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Abstract

Let G = (V,E) be a simple graph. A subset Dof V (G) is a (k, r)-
dominating set if for every vertexv ∈ V −D, there exists at least k ver-
tices in D which are at a distance utmost r from v in [1]. The minimum
cardinality of a (k, r)-dominating set of G is called the (k, r)-domination
number of G and is denoted by γ(k,r)(G). In this paper, minimal (k, r)-
dominating sets are characterized. It is proved that Vizing conjecture
does not hold in the case of (k, r)-domination.
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1 Introduction

Consider a network in which there are signal transmitting centres and
signal receiving centres. The receiving centres may hope to get good signals if
the transmitting centres are at a distance of at most r (say) from the receiving
centres. In the event of failures of signal transmitting centres, to retain the
integrity of the network one can impose an additional condition that, for each
non-transmitting centre there are at least k-transmitting centres, which send
signals to the non-transmitting centre. k may be sufficiently large positive
integer to allow for adequate security of transmission in all likely events of
a break down in reliable communications. To find a graph model for this,
Michael A. Henning et al, [2] introduced the concept of (k, r)-domination.
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We consider only finite simple graphs.In the first section, we start with
the definition by Henning et al, introduce (k, r)-neighbourhood of a vertex
and find the (k, r)-domination number of standard graphs. The second sec-
tion deals with the minimal (k, r) -dominating sets. Also, a chain connecting
γ(1,r)(G) with γ(k,1)(G) is found out. For an even path of length 2t, the rela-
tion between γ2,t−2, γ2,t−1, . . . , γ2,2t is determined. The third section deals with
Vizing conjecture in the case of (k, r)-domination. Conclusion is given at the
end.

2 (k, r)-domination:

Definition 2.1 Let G = (V, E) be a graph. Let r, k ≥ 1 be integers. A sub-
set D of V is a (k, r)-dominating set if for every vertex u in V −D, there exists
at least k vertices in D which are at a distance at most r from u. The min-
imum (maximum) cardinality of a minimal (k, r)-dominating set is called
a (k, r)-domination number of G (upper (k, r)-domination number of
G) and is denoted by γ(k,r)(G)(Γ(k,r)(G)).

Definition 2.2 The open r-neighbourhood Nr(v) of a vertex v in a
graph G is defined by Nr(v) = {u ∈ V (G) : 0 < d(u, v) ≤ r} and its closed
r-neighbourhood is Nr[v] = Nr(v) ∪ {v}. The r-degree of v in G, degr(v) is
given by |Nr(v)|, while Δr(G) and δr(G) denote the maximum and minimum
r-degree among all the vertices of G respectively.

Definition 2.3 Given the positive integers k and r, the (k, r)-neighbourhood
of a vertex u ∈ V (G), denoted by N(k,r)(u) and is defined as

N(k,r)(u) =

{
Nr(u), if |Nr(u)| ≥ k

∅, otherwise
.

The closed (k, r)-neighbourhood is
N(k,r)[u] = N(k,r)(u) ∪ {u}. A vertex u ∈ V is a (k, r)-isolate if N(k,r)(u) = ∅.

Definition 2.4 Given the positive integers k and r and a subset D of V ,
the (k, r, D)-neighbourhood of a vertex u ∈ V (G), denoted by N(k,r,D)(u)

is defined as N(k,r,D)(u) =

{
Nr(u) ∩ D, if |Nr(u) ∩ D| ≥ k

∅, otherwise

The closed (k, r, D)-neighbourhood is N(k,r,D)[u] = N(k,r,D)(u)∪ {u}. A
vertex u ∈ V is a (k, r, D)-isolate if N(k,r,D)(u) = ∅.
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When r = 1 and k = 1, D = {v4, v5}. Therefore γ(1,1)(G) = 2. When r = 1
and k = 2, D = {v1, v2, v3, v6, v7, v8}. Hence γ(2,1)(G) = 6. When r = 1 and
k = 3, D = {v1, v2, v3, v6, v7, v8}. Therefore γ(3,1)(G) = 6. It can be shown
that γ(4,1)(G) = 7 , and γ(k,1)(G) = 8, for every k ≥ 5. When r = 2 and k = 1,
D = {v4}. Therefore γ(1,2)(G) = 1. When r = 2 and k = 2, D = {v4, v5}.
Therefore γ(2,2)(G) = 2. When r = 2 and k = 3, D = {v4, v5, v1, v6}. Therefore
γ(3,2)(G) = 4.
When r = 2 and k = 4, 5 and 6, D = {v1, v2, v3, v6, v7, v8}. Therefore γ(k,2)(G) =
6. Further, γ(k,2)(G) = k, if k = 7 and k = 8. γ(k,r)(G) = k, if r ≥ 3.

Remark 2.5 Let G = (V, E) be a connected graph. Then V itself is a (k, r)-
dominating set. Therefore the existence of (k, r)-dominating set is guarenteed
for any graph G.

Theorem 2.6 Let G be a graph. Then k ≤ γ(k,r)(G) ≤ n and these bounds
are sharp.

Proof: Let G be a graph. For a vertex to be (k, r)-dominated, there must
be at least k-vertices in any (k, r)-dominating set. Therefore k ≤ γ(k,r)(G).
It is obvious that V forms a (k, r)-dominating set and therefore any (k, r)-
dominating set contains at most nvertices. Therefore γ(k,r)(G) ≤ n. The lower
bound is sharp if r = diam(G) and the upper bound is sharp if k > Δr(G).

Theorem 2.7 If r = diam(G), then γ(k,r)(G) = k.

Proof: If r = diam(G), then every vertex of G is at a distance ≤ r with every
other vertex of G. Any k-element subset of V (G) is a (k, r)-dominating set.
But any (k, r)-dominating set has at least k-elements. Therefore γ(k,r)(G) = k.

Remark 2.8 The converse of the above theorem is not be true. γ(k,r)(G) =
k does not imply that r = diam(G).
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It can be easily verified that γ(3,2)(G) = 3 = k. But, diam(G) = 3 > r = 2.

Theorem 2.9 k > Δr(G) if and only if γ(k,r)(G) = n.
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Proof: Suppose k > Δr(G). Let D be a γ(k,r)-set of G.
Claim: γ(k,r)(G) = n. (ie) V − D = ∅.

If not, let x ∈ V −D. Then there exist at least k-vertices u1, u2, . . . ul ∈ D,
where l ≥ k and d(ui, x) ≤ r, for all i = 1 to l, l ≥ k. Therefore k ≤ l ≤
Δr(G), a contradiction. Therefore γ(k,r)(G) = n. Conversely, let D be a
γ(k,r)-set of G and |D| = γ(k,r)(G) = n. Claim: k > Δr(G).

On the contrary, suppose that k ≤ Δr(G). Let x be a vertex of maximum
r-degree in G and let Nr(x) =

{
u1, u2, . . . u(Δr(G))

}
. Then x has at least

k r-neighbours. Therefore V − {x} is a (k, r)-dominating set. Therefore
γ(k,r)(G) ≤ n − 1, a contradiction. Hence k > Δr(G).
(k, r)-domination number for Standard Graphs:

1. γ(k,r)(Kn) = k for all k and r

2. γ(k,r)(K(1,n)) =

⎧⎪⎨
⎪⎩

1 if k = 1 and r = 1

n if r = 1 and 2 ≤ k ≤ n

k if r ≥ 2 and for all k.

3. γ(k,r)(K(m,n)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{2k, z}, if r = 1 and k ≤ z

z′, if r = 1 and z < k ≤ z′

m + n, if r = 1 and k > z′

k, if r ≥ 2 and 1 ≤ k ≤ m + n

where z =

min{m, n} and z′ = max{m, n}

4. γ(k,r)(Wn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if r = 1 and k = 1

�(n − 1)/2	 if r = 1 and k = 2

�(n − 1)/2	 + 1 if r = 1 and k = 3

n − 1 if r = 1, k ≥ 4

k, if r ≥ 2, 1 ≤ k ≤ n

5. γ(k,r)(Cn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�n/3	 if r = 1 and k = 1

�n/2	 , if r = 1 and k = 2

n if r = 1, k ≥ 3

�n/(2r + 1)	 if r ≥ 2 and k = 1

�n/(k + r − 1)	 if r ≥ 2, and k = 2

Remark 2.10 If D is a (k, r)-dominating set, then any superset of D is
also a (k, r)-dominating set. That is, (k, r)-domination has the superhereditary
property.
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Proposition 2.11 For any graph G, D is a (k, r)-dominating set of G if

and only if ∪
T

(
∩

ui∈T
Nr(ui)

)
∪ D = V , where T is a k-subset of D.

Proof: Let D be a (k, r)-dominating set. It is clear that ∪
T

(
∩

ui∈T
Nr(ui)

)
∪D ⊆

V . Let u ∈ V . If u ∈ D, then there is nothing to prove. If u /∈ D, then there
exists at least k elements u1,u2,. . . ,ul in D, where l ≥ k such that d(ui, u) ≤ r.

Then u ∈ Nr(ui) for all i, 1 ≤ i ≤ l which implies that u ∈ ∪
T

(
∩

ui∈T
Nr(ui)

)
,

where T is a k-subset of D. Conversely, let ∪
T

(
∩

ui∈T
Nr(ui)

)
∪ D = V . Then

we will prove that D is a (k, r)-dominating set. Let u ∈ V − D. Then u ∈
∪
T

(
∩

ui∈T
Nr(ui)

)
which implies that u ∈ ( ∩

ui∈T
Nr(ui)), for some k-subset T of

D and hence D is a (k, r)-dominating set.

3 Minimal (k, r)-dominating sets

Definition 3.1 A (k, r)-dominating set D of a graph G is said to be mini-
mal if no proper subset of D is a (k, r)-dominating set of G.

Proposition 3.2 A (k, r)-dominating set D is a minimal (k, r)-dominating
set if and only if for each vertex u ∈ D, one of the following two conditions
hold. a) u is a (k, r, D)-isolate. b) There exists a vertex v ∈ V − D for which
|Nr(v) ∩ D| = k and u ∈ Nr(v) ∩ D.

Proof: Let D be a minimal (k, r)-dominating set. Suppose there exists a
vertex u ∈ D which is not a (k, r, D)-isolate and for every v ∈ V − D, either
|Nr(v) ∩ D| > k or u /∈ Nr(v) ∩ D. Consider D′ = D − {u}. Since u is at a
distance ≤ r with at least k vertices of D′, D′ is a (k, r)-dominating set, which
is a contradiction to the minimality of D. Hence for each vertex u ∈ D, one
of the two conditions hold.

Conversely, let D be a (k, r)-dominating set satisfying (a) and (b). Consider
D′ = D−{u} for an arbitrary vertex u ∈ D. If (a) holds, then |Nr(u) ∩ D′| < k,
which implies that D′ is not a (k, r)-dominating set. If (b) holds, then the set
D′ would not (k, r)-dominate u. Hence D is a minimal (k, r)-dominating set.

Remark 3.3 If G has no (k, r)-isolates and if D is a minimal (k, r)-dominating
set, then V − D need not be a (k, r)-dominating set.
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N1(1) = {2, 5}; N1(2) = {1, 3}; N1(3) = {2, 5, 4}. N1(4) = {3, 5}; N1(5) =
{1, 4, 3}. G has no (2, 1)-isolates and D = {2, 4, 5} is a minimal (2, 1) domi-
nating set. But V − D = {1, 3} is not a (2, 1)-dominating set. Therefore, the
complement of a minimal (k, r)-dominating set need not be a (k, r)-dominating
set.

Theorem 3.4 If r = diam(G) and
⌊

n
k

⌋ ≥ 2, then the complement of a
minimal (k, r)-dominating set is a (k, r)-dominating set.

Proof: Let D be a minimal (k, r)-dominating set and r = diam(G) and⌊
n
k

⌋ ≥ 2. Claim: V − D is a (k, r)-dominating set. Since r = diam(G),
γ(k,r)(G) = k. That is, |D| = k. Therefore |V − D| = n − k ≥ k, since⌊

n
k

⌋ ≥ 2. Since r = diam(G), every vertex in V (G) is at a distance ≤ r with
every other vertex in V (G). Therefore, V − D is a (k, r)-dominating set.

Remark 3.5 If H is the spanning subgraph of G, then γ(k,r)(G) ≤ γ(k,r)(H).

Remark 3.6 If 1 ≤ s ≤ r and 1 ≤ k′ ≤ k, then γ(1,r)(G) ≤ γ(1,s)(G) ≤
γ(1,1)(G) ≤ γ(k′,1)(G) ≤ γ(k,1)(G).

For any positive integers r and t, γ(1,r)(G) ≤ γ(2,r)(G) ≤ γ(3,r)(G) ≤
. . . ≤ γ(t,r)(G) ≤ γ(t,r−1)(G) ≤ . . . ≤ γ(t,1)(G) = γt(G), where γt(G) is the t
domination number of G and γ(1,r)(G) is the distance-r-domination number of
G.

Proposition 3.7 Let n = 2t. Then γ(2,t−2)(Pn) > γ(2,t−1)(Pn) > γ(2,t)(Pn) =
γ(2,t+1)(Pn) = · · · = γ(2,2t)(Pn).

Proof: Let n = 2t. Let V (Pn) =
{
v1, v2, v3, . . . , v(2t)

}
. Clearly {v(t−2), v(t−1), v(t+2), v(t+3)}

is a (2, t − 2)-dominating set of Pn. Let {vi, vj , vk} be a (2, t − 2)-dominating
set, 1 ≤ i < j < k ≤ 2t. Then any two of d(v1, vi) , d(v1, vj) and d(v1, vk)
are less than or equal to t − 2. That is any two of i − 1, j − 1, k − 1 are less
than or equal to t − 2. Therefore, any two of i, j, k are less than or equal to
t − 1. Let i ≤ t − 1 and j ≤ t − 1. Maximum value of j is t − 1. Then
d(v2t, vj) = 2t− j ≥ 2t− (t−1) = t+1. Simillarly, d(v2t, vi) ≥ t+1. Therefore
v2t is not (2, t− 2)-dominated by vi and vj, a contradiction. In a similar man-
ner, we can prove that {vi, vj, vk} is not a (2, t − 2)-dominating set in other
cases also. Therefore γ(2,t−2)(Pn) = 4. Hence the remark.

Proposition 3.8 Given positive integers k and r, there exists a connected
graph G with γ(k,r)(G) = k and diam(G) = r + 1.

Proof: The proof is by the following construction.
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Let D = {v1, v2, . . . , vk}. Let v1, w1, w2, . . . , wr = u1 be a shortest path be-
tween v1 and u1. Let v2, x1, x2, . . . , xr = u2 be a shortest path between v2 and
u2. Let u1, u2 be adjacent to v3, v4, . . . , vk. Let u1 be adjacent to v2 and u2 be
adjacent to v1. Now diam(G) = r + 1. D is a (k, r)-dominating set of G and
|D| = k. Therefore γ(k,r)(G) ≤ |D| = k. But k ≤ γ(k,r)(G). Therefore D is a
γ(k,r)-set of G and r < diam(G) = r + 1.

4 Vizing Conjecture:

For any graph G and H , γ(G × H) ≥ γ(G)γ(H). But in the case of (k, r)-
domination,
γ(k,r)(G × H) < γ(k,r)(G) γ(k,r)(H), for some k and r.
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In the above example, {1, 3, 5, 7, 9, 11, 13, 15} is a γ(3,1) set of G. γ(3,1)(P3 ×
P5) = 8. γ(3,1)(P3) = 3. γ(3,1)(P5) = 5. Hence, γ(3,1)(P3 × P5) <
γ(3,1)(P3)γ(3,1)(P5). In the above example, {6, 7, 9, 10} is a γ(2,2) set of G.
γ(2,2)(P3 × P5) = 4. γ(2,2)(P3) = 2. γ(2,2)(P5) = 3. Hence γ(2,2)(P3 × P5) <
γ(2,2)(P3)γ(2,2)(P5).

In the above example, {3, 8, 13} is a γ(2,3) set of G. γ(2,3)(P3 × P5) = 3.
γ(2,3)(P3) = 2. γ(2,3)(P5) = 2. Hence γ(2,3)(P3 × P5) < γ(2,3)(P3)γ(2,3)(P5).

5 Conclusion:

We have made a study of (k, r)-domination. It is further continued in our
subsequent investigations in this direction. Facility location problems as con-
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sidered in [5] make use of (k, r)-domination. Other applications are also at-
tempted.
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