(k,r)-Domination in Graphs

G. Jothilakshmi, A. P. Pushpalatha

Department of Mathematics, Thiagarajar college of Engineering, Madurai-625015, Tamilnadu, India gjlmat@tce.edu, appmat@tce.edu

S. Suganthi, V. Swaminathan

Ramanujan Research center, Saraswathi Narayanan College Madurai, Tamilnadu, India

Abstract

Let G = (V, E) be a simple graph. A subset D of V(G) is a (k, r)-dominating set if for every vertex $v \in V - D$, there exists at least k vertices in D which are at a distance utmost r from v in [1]. The minimum cardinality of a (k, r)-dominating set of G is called the (k, r)-domination number of G and is denoted by $\gamma_{(k,r)}(G)$. In this paper, minimal (k, r)-dominating sets are characterized. It is proved that Vizing conjecture does not hold in the case of (k, r)-domination.

Mathematics Subject Classification: 05C69

Keywords: (k, r)-domination number

1 Introduction

Consider a network in which there are signal transmitting centres and signal receiving centres. The receiving centres may hope to get good signals if the transmitting centres are at a distance of at most r (say) from the receiving centres. In the event of failures of signal transmitting centres, to retain the integrity of the network one can impose an additional condition that, for each non-transmitting centre there are at least k-transmitting centres, which send signals to the non-transmitting centre. k may be sufficiently large positive integer to allow for adequate security of transmission in all likely events of a break down in reliable communications. To find a graph model for this, Michael A. Henning et al, [2] introduced the concept of (k, r)-domination.

We consider only finite simple graphs. In the first section, we start with the definition by Henning et al, introduce (k,r)-neighbourhood of a vertex and find the (k,r)-domination number of standard graphs. The second section deals with the minimal (k,r)-dominating sets. Also, a chain connecting $\gamma_{(1,r)}(G)$ with $\gamma_{(k,1)}(G)$ is found out. For an even path of length 2t, the relation between $\gamma_{2,t-2}, \gamma_{2,t-1}, \ldots, \gamma_{2,2t}$ is determined. The third section deals with Vizing conjecture in the case of (k,r)-domination. Conclusion is given at the end.

2 (k,r)-domination:

Definition 2.1 Let G = (V, E) be a graph. Let $r, k \ge 1$ be integers. A subset D of V is a (k, r)-dominating set if for every vertex u in V - D, there exists at least k vertices in D which are at a distance at most r from u. The minimum (maximum) cardinality of a minimal (k, r)-dominating set is called a (k, r)-domination number of G (upper (k, r)-domination number of G) and is denoted by $\gamma_{(k,r)}(G)(\Gamma_{(k,r)}(G))$.

Definition 2.2 The open r-neighbourhood $N_r(v)$ of a vertex v in a graph G is defined by $N_r(v) = \{u \in V(G) : 0 < d(u,v) \le r\}$ and its **closed** r-neighbourhood is $N_r[v] = N_r(v) \cup \{v\}$. The r-degree of v in G, deg $_r(v)$ is given by $|N_r(v)|$, while $\Delta_r(G)$ and $\delta_r(G)$ denote the maximum and minimum r-degree among all the vertices of G respectively.

Definition 2.3 Given the positive integers k and r, the (k, r)-neighbourhood of a vertex $u \in V(G)$, denoted by $N_{(k,r)}(u)$ and is defined as

$$N_{(k,r)}(u) = \begin{cases} N_r(u), & if |N_r(u)| \ge k \\ \emptyset, & otherwise \end{cases}.$$

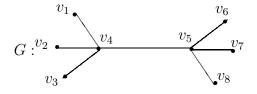
The closed (k,r)-neighbourhood is

 $N_{(k,r)}[u] = N_{(k,r)}(u) \cup \{u\}$. A vertex $u \in V$ is a (k,r)-isolate if $N_{(k,r)}(u) = \emptyset$.

Definition 2.4 Given the positive integers k and r and a subset D of V, the (k, r, D)-neighbourhood of a vertex $u \in V(G)$, denoted by $N_{(k, r, D)}(u)$

is defined as
$$N_{(k,r,D)}(u) = \begin{cases} N_r(u) \cap D, & \text{if } |N_r(u) \cap D| \ge k \\ \emptyset, & \text{otherwise} \end{cases}$$

The closed (k, r, D)-neighbourhood is $N_{(k,r,D)}[u] = N_{(k,r,D)}(u) \cup \{u\}$. A vertex $u \in V$ is a (k, r, D)-isolate if $N_{(k,r,D)}(u) = \emptyset$.



When r=1 and $k=1, D=\{v_4,v_5\}$. Therefore $\gamma_{(1,1)}(G)=2$. When r=1 and $k=2, D=\{v_1,v_2,v_3,v_6,v_7,v_8\}$. Hence $\gamma_{(2,1)}(G)=6$. When r=1 and $k=3, D=\{v_1,v_2,v_3,v_6,v_7,v_8\}$. Therefore $\gamma_{(3,1)}(G)=6$. It can be shown that $\gamma_{(4,1)}(G)=7$, and $\gamma_{(k,1)}(G)=8$, for every $k\geq 5$. When r=2 and k=1, $D=\{v_4\}$. Therefore $\gamma_{(1,2)}(G)=1$. When r=2 and $k=2, D=\{v_4,v_5\}$. Therefore $\gamma_{(2,2)}(G)=2$. When r=2 and $k=3, D=\{v_4,v_5,v_1,v_6\}$. Therefore $\gamma_{(3,2)}(G)=4$.

When r = 2 and k = 4, 5 and $6, D = \{v_1, v_2, v_3, v_6, v_7, v_8\}$. Therefore $\gamma_{(k,2)}(G) = 6$. Further, $\gamma_{(k,2)}(G) = k$, if k = 7 and k = 8. $\gamma_{(k,r)}(G) = k$, if $r \ge 3$.

Remark 2.5 Let G = (V, E) be a connected graph. Then V itself is a (k, r)-dominating set. Therefore the existence of (k, r)-dominating set is guaranteed for any graph G.

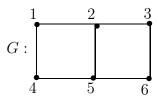
Theorem 2.6 Let G be a graph. Then $k \leq \gamma_{(k,r)}(G) \leq n$ and these bounds are sharp.

Proof: Let G be a graph. For a vertex to be (k,r)-dominated, there must be at least k-vertices in any (k,r)-dominating set. Therefore $k \leq \gamma_{(k,r)}(G)$. It is obvious that V forms a (k,r)-dominating set and therefore any (k,r)-dominating set contains at most n-vertices. Therefore $\gamma_{(k,r)}(G) \leq n$. The lower bound is sharp if r = diam(G) and the upper bound is sharp if $k > \Delta_r(G)$.

Theorem 2.7 If r = diam(G), then $\gamma_{(k,r)}(G) = k$.

Proof: If r = diam(G), then every vertex of G is at a distance $\leq r$ with every other vertex of G. Any k-element subset of V(G) is a (k, r)-dominating set. But any (k, r)-dominating set has at least k-elements. Therefore $\gamma_{(k,r)}(G) = k$.

Remark 2.8 The converse of the above theorem is not be true. $\gamma_{(k,r)}(G) = k$ does not imply that r = diam(G).



It can be easily verified that $\gamma_{(3,2)}(G) = 3 = k$. But, diam(G) = 3 > r = 2.

Theorem 2.9 $k > \Delta_r(G)$ if and only if $\gamma_{(k,r)}(G) = n$.

Proof: Suppose $k > \Delta_r(G)$. Let D be a $\gamma_{(k,r)}$ -set of G. Claim: $\gamma_{(k,r)}(G) = n$. (ie) $V - D = \emptyset$.

If not, let $x \in V - D$. Then there exist at least k-vertices $u_1, u_2, \ldots u_l \in D$, where $l \geq k$ and $d(u_i, x) \leq r$, for all i = 1 to $l, l \geq k$. Therefore $k \leq l \leq \Delta_r(G)$, a contradiction. Therefore $\gamma_{(k,r)}(G) = n$. Conversely, let D be a $\gamma_{(k,r)}$ -set of G and $|D| = \gamma_{(k,r)}(G) = n$. Claim: $k > \Delta_r(G)$.

On the contrary, suppose that $k \leq \Delta_r(G)$. Let x be a vertex of maximum r-degree in G and let $N_r(x) = \{u_1, u_2, \dots u_{(\Delta_r(G))}\}$. Then x has at least k r-neighbours. Therefore $V - \{x\}$ is a (k, r)-dominating set. Therefore $\gamma_{(k,r)}(G) \leq n-1$, a contradiction. Hence $k > \Delta_r(G)$. (k, r)-domination number for Standard Graphs:

1. $\gamma_{(k,r)}(K_n) = k$ for all k and r

2.
$$\gamma_{(k,r)}(K_{(1,n)}) = \begin{cases} 1 & \text{if } k = 1 \text{ and } r = 1 \\ n & \text{if } r = 1 \text{ and } 2 \le k \le n \\ k & \text{if } r \ge 2 \text{ and for all } k. \end{cases}$$

3.
$$\gamma_{(k,r)}(K_{(m,n)}) = \begin{cases} \min\{2k, z\}, & \text{if } r = 1 \text{ and } k \le z \\ z', & \text{if } r = 1 \text{ and } z < k \le z' \\ m+n, & \text{if } r = 1 \text{ and } k > z' \\ k, & \text{if } r \ge 2 \text{ and } 1 \le k \le m+n \end{cases}$$
 where $z = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0$

4.
$$\gamma_{(k,r)}(W_n) = \begin{cases} 1 & if \ r = 1 \ and \ k = 1 \\ \lceil (n-1)/2 \rceil & if \ r = 1 \ and \ k = 2 \\ \lceil (n-1)/2 \rceil + 1 & if \ r = 1 \ and \ k = 3 \\ n-1 & if \ r = 1, \ k \ge 4 \\ k, & if \ r \ge 2, \ 1 \le k \le n \end{cases}$$

5.
$$\gamma_{(k,r)}(C_n) = \begin{cases} \lceil n/3 \rceil & \text{if } r = 1 \text{ and } k = 1 \\ \lceil n/2 \rceil, & \text{if } r = 1 \text{ and } k = 2 \\ n & \text{if } r = 1, & k \ge 3 \\ \lceil n/(2r+1) \rceil & \text{if } r \ge 2 \text{ and } k = 1 \\ \lceil n/(k+r-1) \rceil & \text{if } r \ge 2, & \text{and } k = 2 \end{cases}$$

Remark 2.10 If D is a (k,r)-dominating set, then any superset of D is also a (k,r)-dominating set. That is, (k,r)-domination has the superhereditary property.

Proposition 2.11 For any graph G, D is a (k,r)-dominating set of G if and only if $\bigcup_{u_i \in T} N_r(u_i) \cup D = V$, where T is a k-subset of D.

Proof: Let D be a (k,r)-dominating set. It is clear that $\bigcup_T \left(\bigcap_{u_i \in T} N_r(u_i)\right) \cup D \subseteq V$. Let $u \in V$. If $u \in D$, then there is nothing to prove. If $u \notin D$, then there exists at least k elements u_1, u_2, \dots, u_l in D, where $l \geq k$ such that $d(u_i, u) \leq r$. Then $u \in N_r(u_i)$ for all $i, 1 \leq i \leq l$ which implies that $u \in \bigcup_T \left(\bigcap_{u_i \in T} N_r(u_i)\right)$, where T is a k-subset of D. Conversely, let $\bigcup_T \left(\bigcap_{u_i \in T} N_r(u_i)\right) \cup D = V$. Then we will prove that D is a (k, r)-dominating set. Let $u \in V - D$. Then $u \in \bigcup_T \left(\bigcap_{u_i \in T} N_r(u_i)\right)$ which implies that $u \in \bigcup_{u_i \in T} N_r(u_i)$, for some k-subset T of D and hence D is a (k, r)-dominating set.

3 Minimal (k, r)-dominating sets

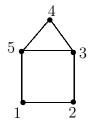
Definition 3.1 A (k,r)-dominating set D of a graph G is said to be minimal if no proper subset of D is a (k,r)-dominating set of G.

Proposition 3.2 A(k,r)-dominating set D is a minimal (k,r)-dominating set if and only if for each vertex $u \in D$, one of the following two conditions hold. a) u is a (k,r,D)-isolate. b) There exists a vertex $v \in V - D$ for which $|N_r(v) \cap D| = k$ and $u \in N_r(v) \cap D$.

Proof: Let D be a minimal (k, r)-dominating set. Suppose there exists a vertex $u \in D$ which is not a (k, r, D)-isolate and for every $v \in V - D$, either $|N_r(v) \cap D| > k$ or $u \notin N_r(v) \cap D$. Consider $D' = D - \{u\}$. Since u is at a distance $\leq r$ with at least k vertices of D', D' is a (k, r)-dominating set, which is a contradiction to the minimality of D. Hence for each vertex $u \in D$, one of the two conditions hold.

Conversely, let D be a (k, r)-dominating set satisfying (a) and (b). Consider $D' = D - \{u\}$ for an arbitrary vertex $u \in D$. If (a) holds, then $|N_r(u) \cap D'| < k$, which implies that D' is not a (k, r)-dominating set. If (b) holds, then the set D' would not (k, r)-dominate u. Hence D is a minimal (k, r)-dominating set.

Remark 3.3 If G has no (k, r)-isolates and if D is a minimal (k, r)-dominating set, then V - D need not be a (k, r)-dominating set.



 $N_1(1) = \{2,5\}; N_1(2) = \{1,3\}; N_1(3) = \{2,5,4\}.$ $N_1(4) = \{3,5\}; N_1(5) = \{1,4,3\}.$ G has no (2,1)-isolates and $D = \{2,4,5\}$ is a minimal (2,1) dominating set. But $V - D = \{1,3\}$ is not a (2,1)-dominating set. Therefore, the complement of a minimal (k,r)-dominating set need not be a (k,r)-dominating set.

Theorem 3.4 If r = diam(G) and $\lfloor \frac{n}{k} \rfloor \geq 2$, then the complement of a minimal (k, r)-dominating set is a (k, r)-dominating set.

Proof: Let D be a minimal (k, r)-dominating set and r = diam(G) and $\lfloor \frac{n}{k} \rfloor \geq 2$. Claim: V - D is a (k, r)-dominating set. Since r = diam(G), $\gamma_{(k,r)}(G) = k$. That is, |D| = k. Therefore $|V - D| = n - k \geq k$, since $\lfloor \frac{n}{k} \rfloor \geq 2$. Since r = diam(G), every vertex in V(G) is at a distance $\leq r$ with every other vertex in V(G). Therefore, V - D is a (k, r)-dominating set.

Remark 3.5 If H is the spanning subgraph of G, then $\gamma_{(k,r)}(G) \leq \gamma_{(k,r)}(H)$.

Remark 3.6 If $1 \le s \le r$ and $1 \le k' \le k$, then $\gamma_{(1,r)}(G) \le \gamma_{(1,s)}(G) \le \gamma_{(1,1)}(G) \le \gamma_{(k',1)}(G) \le \gamma_{(k,1)}(G)$.

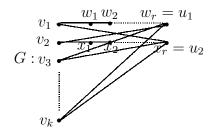
For any positive integers r and t, $\gamma_{(1,r)}(G) \leq \gamma_{(2,r)}(G) \leq \gamma_{(3,r)}(G) \leq \ldots \leq \gamma_{(t,r)}(G) \leq \gamma_{(t,r-1)}(G) \leq \ldots \leq \gamma_{(t,1)}(G) = \gamma_t(G)$, where $\gamma_t(G)$ is the t domination number of G and $\gamma_{(1,r)}(G)$ is the distance-r-domination number of G.

Proposition 3.7 Let n = 2t. Then $\gamma_{(2,t-2)}(P_n) > \gamma_{(2,t-1)}(P_n) > \gamma_{(2,t)}(P_n) = \gamma_{(2,t+1)}(P_n) = \cdots = \gamma_{(2,2t)}(P_n)$.

Proof: Let n=2t. Let $V(P_n)=\left\{v_1,v_2,v_3,\ldots,v_{(2t)}\right\}$. Clearly $\left\{v_{(t-2)},v_{(t-1)},v_{(t+2)},v_{(t+3)}\right\}$ is a (2,t-2)-dominating set of P_n . Let $\left\{v_i,v_j,v_k\right\}$ be a (2,t-2)-dominating set, $1\leq i < j < k \leq 2t$. Then any two of $d(v_1,v_i)$, $d(v_1,v_j)$ and $d(v_1,v_k)$ are less than or equal to t-2. That is any two of i-1, j-1, k-1 are less than or equal to t-2. Therefore, any two of i,j,k are less than or equal to t-1. Let $i\leq t-1$ and $j\leq t-1$. Maximum value of j is t-1. Then $d(v_{2t},v_j)=2t-j\geq 2t-(t-1)=t+1$. Simillarly, $d(v_{2t},v_i)\geq t+1$. Therefore v_{2t} is not (2,t-2)-dominated by v_i and v_j , a contradiction. In a similar manner, we can prove that $\left\{v_i,v_j,v_k\right\}$ is not a (2,t-2)-dominating set in other cases also. Therefore $v_{(2,t-2)}(P_n)=4$. Hence the remark.

Proposition 3.8 Given positive integers k and r, there exists a connected graph G with $\gamma_{(k,r)}(G) = k$ and diam(G) = r + 1.

Proof: The proof is by the following construction.

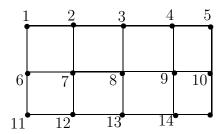


Let $D = \{v_1, v_2, \dots, v_k\}$. Let $v_1, w_1, w_2, \dots, w_r = u_1$ be a shortest path between v_1 and u_1 . Let $v_2, x_1, x_2, \dots, x_r = u_2$ be a shortest path between v_2 and u_2 . Let u_1, u_2 be adjacent to v_3, v_4, \dots, v_k . Let u_1 be adjacent to v_2 and u_2 be adjacent to v_1 . Now diam(G) = r + 1. D is a (k, r)-dominating set of G and |D| = k. Therefore $\gamma_{(k,r)}(G) \leq |D| = k$. But $k \leq \gamma_{(k,r)}(G)$. Therefore D is a $\gamma_{(k,r)}$ -set of G and r < diam(G) = r + 1.

4 Vizing Conjecture:

For any graph G and H, $\gamma(G \times H) \geq \gamma(G)\gamma(H)$. But in the case of (k, r)-domination,

 $\gamma_{(k,r)}(G \times H) < \gamma_{(k,r)}(G) \gamma_{(k,r)}(H)$, for some k and r.



In the above example, $\{1,3,5,7,9,11,13,15\}$ is a $\gamma_{(3,1)}$ set of G. $\gamma_{(3,1)}(P_3 \times P_5) = 8$. $\gamma_{(3,1)}(P_3) = 3$. $\gamma_{(3,1)}(P_5) = 5$. Hence, $\gamma_{(3,1)}(P_3 \times P_5) < \gamma_{(3,1)}(P_3)\gamma_{(3,1)}(P_5)$. In the above example, $\{6,7,9,10\}$ is a $\gamma_{(2,2)}$ set of G. $\gamma_{(2,2)}(P_3 \times P_5) = 4$. $\gamma_{(2,2)}(P_3) = 2$. $\gamma_{(2,2)}(P_5) = 3$. Hence $\gamma_{(2,2)}(P_3 \times P_5) < \gamma_{(2,2)}(P_3)\gamma_{(2,2)}(P_5)$.

In the above example, $\{3, 8, 13\}$ is a $\gamma_{(2,3)}$ set of G. $\gamma_{(2,3)}(P_3 \times P_5) = 3$. $\gamma_{(2,3)}(P_3) = 2$. Hence $\gamma_{(2,3)}(P_3 \times P_5) < \gamma_{(2,3)}(P_3)\gamma_{(2,3)}(P_5)$.

5 Conclusion:

We have made a study of (k, r)-domination. It is further continued in our subsequent investigations in this direction. Facility location problems as con-

sidered in [5] make use of (k, r)-domination. Other applications are also attempted.

References

- [1] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker. Inc., New York, 1998.
- [2] J. Bean Timothy, Michael A. Henning, Henda C. Swart, On the integrity of distance domination in graphs, Australian Journal of Combinatorics, 10(1994), 29-43.
- [3] C. Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
- [4] Teresa W. Haynes, Stephen T.Hedetniemi, Peter J.Slater, *Domination in Graphs: Advance Topics*, pp.321-349, Marcel Dekker, Inc., New York, 1997.
- [5] Dipti S. Joshi and Sridhar Radhakrishnan, N. Chandrasekharan, *The kneighbor, r-domination problems on interval graphs*, European Journal of Operational Research, **79** (1994),352-368.
- [6] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs, MRI Lecture Notes in Math.1 (1976).
- [7] J.F.Fink and M.S.Jacobson,On n-domination, n-dependence and forbidden subgraphs, Graph Theory and Its Applications to Algorithms and Computer Science, John Wiley and Sons, Inc. (1985),301-312.
- [8] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in Graphs, Networks 7 (1977) 247-261.
- [9] Mirchanca Fischermann and Lutz Volkmann, A Remark on a conjecture for the (k, p)-domination number, Utilitas Mathematica, $\mathbf{67}$, (2005),223-227.
- [10] Odile Favaron, k-domination and k-independence in graphs, Ars Combinatoria, **25C**, (1988),159-167.

Received: February, 2011