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Abstract

Common fixed point theorem in fuzzy metric space by employing
reciprocal continuity were obtained by Urmila Mishra et.al. [9] In this
paper we extend the above result to fuzzy 2-metric space and fuzzy
3-metric space.
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1 Introduction

Fixed point theorems in fuzzy metric spaces satisfying some contractive con-
dition is a central area of research now a days. The concept of fuzzy sets was
introduced by Zadeh[10] in 1965.After this fuzzy set theory was further devel-
oped and a series of research were done by several Mathematicians. Kramosil
and Michlek [5] introduced the concept of fuzzy metric space in 1975 and fixed
point theorems for fuzzy metric space was first obtained by Helpern [4] in 1981.
Later in 1994, A.George and P.Veeramani [3] modified the notion of fuzzy met-
ric space with the help of t-norm. Some fixed point theorem in metric space
are generalized to fuzzy metric space by several authors.

There are various ways to define a fuzzy metric space, here we adopt the
notion that, the distance between objects is fuzzy, the objects themselves may
be fuzzy or not.
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Gahler [1],[2] investigated the properties of 2-metric space in his papers,
and many authors investigated contraction mappings in 2-metric spaces. Suc-
ceeding this, the notion of 3-metric space were also introduced. We know that
2-metric space is a real valued function of a point triples on a set X, which
abstract properties were suggested by the area function in the Eucledian space,
whereas the 3-metric space was suggested by the volume function.

The idea of fuzzy 2-metric space and fuzzy 3-metric space were used by
Sushil Sharma [8] and obtained some fruitful results.

Motivated by Sushil Sharma [8], we prove some common fixed point theo-
rem in fuzzy 2-metric space and fuzzy 3-metric space by employing the notion
of reciprocal continuity, of which we can widen the scope of many interesting
fixed point theorems in fuzzy metric space.

2 Preliminary Notes

Definition 2.1. A tiangular norm ∗ (shortly t− norm) is a binary opera-
tion on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1] the following
conditions are satisfied:

1. a ∗ 1 = a;

2. a ∗ b = b ∗ a;

3. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d

4. a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Definition 2.2. The 3-tuple (X, M, ∗) is called a fuzzy metric space, if X
is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X2×[0,∞]
satisfying the following conditions: for all x, y, z ∈ X and s, t > 0

C’-1 M(x, y, 0) = 0

C’-2 M(x, y, t) = 1, for all t > 0, if and only if x = y

C’-3 M(x, y, t) = M(y, x, t)

C’-4 M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)

C’-5 M(x, y, .) : [0,∞) → [0, 1] is left continuous,

C’-6 lim
t→∞

M(x, y, t) = 1

Example 2.3. Let (X, d) be a metric space. Define a ∗ b = ab (or a ∗
b = min{a, b}) and for all x, y ∈ X and t > 0, M(x, y, t) = t

t+d(x,y)
. Then

(X, M, ∗) is a fuzzy metric space and this metric d is the standard fuzzy metric.
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Definition 2.4. A sequence {xn} in a fuzzy metric space (X, M, ∗) is said
to converge to x in X if and only if M(xn, x, t) = 1 for each t > 0.

Definition 2.5. Let (X, M, ∗) be a fuzzy metric space A sequence {xn} in X
is called Cauchy sequence if and only if M(xn+p, xn, t) = 1 for each p > 0, t > 0.

Definition 2.6. A fuzzy metric space (X, M, ∗) is said to be complete if
and only if every Cauchy sequence in X is convergent in X.

Definition 2.7. A pair (f, g) of self maps of a fuzzy metric space (X, M, ∗)
is said to be reciprocal continuous if lim

n→∞
fgxn = fx and lim

n→∞
gfxn = gx

whenever there exist a sequence {xn} such that lim
n→∞

fxn = lim
n→∞

gxn = x for

some x ∈ X.

Definition 2.8. Two self maps A and B of a fuzzy metric space (X, M, ∗)
are said to be weak compatible if they commute at their coincidence points, that
is Ax = Bx implies ABx = BAx.

Definition 2.9. A pair (A, S) of self maps of a fuzzy metric space (X, M, ∗)
is said to be semi-compatible if lim

n→∞
ASxn = Sx whenever there exists a se-

quence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Sxn = x for some x ∈ X.

Definition 2.10. A binary operation ∗ : [0, 1] × [0, 1] × [0, 1] → [0, 1] is
called a continuous t-norm if ([0, 1]), ∗) is an abelian topological monoid with
unit 1 such that a1 ∗ b1 ∗ c1 ≤ a2 ∗ b2 ∗ c2 whenever a1 ≤ a2, b1 ≤ b2,c1 ≤ c2 for
all a1, a2, b1, b2 and c1, c2 are in [0, 1].

Definition 2.11. The 3-tuple (X, M, ∗) is called a fuzzy 2-metric space if X
is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X3×[0,∞]
satisfying the following conditions: for all x, y, z, u ∈ X and t1, t2, t3 > 0.

C”-1 M(x, y, z, 0) = 0,

C”-2 M(x, y, z, t) = 1, t > 0 and when at least two of the three points are
equal,

C”-3 M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t)
( Symmetry about three variables)

C”-4 M(x, y, z, t1 + t2 + t3) ≥ M(x, y, u, t1) ∗ M(x, u, z, t2) ∗ M(u, y, z, t3)
(This corresponds to tetrahedron inequality in 2-metric space)
The function value M(x, y, z, t) may be interpreted as the probability that
the area of triangle is less than t.

C”-5 M(x, y, z, .) : [0,∞) → [0, 1] is left continuous.
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Definition 2.12. A sequence {xn} in a fuzzy 2-metric space (X, M, ∗) is
said to converge to x in X if and only if lim

n→∞
M(xn, x, a, t) = 1 for all a ∈ X

and t > 0.

Definition 2.13. Let (X, M, ∗) be a fuzzy 2-metric space. A sequence {xn}
in X is called Cauchy sequence, if and only if lim

n→∞
M(xn+p, xn, a, t) = 1 for all

a ∈ X and p > 0, t > 0.

Definition 2.14. A fuzzy 2-metric space (X, M, ∗) is said to be complete
if and only if every Cauchy sequence in X is convergent in X.

Definition 2.15. A binary operation ∗ : [0, 1]× [0, 1]× [0, 1]× [0, 1] → [0, 1]
is called a continuous t-norm if ([0, 1]), ∗) is an abelian topological monoid with
unit 1 such that a1 ∗ b1 ∗ c1 ∗ d1 ≤ a2 ∗ b2 ∗ c2 ∗ d2 whenever a1 ≤ a2, b1 ≤ b2,
c1 ≤ c2 and d1 ≤ d2 for all a1, a2, b1, b2, c1, c2 and d1, d2 are in [0, 1].

Definition 2.16. The 3-tuple (X, M, ∗) is called a fuzzy 3-metric space if X
is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X4×[0,∞]
satisfying the following conditions: for all x, y, z, w, u ∈ X and t1, t2, t3, t4 > 0.

C”’-1 M(x, y, z, w, 0) = 0,

C”’-2 M(x, y, z, w, t) = 1, for all t > 0 ,
(Only when the three simplex < x, y, z, w > degenerate)

C”’-3 M(x, y, z, w, t) = M(x,w, z, y, t) = M(y, z, w, x, t) = M(z, w, x, y, t) =
...

C”’-4 M(x, y, z, w, t1+t2+t3+t4) ≥ M(x, y, z, u, t1)∗M(x, y, u, w, t2)∗M(x, u, z, w, t3)∗
M(u, y, z, w, t4)

C”’-5 M(x, y, z, w, .) : [0,∞) → [0, 1] is left continuous.

Definition 2.17. A sequence {xn} in a fuzzy 3-metric space (X, M, ∗) is
said to converge to x in X if and only if lim

n→∞
M(xn, x, a, b, t) = 1 for all

a, b ∈ X and t > 0.

Definition 2.18. Let (X, M, ∗) be a fuzzy 3-metric space. A sequence {xn}
in X is called Cauchy sequence, if and only if lim

n→∞
M(xn+p, xn, a, b, t) = 1 for

all a, b ∈ X , p > 0,and t > 0.

Definition 2.19. A fuzzy 3-metric space (X, M, ∗) is said to be complete
if and only if every Cauchy sequence in X is convergent in X.
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3 Main Results

Urmila Mishra et.al[9] proved a common fixed point theorem in complete fuzzy
metric space by employing the notion of reciprocal continuity. This result can
be extended here to fuzzy 2-metric and fuzzy 3-metric spaces.

Theorem 3.1. Let A, B, S, T be self maps on a complete fuzzy 2-metric
space (X, M, ∗) where ∗ is a continuous t-norm, satisfying

T-1 AX ⊆ TX, BX ⊆ SX.

T-2 (B, T ) is weak compatible and reciprocal continuous,

T-3 for each x, y ∈ X and t > 0, M(Ax,By, z, t) ≥ Φ(M(Sx, Ty, z, t)),
where Φ : [0, 1] −→ [0, 1] is a continuous function such that Φ(1) = 1,
Φ(0) = 0 and Φ(a) > a for each 0 < a < 1.

If (A, S) is semicompatible and reciprocal continuous, then A, B, S, T
have a unique common fixed point.

Proof : Let x0 ∈ X be an arbitrary point. Then there exists x1, x2 ∈ X
such that Ax0 = Tx1 and Bx1 = Sx2. Thus we can construct sequences {yn}
and {xn} in X such that y2n+1 = Ax2n = Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2

for n = 0, 1, ...

M (y2n+1, y2n+2, z, t) = M (Ax2n, Bx2n+1, z, t)

≥ Φ (M (Sx2n, Tx2n+1, z, t))

> Φ (M (y2n, y2n+1, z, t))

similarly M (y2n+2, y2n+3, z, t) > Φ (M (y2n+1, y2n+2, z, t)).
More generally, M (yn+1, yn, z, t) > Φ (M (yn, yn−1, z, t))
Therefore {M (yn+1, yn, z, t)} is an increasing sequence of positive real numbers
in [0, 1] and tends to limit l ≤ 1. We claim that l = 1. If l < 1 then
M (yn+1, yn, z, t) > Φ (M (yn, yn−1, z, t)) . On letting n → ∞ we get,

lim
n→∞

M (yn+1, yn, z, t) ≥ Φ
(

lim
n→∞

M (yn, yn−1, z, t)
)

that is l ≥ Φ (l) > l

a contradiction. Now for any positive integer p,
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M (yn, yn+p, z, t) ≥ M

(
yn, yn+1, yn+p,

t

2(p − 1) + 1

)

∗M
(

yn+1, yn+2, yn+p,
t

2(p − 1) + 1

)

∗... ∗ M

(
yn+p−2, yn+p−1, yn+p,

t

2(p − 1) + 1

)

∗M
(

yn, yn+1, z,
t

2(p − 1) + 1

)

∗M
(

yn+1, yn+2, z,
t

2(p − 1) + 1

)

∗... ∗ M

(
yn+p−1, yn+p, z,

t

2(p − 1) + 1

)

∗M
(

yn+p−1, yn+p, z,
t

2(p − 1) + 1

)

Taking limits

lim
n→∞

M (yn, yn+p, z, t) ≥ lim
n→∞

M

(
yn, yn+1, yn+p,

t

2(p − 1) + 1

)

∗ lim
n→∞

M

(
yn+1, yn+2, yn+p,

t

2(p − 1) + 1

)

∗... ∗ lim
n→∞

M

(
yn+p−2, yn+p−1, yn+p,

t

2(p − 1) + 1

)

∗ lim
n→∞

M

(
yn, yn+1, z,

t

2(p − 1) + 1

)

∗ lim
n→∞

M

(
yn+1, yn+2, z,

t

2(p − 1) + 1

)

∗... ∗ lim
n→∞

M

(
yn+p−1, yn+p, z,

t

2(p − 1) + 1

)

∗ lim
n→∞

M

(
yn+p−1, yn+p, z,

t

2(p − 1) + 1

)

that is

lim
n→∞

M (yn, yn+p, z, t) ≥ 1 ∗ 1 ∗ ... ∗ 1 = 1

Which means {yn} is a Cauchy sequence in X. Since X is complete yn → w in
X. That is {Ax2n}, {Tx2n+1}, {Bx2n+1}, {Sx2n+2} also converges to w in X.
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That is

lim
n→∞

Sx2n → w

and

lim
n→∞

Ax2n → w

Since (A, S) is semi-compatible,

lim
n→∞

ASx2n = Sw

Also (A, S) is reciprocal continuous also, therefore,

lim
n→∞

ASx2n = Aw

Combining these two we get Aw = Sw. Now to prove that Aw = w, for let us
assume that Aw 	= w. Then by the contractive condition,

M (Aw, Bx2n+1, z, t) ≥ Φ (M (Sw, Tx2n+1, z, t))

Letting n → ∞,

M (Aw, w, z, t) ≥ Φ (M (Sw, w, z, t)) > M (Aw, w, z, t)

a contradiction. Therefore Aw = w = Sw.
Since (B, T ) is weak compatible and reciprocal continuous, as above we get
Bw = w = Tw.
Therefore A, B, S and T has a common fixed point. To prove the uniqueness.
Let w1 and w2 be two common fixed points of A, B, S and T .Assume w1 	= w2.
Then by the contractive condition,

M (w1, w2, z, t) = M (Aw1, Bw2, z, t)

≥ Φ (M (Sw1, Tw2, z, t))

= Φ (M (w1, w2, z, t))

> M (w1, w2, z, t)

a contradiction. Therefore w1 = w2.

Theorem 3.2. Let A, B, S, T be self maps on a complete fuzzy 3-metric
space (X, M, ∗) where ∗ is a continuous t-norm, satisfying

T’-1 AX ⊆ TX, BX ⊆ SX.
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T’-2 (B, T ) is weak compatible and reciprocal continuous,

T’-3 for each x, y ∈ X and t > 0, M(Ax,By, a, b, t) ≥ Φ(M(Sx, Ty, a, b, t)),
where Φ : [0, 1] −→ [0, 1] is a continuous function such that Φ(1) = 1,
Φ(0) = 0 and Φ(l) > l for each 0 < l < 1.

If (A, S) is semicompatible and reciprocal continuous, then A, B, S, T
have a unique common fixed point.

Proof : Let x0 ∈ X be an arbitrary point. Then there exists x1, x2 ∈ X
such that Ax0 = Tx1 and Bx1 = Sx2. Thus we can construct sequences {yn}
and {xn} in X such that y2n+1 = Ax2n = Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2

for n = 0, 1, ...

M (y2n+1, y2n+2, a, b, t) = M (Ax2n, Bx2n+1, a, b, t)

≥ Φ (M (Sx2n, Tx2n+1, a, b, t))

> Φ (M (y2n, y2n+1, a, b, t))

similarly M (y2n+2, y2n+3, a, b, t) ≥ Φ (M (y2n+1, y2n+2, a, b, t))
More generally, M (yn+1, yn, a, b, t) ≥ Φ (M (yn, yn−1, a, b, t))
Therefore {M (yn+1, yn, a, b, t)} is an increasing sequence of positive real num-
bers in [0, 1] and tends to limit l ≤ 1. We claim that l = 1. If l < 1 then
M (yn+1, yn, a, b, t) ≥ Φ (M (yn, yn−1, a, b, t)) . On letting n → ∞ we get,

lim
n→∞

M (yn+1, yn, a, b, t) ≥ Φ
(

lim
n→∞

M (yn, yn−1, a, b, t)
)

that is l ≥ Φ (l) > l

a contradiction. Now for any positive integer p,

M (yn, yn+p, a, b, t) ≥ M
(
yn, yn+p, a, yn+1,

t
4

) ∗ M
(
yn, yn+p, yn+1, b,

t
4

)
∗M (

yn, yn+1, a, b, t
4

) ∗ M
(
yn+1, yn+p, a, b, t

4

)

Continuing this process we obtain

M (yn, yn+p, a, b, t) ≥ M
(
yn, yn+p, a, yn+1,

t
3(p−1)+1

)
∗ M

(
yn+1, yn+p, a, yn+2,

t
3(p−1)+1

)
∗... ∗ M

(
yn+p−2, yn+p, a, yn+p−1,

t
3(p−1)+1

)
∗ M

(
yn, yn+p, yn+1, b,

t
3(p−1)+1

)
∗M

(
yn+1, yn+p, yn+2, b,

t
3(p−1)+1

)
∗ ... ∗ M

(
yn+p−2, yn+p, yn+p−1, b,

t
3(p−1)+1

)
∗M

(
yn, yn+1, a, b, t

3(p−1)+1

)
∗ M

(
yn+1, yn+2, a, b, t

3(p−1)+1

)
∗... ∗ M

(
yn+p−1, yn+p, a, b, t

3(p−1)+1

)
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Taking limit as n → ∞,

lim
n→∞

M (yn, yn+p, a, b, t) ≥ lim
n→∞

M
(
yn, yn+p, a, yn+1,

t
3(p−1)+1

)
∗ lim

n→∞
M

(
yn+1, yn+p, a, yn+2,

t
3(p−1)+1

)
∗... ∗ lim

n→∞
M

(
yn+p−2, yn+p, a, yn+p−1,

t
3(p−1)+1

)
∗ lim

n→∞
M

(
yn, yn+p, yn+1, b,

t
3(p−1)+1

)
∗ lim

n→∞
M

(
yn+1, yn+p, yn+2, b,

t
3(p−1)+1

)
∗ ...

∗ lim
n→∞

M
(
yn+p−2, yn+p, yn+p−1, b,

t
3(p−1)+1

)
∗ lim

n→∞
M

(
yn, yn+1, a, b, t

3(p−1)+1

)
∗ lim

n→∞
M

(
yn+1, yn+2, a, b, t

3(p−1)+1

)
∗... ∗ lim

n→∞
M

(
yn+p−1, yn+p, a, b, t

3(p−1)+1

)

that is

lim
n→∞

M (yn, yn+p, a, b, t) ≥ 1 ∗ 1 ∗ ... ∗ 1 = 1

Which means {yn} is a Cauchy sequence in X. Since X is complete yn → w in
X. That is {Ax2n}, {Tx2n+1}, {Bx2n+1}, {Sx2n+2} also converges to w in X.
That is

lim
n→∞

Sx2n → w

and

lim
n→∞

Ax2n → w

Since (A, S) is semi-compatible,

lim
n→∞

ASx2n = Sw

Also (A, S) is reciprocal continuous also, therefore,

lim
n→∞

ASx2n = Aw

Combining these two we get Aw = Sw. Now to prove that Aw = w, for let us
assume that Aw 	= w. Then by the contractive condition,

M (Aw, Bx2n+1, a, b, t) ≥ Φ (M (Sw, Tx2n+1, a, b, t))
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Letting n → ∞,

M (Aw, w, z, u, t) ≥ Φ (M (Sw, w, a, b, t)) > M (Aw, w, a, b, t)

a contradiction. Therefore Aw = w = Sw.
Since (B, T ) is weak compatible and reciprocal continuous, as above we get
Bw = w = Tw.
Therefore A, B, S and T has a common fixed point. To prove the uniqueness.
Let w1 and w2 be two common fixed points of A, B, S and T .Assume w1 	= w2.
Then by the contractive condition,

M (w1, w2, a, b, t) = M (Aw1, Bw2, a, b, t)

≥ Φ (M (Sw1, Tw2, a, b, t))

= Φ (M (w1, w2, a, b, t))

> M (w1, w2, a, b, t)

a contradiction. Therefore w1 = w2.
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