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Abstract 
 
We present a new framework to hybridize the rough set theory with the bi-level 
programming problem, called ‘Rough Bi-level Programming Problems 
(RBLPPs).This paper studies and designs a genetic algorithm (GA) for solving 
(RBLPPs) by constructing the fitness function of the upper – level programming 
problems based on the definition of through feasible degree. Finally, a numerical 
example will be introduced to show the proposed method. 
 
Keywords: Rough set, Rough Bi- level linear programming problems, Rough 
optimality, Rough feasibility, Rough feasible degree; fitness function; genetic 
algorithm. 
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1 Introduction 
 
Since it was pioneered by Pawalk in mid 1980’s and [4] rough set theory has 
become a hot topic of great interest to researchers in several fields and has been 
applied to many domains such as pattern recognition, data mining , artificial 
intelligence, image processing ,machine learning, and medical application. This 
new approach proved to be useful in many applications such as optimization 
theory. For mathematical programming problems (MPPs) in the crisp form, the 
aim is to maximize or minimize an objective function over certain set of feasible 
solutions. But in many practical situations, the decision maker may not be in a 
position to specify the objective and/or the feasible set precisely but rather can 
specify them in a ‘’rough sense’’. In such situations, it is desirable to use some 
rough programming type of modeling so as to provide more flexibility to the 
decision maker. Towards this objective, we present a new framework to hybridize 
the rough set theory with the bi-level programming problem, called ‘Rough Bi-
level Programming Problems (RBLPPs). 
Since the roughness may appear in a Bi-level Programming Problems in many 
ways (e.g. the feasible set may be rough and/or the goals may be rough), the 
definition of rough Bi-level Programming Problems is not unique. This leads us to 
propose a new classification and characterization of the rough Bi-level 
Programming Problems (RBLPPs), according to the place of roughness in the 
problem. We classified the RBLPPs into the following classes: 
 
1. Bi-level programming problems with rough feasible set, crisp objective 
function of the upper level and crisp objective function of the lower level. 
2. Bi-level programming problems with rough feasible set, crisp objective 
function of the upper level and rough objective function of the lower level. 
3. Bi-level programming problems with rough feasible set, rough objective 
function of the upper level and crisp objective function of the lower level. 
4. Bi-level programming problems with crisp feasible set and rough 
objective function of the upper level and crisp objective function of the lower 
level. 
5. Bi-level programming problems with crisp feasible set and crisp 
objective function of the upper level and rough objective function of the lower 
level. 
6. Bi-level programming problems with crisp feasible set and rough 
objective function of the upper level and rough objective function of the lower 
level. 
7. Bi-level programming problems with rough feasible set and rough 
objective function of the upper level and rough objective function of the lower 
level. 
New definitions concerning rough optimal sets, rough optimal value, rough global 
optimality and rough feasibility were also proposed and discussed. 
This paper studies and designs a genetic algorithm (GA) of (RBLPPs) by 
constructing the fitness function of the upper –level programming problems based 
on the definition of the rough feasible degree.  
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2. Rough set and approximation space 
 
Rough set theory has been proven to be an excellent mathematical tool dealing 
with vague description of objects [4]. A fundamental assumption in rough set 
theory is that any object from a universe is perceived trough available 
information, and such information may not be sufficient to characterize the object 
exactly. Pawlak has proposed rough set methodology as a new approach in 
handling classificatory analysis of vague concepts [4]. In this methodology any 
vague concept is characterized by a pair of precise concepts called the lower and 
the upper approximations. Rough set theory is based on equivalence relations 
describing partitions made of classes of indiscernible objects. 
Let U  be a non-empty finite set of objects, called the universe, and UUE ×⊆ be 
an equivalence relation on U . The ordered pair ( )EUA ,=  is called an 
approximation space generated by E on U . The equivalence relation E generates a 
partition EU / { }mYYY ,...,, 21=  where mYYY ,...,, 21 are the equivalence classes (also 
called elementary sets or granules generated by E , represent elementary portion of 
knowledge we are able to perceive due to E ) of the approximation space A . In 
rough set theory, any subset UM ⊆ is described by the elementary sets of A , and 
the two sets 

{ }MYEUYME ii ⊆∈= /)(* U  

{ }φ≠∈= MYEUYME ii IU /)(*   are called the lower and the upper 

approximations of M , respectively. Therefore, )()( *
* MEMME ⊆⊆ . The 

difference between the upper and the lower approximations is called the boundary 
of M  and is denoted by =)(MBN E )()( *

* MEME − . The set M is called exact in 
A  iff φ=)(MBN E ; otherwise the set M is inexact (rough) in A  [5, 6, 8, 9]. 
As we can see from the definition approximations are expressed in terms of 
granules of knowledge. The lower approximation of a set is union of all granules 
which are entirely included in the set; the upper approximation - the union of all 
granules which have non –empty intersection with the set; the boundary region of 
the set is the difference between the upper and lower approximation [4]. This 
definition is clearly depicted in figure 1. 
 
 
3. Classes of Rough Bi-level Programming Problems (RBLPPs) 
 
                           The most typical Bi-level Programming Problems (BLPPs) can 
be stated as:                                                                        
                           ),(max 21

1

xxF
x

                                                                              

(1) 
where x2 solve 
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( )21,max
2

xxf
x

                                                                                                       (2) 

subject to   
 Mxxx ∈= ),( 21  
where F and f are called the objective functions of the upper and lower level 
DM, and M is called the feasible set of the problem. In the above formulation, it 
is assumed that all entries of F , f  and M are defined in the crisp sense, and 
‘’max’’ is a strict imperative. However, in many practical situations it may not be 
reasonable to require that the feasible set or the objective functions in bi-level 
programming problems be specified in precise crisp terms. In such situations, it is 
desirable to use some type of rough modeling and this leads to the concept of 
rough bi-level programming problems. When decision is to be made in a rough 
environment, many possible modifications of the above bi-level programming 
model exist. Thus, rough bi-level programming models are not uniquely defined 
as it will very much depend upon the type of roughness and its specification as 
prescribed by the decision maker. Therefore, the rough bi-level programming 
problems can be broadly classified as:  

st1 Class: Bi-level programming problems with rough feasible set, crisp objective 
function of the upper level and crisp objective function of the lower level. 

nd2 Class: Bi-level programming problems with rough feasible set, crisp objective 
function of the upper level and rough objective function of the lower level. 

rd3 Class: Bi-level programming problems with rough feasible set, rough 
objective function of the upper level and crisp objective function of the lower 
level. 

th4 Class: Bi-level programming problems with crisp feasible set and rough 
objective function of the upper level and crisp objective function of the lower 
level. 

th5 Class: Bi-level programming problems with crisp feasible set and crisp 
objective function of the upper level and rough objective function of the lower 
level. 

th6 Class: Bi-level programming problems with crisp feasible set and rough 
objective function of the upper level and rough objective function of the lower 
level. 

th7 Class: Bi-level programming problems with rough feasible set and rough 
objective function of the upper level and rough objective function of the lower 
level. 
 
In RBLPPs, wherever roughness exists, new concepts like rough feasibility and 
rough global optimality come in the front of our interest. The rough feasibility 
arises only in the 1st , 2nd , 3rd  and 7th  classes, where solutions have different 
degrees of feasibility (surely-feasible, possible-feasible, and surely-not feasible) 
On the other hand, the rough global optimality arises in all classes of the 
RBLPPs  where solutions have different  degrees of global optimality (surely- 
global optimal, possible- global optimal, and surely-not global optimal).  As a 
result of these new concepts, the optimal value of the objectives and the optimal 
set of the problem are defined in rough sense. 
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Definition 1: 
In RBLPPs, the optimal value of the objective function of the upper level DM is a 
rough real number F , that is determined roughly by lower and upper bounds 
denoted by *F *, F , respectively. 
 
Remark 1: 
If  *F *F=  then the optimal value F  is exact, otherwise F  is rough. 
Also, the single optimal set of the crisp bi-level programming problem is replaced 
by four optimal sets covering all possible degrees of feasibility and optimality. 
See table1, 
 
 
 

 
Figure1. 

 
Definition 2: 
The set of all surely-feasible, surely- global optimal solutions is denoted by ssFO . 
 
Definition 3: 
The set of all surely-feasible, possibly-global optimal solutions is denoted 
by spFO . 
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Definition 4: 
The set of all possibly -feasible, surely -global optimal solutions is denoted 
by psFO . 

Optimality 
Possibly Surly

ppFO  psFO  Possibly 
Feasibi

lity
spFO  ssFO  Surly 

 
Table 1:  Possible degrees of feasibility and optimality for problem 
(RBLPPs). 
                                      
Definition 5: 
The set of all possibly -feasible, possibly -global optimal solutions is denoted 
by ppFO   

 
 
4.  1st Class RBLPPs 
 
Suppose that ( )EUA ,=  is an approximation space generated by equivalence 
relation E on an universe U .A rough bi-level programming problem of the 
1stclass takes the following form: 

),(max 21
1

xxF
x

                                                                                                      (3) 

where x2 solve 
 ),(max 21

2

xxf
x

                                                                                                      (4)    

subject to   
)()( *

* MEMME ⊆⊆  
where UM ⊆  is a rough set in the approximation space ( )EUA ,=  representing 
the feasible set of the problem. The sets ** )( MME =  and ** )( MME =  represent 
the notion of rough feasibility of problem (3) - (4), where *M is called the set of 
all possibly –feasible solutions and *M is called the set of all surely-feasible 
solutions. On the other hand *MU −  is called the set of all surely-not feasible 
solutions [3].  
Proposition 1: 
In problem (3) - (4), the lower and upper bounds of the optimal objective value for 
the upper level problem F  are given by  

*F = sup{ }ba,  
=*F sup{ }ca,  

where  

( )
),(max 21, *21

xxFa
Mxx ∈

=  
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 =b sup { }),(min 21),(/ 21

xxF
Yxx

MY
EUY

BN

∈
⊆
∈
U   

  
( )

),(max 21, 21

xxFc
BNMxx ∈

=  

 
Definition 6: 
A solution ( ) *** Mx,x ∈21 is surely -global optimal solution iff **

2
*
1 ),( FxxF = . 

Definition 7: 
A solution ( ) *** Mx,x ∈21 is possibly -global optimal solution iff *

*
2

*
1 ),( FxxF ≥ . 

Definition 8: 
A solution ( ) *** Mx,x ∈21 is surely -not global optimal solution iff *

*
2

*
1 ),( FxxF < . 

Definition 9: 
The optimal sets of the 1st class RBLPP for the upper level problem are defined as: 

( ){ }**
2

*
1*

*
2

*
1 ),(, FxxFMxxFOss =∈=  

 ( ){ }*
*
2

*
1*

*
2

*
1 ),(, FxxFMxxFOsp ≥∈=  

( ){ }**
2

*
1

**
2

*
1 ),(, FxxFMxxFOps =∈=  

 ( ){ }*
*
2

*
1

**
2

*
1 ),(, FxxFMxxFOpp ≥∈= . 

Proposition 2: 
The lower and upper bounds of the optimal objective value for the lower level 
problem f  are given by  

*f = sup{ }ba ′′,  
=*f sup{ }ca ′′,  

where  
),(max 2

*
1

),( *2
*
1

xxfa
Mxx ∈

=′  

=′b sup
⎭
⎬
⎫

⎩
⎨
⎧

∈
⊆
∈

),(min 2
*
1

),(/ 2
*
1

xxf
Yxx

MY
EUY

BN

U  

 ),(max 2
*
1

),( 2
*
1

xxfc
BNMxx ∈

=′  

Definition 10: 
A solution ( ) *

2
*
1 , Mxx ∈′ is surely -global optimal solution iff *

2
*
1 ),( fxxf =′ . 

Definition 11: 
A solution ( ) *

2
*
1 , Mxx ∈′ is possibly -global optimal solution iff *2

*
1 ),( fxxf ≥′ . 

Definition 12: 
A solution ( ) *

2
*
1 , Mxx ∈′ is surely not -global optimal solution iff *2

*
1 ),( fxxf <′ . 

Definition 13: 
 The optimal sets of the 1st class RBLPP for the lower level problem are defined 
as: 

( ){ }*
2

*
1*2

*
1 ),(, fxxfMxxOF ss =′∈′=′  
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( ){ }*2
*
1*2

*
1 ),(, fxxfMxxOF sp ≥′∈′=′  

( ){ }*
2

*
1

*
2

*
1 ),(, fxxfMxxOF ps =′∈′=′  

( ){ }*2
*
1

*
2

*
1 ),(, fxxfMxxOF pp ≥′∈′=′ . 

 
 
5.  Design of GA for RBLPPs 
 
      The basic idea for solving RBLPP by GA is: firstly, choose the initial 
population         
      satisfying the constraints (by using the above definitions and proposition 1,2)  , 
the  
      lower-level decision maker makes the  corresponding rough optimal  reaction 
and     
      evaluate the individuals according to the fitness function constructed by the 
rough   
      feasible degree, until the optimal solution searched by the genetic operation 
over  
      and over. 
 
 
6. Design of the Fitness Function 
 

      To solve the problem RBLPPs by GA, the definition of the feasible degree is 
firstly introduced and the fitness function is constructed to solve the problem by 
GA. Let d denote the large enough penalty interval of the rough feasible region 
for each Xxx ∈),( 21 . 
Definition 14: 
Let  ]1,0[∈θ  denotes the rough feasible degree of satisfying the rough feasible 
region, and describe it by the following function: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>−

≤−<
−

−

=−

=

dxYxif

dxYxif
d

xYx

xYxif

)(,0

)(0,)(1

0)(,1

12

12
12

12

θ                                         (5) 

where .  denotes the norm and ( )1xY  denote the rough optimal solution of lower 
level  problem . 
Furthers, the fitness function of the GA can be stated as: 

( ) ( ) θ*),( min21 FxxFveval k −=  
where minF  is the rough  minimal value of ),( 21 xxF on X . 
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7.  The algorithm 
 
Step 1.  Initialization, give the population scale M, the maximal iteration 
generation     
             MAXGEN, and let the generation 0=t  [7]. 
Step 2.  The initial population, M individuals are randomly generated in X , 
making up the nitial population. 
Step 3.  Evaluation the rough minimal value of upper level problem ( minF ) and the 
rough optimal solution of the lower level ( ( )1xY ) by using proposition 1,2 
respectively. 
Step 4.  Computation of the fitness function. Evaluate the fitness value of the 
population according to formula (5). 
Step 5. Selection, Select the individual by roulette wheel selection operator [2]. 
Step 6. Crossover, in this step, first, a random number ]1,0[∈cP  is generated. This 
number is the percentage of the population on which the crossover is performed. 
Then, two individuals are selected randomly from the population as parents. 
Children are generated using the following procedure: 
Random integer c  is generated in the interval ]1,1[ −l , where l  is the number of 
components of an individual. The c  first components of the children are the same 
components as respective parents (i.e. the first child from the first parent and the 
second child from the second parent). The remaining components are selected 
according to the following rules: 
 (i) The thic )( +  component of the first child is replaced by the 

thil )1( +− component of the second parent (for cli −= ,...,2,1 ). 
(ii) The thic )( +  component of the second child is replaced by the  thil )1( +−  
component of the first parent (for cli −= ,...,2,1 ). 
For example we assume c =5, we obtained the following children  
Parents                                                       children 
10110   1100                                          10110   0100 
11010   0010                                          11010   0011 
Note that the proposed operator generates individuals with more variety in 
comparison with the standard operator, because this operator can generate 
different children from similar parents, where standard operators cannot [1]. 
Step 7.  Mutation, In this step, first, a random number ]1,0[∈mP is generated. This 
number is the percentage of the population on which the mutation performed. 
Then one individual is selected randomly from the population. An integer random 
number u is generated in the interval ],1[ l , where l  is the length of the individual. 
For generating the new individual, the u th component is changed to 0, if it was 
initially 1 and to 1 if  it was initially 0 [1].  
Step 8.  Terminations, Jude the condition of the termination. When t  is larger than 
the maximal iteration number, stop the GA and output the rough optimal solution  
Otherwise, let  ,1+= tt  turn to Step 3. 
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8.  An Example  
 
Let  U  be a universal set defined as  ( ){ }9, 2

2
2
1

2
21 ≤+∈== xxRxxxU   and let 

K  be a polytope generated by the following closed halfplanes 

02,02
02,02

214123

122211

≥++=≥+−=
≤−−=≤−+=

xxhxxh
xxhxxh

 

Suppose that E  is an equivalence relation on U such that 
{ }321 ,,/ EEEEU =  

{ }KxUxE  polytopeofpointinterioranis:1 ∈=  
{ }KxUxE  polytopeofpointboundaryais:2 ∈=  
{ }KxUxE  polytopeofpointexterioranis:3 ∈=  

Consider the following 1st Class RBLPPs 
( ) 2

2
2

121 5.2),(max
1

xxxxF
Mx

−−−=
∈

                                                                   (6)                                 

 where x2 solve 
2121 ),(max

2

xxxxf
Mx

+=
∈

                                                                (7)    

subject to   
321

*
21* , EEEMEEM UUU ==   

where M is a rough feasible region in the approximation space  ( )EUA ,=  and 
*

* , MM are the lower and the upper approximation of  M ; respectively. Also, 
the boundary region of M is given by 3EM BN = . 
The solution 
 By using the above genetic algorithm we found the following results: 
1) Give the population scale 100=M , the maximal iteration generation 
MAXGEN =20, and let the generation 0=t . 
2) Computation of the fitness function. Evaluate the fitness value of the 
population according to formula (5) as:  

( ) θ*)44.205.2()( 2
2

2
1 −−−−= xxveval k  

 To evaluate minF  , we use proposition 1 and the given definitions 
* Finding the rough minimal value of the upper level problem  minF = F  
Where ( ) 2

2
2

121 5.2),( xxxxF +−=  
 *F = sup{ }ba,  

( )

( )
25.6)0,0001.0(),(inf

44.20)0,02.2(),(max

21,

21,

321

*21

==

=−==

∈

∈

FxxF

FxxFa

Exx

Mxx

Q
 

∴ =b sup
( )

{ }),(min 21,,/ 21

xxF
Yxx

MY
EUY

BN

∈
⊆
∈
U

( )
25.6)0,0001.0(),(min 21, 321

===
∈

FxxF
Exx

 

44.20* =∴F  
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=*FQ sup{ }ca,  

( )

( ) ( )
( ) 25.6)0,0001.0(,max),(max

25.6)0,0001.0(),(sup

21,21
,

21
,

32121

321

=−===∴

=−=

∈∈

∈

FxxFxxFc

FxxF

ExxMxx

Exx

BN

Q

 

44.20* =∴F  
minF = 44.20=F  

** Finding the rough optimal value of the upper level problem F : 
   *F = sup{ }ba,  

( )
( )

( )
( ) 25.30)0,3(,inf

25.0)0,2(,max

21,

21,

321

*21

−=−=

−===

∈

∈

FxxF

FxxFa

Exx

Mxx

Q
 

∴ =b sup
( )

( ){ }21,,/
,min

21

xxF
Yxx

MY
EUY

BN

∈
⊆
∈
U

( )
( ) 25.30)0,3(,min 21, 321

−=−==
∈

FxxF
Exx

 

25.0* −=∴F  
=*FQ sup{ }ca,  

( )
( )

( )
( )

( )
( ) 0)0,5.2(,max,max

0)0,5.2(,sup

21,21
,

21
,

32121

321

====∴

==

∈∈

∈

FxxFxxFc

FxxF

ExxMxx

Exx

BN

Q

 

0* =∴F  
[ ]0,25.0−∈F  

Finding the rough optimal sets for the upper level problem:   
( ) ( ){ } φ==∈= 0,:, *

2
*
121

*
2

*
1 xxFEExxFOss U  

( ) ( ){ } ( ){ }02,=−=∈= 25.0,:, *
2

*
121

*
2

*
1 xxFEExxFOsp U  

( ){ } ( ){ }0,5.20),(:, *
2

*
1321

*
2

*
1 ==∈= xxFEEExxFOps UU  

( ){ }
( ) ( ){ }25.05.2:,

25.0),(:,
2
2

2
121

*
2

*
1321

*
2

*
1

≤+−=

−≥∈=

xxxx

xxFEEExxFOPP UU
 

But for evaluateθ  , we find  )( 1xY  by using proposition 2 such that: 
*** Finding the rough optimal value of the lower level DM  

)( 1xY = 22 += xf  for fixed 2*
1 =x   

*f = sup{ }ba ′′,  

( )

( ) 1)3,2(),(inf

4)2,2(),(max

2
*
1

,

2
*
1

]2,2[,

32
*
1

2
*
1

−=−=

===′

∈

−∈

fxxf

fxxfa

Exx

xx

Q
 

∴ =′b  sup ( ) ⎭
⎬
⎫

⎩
⎨
⎧

∈
⊆
∈

),(min 2
*
1

,,/ 2
*
1

xxf
Yxx

MY
EUY

BN

U ( ) 1)3,2(),(min 2
*
1

, 32
*
1

−=−==
∈

fxxf
Exx

 

4* =f  
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=*f sup{ }ca ′′,  

( )

( ) ( )
5)3,2(),(max),(max

5)3,2(),(sup

2
*
1

,
2

*
1

,

2
*
1

,

32
*
12

*
1

32
*
1

====′∴

==

∈∈

∈

fxxfxxfc

fxxf

ExxMxx

Exx

BN

Q

 

5* =∴ f  
[ ]5,4∈f . 

  Finding the rough optimal sets for the lower level 
( ) ( ){ } φ===′∈′=′ 5,:, *

2
*
1212

*
1 fxxfEExxOF ss U  

( ) ( ){ } { }24,:, *2
*
1212

*
1 ===′∈′=′ fxxfEExxOF sp U  

( ){ } { }35),(:, *
2

*
13212

*
1 ===′∈′=′ fxxfEEExxOF ps UU  

( ){ } ]3,2[4),(:, 2
*
13212

*
1 =≥′∈′=′ xxfEEExxOF PP UU  

then 4)( 1 =xY  and 8=d  
3)  The operators of the genetic algorithm [2, 7] are applied such that 

3.0,17.0 == mc PP . 
Obtain the optimal solution ),,( 21 θxx = )5152.0,3,5.2( − . 
Elapsed time is 4.45 minutes. 
 
 
9.  Conclusions 
 
This paper proposes a new formulation, classification and definition of the rough 
bi-level programming problems. Only the st1 class of the RBLPPs is defined and 
its optimal sets are characterized in this work. Also, it designs GA for solving 
RBLPPs of which the rough optimal solution of the lower-level problem is 
dependent on the upper-level problem.  
 
 
 
References 
 
[1] S.R Hejazi, A. Memariani, G. Jahanshahloo, M. M. Sepehri, Linear Bi-Level 
Programming Solution by Genetic Algorithm, Computers and Operations 
Research, 29 (2002), 1913-1925. 
 
[2] Z. Michalewicz ,Genetic Algorithms +Data Structures=Evolution Programs, 
Springer, New York, 1992. 
 
[3] M.S. Osman, E.F. Lashein, E.A. Youness, T.E.M. Atteya, Rough 
Mathematical Programming, Optimization A Journal of Mathematical 
Programming and Operations Research, 58 (2009),1-8  
 



 

Rough bi-level programming problems                                                            1465 
 
 
 
[4] Z. Pawlak, Rough Sets, International Journal of Computer and Information 
Sciences, 11 (1982), 341-356.  
 
[5] H. K. Tripathy, B. K. Tripathy  and P. K. Das, An intelligent Approach of 
Rough Set in Knowledge Discovery Databases, International Journal of Computer 
Science and Engineering, 2 (2007) , 45-48. 
 
[6] S. A. Vinterbo, Fuzzy and Rough Sets, Decision Systems Group Brigham and 
Women’s Hospital, Harvard Medical School, Spring , 2002. 
 
[7] G. Wang, Z. Wan and X. Wang, Solving Method for a Class of Bi-level Linear 
Programming based on Genetic Algorithms, School of Mathematics and Static, 
Wuhan University report China, (2003) ,1-7  
 
[8] Y. Y. Yao, A Comparative Study of Fuzzy Sets and Rough Sets, International 
Journal of Information Sciences, 109 (2004), 227-242.    
 
[9]   H. Zhang, H. Liang, D. Liu, Two New Operators in Rough Set Theory with  
 Applications to Fuzzy Sets, International Journal of Information Sciences, 166 
(2004), 147-165. 
 
 
Received: August, 2010 


