming $c_{C^{\alpha}}$ into c_B are described.

2 Auxiliary results

In this section we present some auxiliary results, which we need further.

Lemma 2.1 (cf. [5], p. 46-47). A matrix $D = (d_{nk})$ is Sq-Sq conservative if and only if

there exist finite limits
$$\lim_{n} d_{nk} = d_k,$$
 (1)

there exist finite limits
$$\lim_{n} \sum_{k} d_{nk} = d,$$
 (2)

$$\sum_{k} |d_{nk}| = \mathcal{O}(1). \tag{3}$$

Also we need the following properties of Cesàro numbers (see [4], p. 77-81):

$$\sum_{n=k}^{\infty} \frac{A_{n-k}^{\alpha}}{A_{n}^{\beta}} = \frac{\beta}{\beta - \alpha - 1} \frac{1}{A_{k}^{\beta - \alpha - 1}} \text{ for } Re\beta \ge 0, Re(\beta - \alpha) > 1, k = 1, 2, ..., (4)$$

$$|A_n^{\alpha}| \ge L(n+1)^{Re\alpha} \text{ for } \alpha \in \mathcal{C} \setminus \{-1, -2, \dots\}, \ L > 0.$$
 (5)

Lemma 2.2 (cf. [4], p. 192). Let $\alpha \in \mathcal{C}$ with $Re\alpha > 0$ or $\alpha = 0$, and (v_k) is a sequence of complex numbers. A series $\Sigma_k v_k x_k$ is convergent for each $\sum_k x_k \in c_{C^{\alpha}}$ if and only if

$$v_k = \mathcal{O}\left[(k+1)^{-Re\alpha} \right] \tag{6}$$

and

$$\sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \Delta_k^{\alpha+1} v_k \right| = \mathcal{O}(1), \tag{7}$$

where

$$\Delta^{\alpha+1}v_k := \sum_{n=k}^{\infty} A_{n-k}^{-\alpha-2} v_n.$$

3 Matrix transforms from c_A into c_B

At first we give a simple necessary condition for $M \in \mathcal{M}$ to be a transform from c_A into c_B .

Proposition 3.1 Let $A = (a_{nk})$ be a matrix with $e^0 = (1, 0, 0, ...) \in c_A$ and $B = (b_{nk})$ an arbitrary matrix with real or complex entries. If $M = (r_n v_k) \in \mathcal{M}$ transforms c_A into c_B , then $(r_n) \in c_B$.

Proof easily follows from the relation

$$M_n e^0 = r_n v_0.$$

Now we present sufficient conditions for $M \in \mathcal{M}$ to be a transform from c_A into c_B .

Theorem 3.2 Let $A = (a_{nk})$ and $B = (b_{nk})$ be matrices with real or complex entries, (r_n) and (v_k) sequences with real or complex entries and $B^t = (b_{pn}^t)$ a matrix, defined by the relation $b_{pn}^t = b_{pn}r_n$. Then $M = (r_nv_k) \in \mathcal{M}$ transforms c_A into c_B if

$$(v_k x_k) \in cs \ for \ every \ x \in c_A,$$
 (8)

$$B^t is Sq - Sq conservative.$$
 (9)

Proof easily follows from the equality

$$\sum_{n} b_{pn} M_n x = \sum_{n} b_{pn}^t \sum_{k=0}^n v_k x_k$$

for each $x \in c_A$.

2204 A. Aasma

Proposition 3.3 Let $B = (b_{nk})$ be a Sr-Sq regular matrix, where $b_{nk} > 0$ for all n and k, and (r_n) a sequence with real or complex entries. Then condition (9) is satisfied, i.e. $B^t = (b_{pn}^t) = (b_{pn}r_n)$ is Sq-Sq conservative if and only if $(r_n) \in l$.

Proof. Necessity. We suppose that B^t is Sq-Sq conservative and show that then $(r_n) \in l$. Indeed, condition (3) of Lemma 2.1 takes for $D = B^t$ the form

$$T_p := \sum_n |b_{pn} r_n| = \sum_n b_{pn} |r_n| = \mathcal{O}(1).$$
 (10)

If $\sum_n |r_n| = \infty$, then (see [6], p. 92) $\lim_{p\to\infty} T_p = \infty$, i.e. condition (10) is not satisfied. Hence $(r_n) \in l$ by Lemma 1.

Sufficiency. Let $(r_n) \in l$. We show that all conditions of Lemma 2.1 are fulfilled for $D = B^t$. Indeed, the Sr-Sq regularity of B implies that $(r_n) \in c_B$, i.e. condition (2) of Lemma 2.1 is satisfied for $D = B^t$. The Sr-Sq regularity of B also implies that $b_{nk} = \mathcal{O}(1)$ and there exist the finite limits $\lim_n b_{nk}$ by Proposition 17 of [7]. Consequently condition (1) is fulfilled for $D = B^t$, and

$$T_p = \mathcal{O}(1) \sum_n |r_n| = \mathcal{O}(1),$$

i.e. condition (3) of Lemma 2.1 is satisfied for $D = B^t$. Therefore B^t is Sq-Sq conservative by Lemma 2.1.

Remark. The assertion of Proposition 3.3 holds also for lower triangular matrix $B = (b_{nk})$, where $b_{nk} > 0$ for all $k \le n$.

Theorem 3.4 Let $A = (a_{nk})$, $B = (b_{nk})$ be matrices with real or complex entries and (r_n) , (v_k) sequences with real or complex entries. Moreover, let $l \subset c_B$ and $(r_n) \in l$. Then $M = (r_n v_k) \in \mathcal{M}$ transforms c_A into c_B if condition (8) is fulfilled.

Proof. Let

$$S_n := \sum_{k=0}^n v_k x_k$$

for every $x \in c_A$. As $(S_n) \in c$ for every $x \in c_A$ by (8), then (S_n) is also bounded for each $x \in c_A$. Therefore

$$\sum_{n} |M_n x| = \sum_{n} |r_n S_n| = \mathcal{O}(1) \sum_{n} |r_n| = \mathcal{O}(1)$$

for every $x \in c_A$. As $l \subset c_B$, then M transforms c_A into c_B .

4 Matrix transforms from $c_{C^{\alpha}}$ into c_B

In this section we consider the factorable matrix transforms of summability domains of Cesàro matrices.

Theorem 4.1 Let $\alpha \in \mathcal{C}$ with $Re\alpha > 0$ or $\alpha = 0$, and $B = (b_{nk})$ be a matrix with the property $l \subset c_B$. Let (v_k) be defined by $v_k := 1/A_k^t$, where $t \in \mathcal{C}$ with Ret > 0, and $(r_n) \in l$. Then $M = (r_n v_k) \in \mathcal{M}$ transforms $c_{C^{\alpha}}$ into c_B if $Re\alpha < Ret$.

Proof. By Theorem 3.4 it is sufficient to show that condition (8) is fulfilled for $A = C^{\alpha}$ and $v_k = 1/A_k^t$. With the help of (4) and (5) we have

$$\sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \Delta_k^{\alpha+1} v_k \right| = \sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \sum_{n=k}^{\infty} \frac{A_{n-k}^{-\alpha-2}}{A_n^t} \right|$$

$$= \sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \frac{t}{t+\alpha+1} \frac{1}{A_k^{t+\alpha+1}} \right| = \mathcal{O}(1) \sum_{k=0}^{\infty} \frac{(k+1)^{Re\alpha}}{(k+1)^{Re(t+\alpha)+1}}$$

$$= \mathcal{O}(1) \sum_{k=0}^{\infty} \frac{1}{(k+1)^{Re(t+1)}} = \mathcal{O}(1),$$

since Ret > 0, i.e. condition (7) is satisfied. Condition (6) is also fulfilled, since by (5) there exists L > 0 so that

$$\left| \frac{1}{A_k^t} \right| \le \frac{1}{L(k+1)^{Ret}} = \mathcal{O}(1)k+1)^{-Ret} = \mathcal{O}(1)k+1)^{-Re\alpha}.$$

Consequently condition (8) is fulfilled by Lemma 2.2. Thus M transforms $c_{C^{\alpha}}$ into c_B by Theorem 3.4.

Theorem 4.2 Let $\alpha \in \mathcal{C}$ with $Re\alpha > 0$ or $\alpha = 0$, and $B = (b_{nk})$ be a matrix with the property $l \subset c_B$. Let (v_k) be defined by $v_k := y^k$, where $y \in \mathcal{C}$, and $(r_n) \in l$. Then $M = (r_n v_k) \in \mathcal{M}$ transforms $c_{C^{\alpha}}$ into c_B if |y| < 1.

Proof. By Theorem 3.4 it is sufficient to show that condition (8) is fulfilled for $A = C^{\alpha}$ and $v_k = y^k$. As

$$\begin{split} &\sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \Delta_k^{\alpha+1} v_k \right| = \sum_{k=0}^{\infty} (k+1)^{Re\alpha} \left| \sum_{n=0}^{\infty} A_n^{-\alpha-2} y^{n+k} \right| \\ &\leq \sum_{k=0}^{\infty} (k+1)^{Re\alpha} y^k \sum_{k=0}^{\infty} \left| A_n^{-\alpha-2} y^n \right| = \mathcal{O}(1) \sum_{k=0}^{\infty} (k+1)^{Re\alpha} y^k < \infty \end{split}$$

2206 A. Aasma

(since the series $\sum_{k=0}^{\infty} (k+1)^{Re\alpha} y^k$ converges by the convergence criterion of Cauchy for positive series), then condition (7) is satisfied. Also condition (6) is fulfilled, since

$$\lim_{k} y^k (k+1)^{Re\alpha} = 0.$$

Consequently condition (8) is fulfilled. Thus M transforms $c_{C^{\alpha}}$ into c_B by Theorem 3.4.

ACKNOWLEDGEMENTS. This work was supported by Estonian Science Foundation grant 8627.

References

- [1] A. Aasma, Transformations of summability fields, *Acta et Comment. Univ. Tart.*, **770** (1987), 38-51 (in Russian).
- [2] A. Aasma, Some notes on matrix transforms of summability domains of Cesàro matrices, *Math. Model. Anal.* **15** (2010), 153-160.
- [3] L. Alpár, On the linear transformations of series summable in the sense of Cesàro, *Acta Math. Hungar.*, **39** (1982), 233-243.
- [4] S. Baron, Introduction to the Theory of Summability of Series, Valgus, Tallinn, 1977 (in Russian).
- [5] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
- [6] R.G. Cooke, *Infinite Matrices and Sequence Spaces*, State Publishing Hous of Physics-Mathematics Literature, Moscow, 1960 (in Russian).
- [7] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht, *Math. Z.*, **154** (1977), 1-14.
- [8] B. Thorpe, Matrix transformations of Cesàro summable series, *Acta Math. Hungar.*, **48** (1986), 255-265.

Received: April, 2011, 200x