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Abstract

For a graph G = (V, F) and a non-empty set X, a linear hypergraph
set-indexer (LHSI) is a function f : V(G) — 2% satisfying the following
conditions: (i)f is injective (ii) the ordered pair H¢(G) = (X, f(V)),
where f(V) = {f(v) : v € V(G)}, is a linear hypergraph, (iii) the
induced set-valued function f® : E — 2%, defined by f®(uv) = f(u) @
f(v),Y wv € E is injective, and (iv) Hse(G) = (X, f®(E)), where
fOE) = {f®) : e € E}, is a linear hypergraph. In this paper,
we characterize graphs which admit 3-uniform LHSI and establish the
relation between the cyclomatic numbers of the given graph, its line
graph and the two hypergraphs associated with a 3-uniform LHSI. Also,
we determine the upper LHSI number of graph G having 2 < §(G) <
A(G) < 3 and girth ¢g(G) > 5.
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1 Introduction

For all terminology and notation in graphs and hypergraphs , not specifically
defined in this paper, we refer the reader to F. Harary [5] and C. Berge [3],
respectively. All graphs considered in this paper are simple and without self-
loops whereas hypergraphs are simple but may have edges of cardinality one.
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Let X be a nonempty finite set, and let £ = {E; : i € I} be a family of subsets
of X. The family £ is called a hypergraph on X if (i) E; # (), for every i € I,
and (i) U,c; £ = X, then, H = (X, &) is called a hypergraph and | X| = n is
called its order. If all the edges of H are distinct, then H is called simple and,
H is linear if it satisfies the condition |E; N E;| < 1, for all distinct E;, E; € €.
Berge [3].

A set-valuation of a given graph G is an assignment f of subsets of an arbitrary
nonempty X to the vertices of G and the symmetric difference

fEuv) = f(u) & f(v) = (f(u) = f(v)) U(f(v) = f(u))

to each edge uv € E(G).

For a simple graph G = (V, E) and for an arbitrary set X, if f : V(G) — 27X,
is a set-valuation such that f(u) # 0, for each u € X and if ey (g f(v) = X,
then Hi(G) = (X, f(V)), f(V) = {f(v) : v € V(G)}, is a hypergraph.
Hence, given a property P of the subsets of X a study of P-hypergraphs
associated with a given set-valuation of a given graph G could be interesting.
Often, specific properties P are suggested from practical contexts. Acharya.
et.al [2] defined LHSI of a graph with P taken as the property of linearity of
hypergraphs, as formulated below.

Definition 1.1. /2] For a simple graph G, a set-valued function f : V(G) —
2% is a linear hypergraph set-indexer (LHSI in short) of G, if f satisfies the
following conditions:

(i) f is injective

(1) Hy(G) = (X, f(V)) is a linear hypergraph, where f(V) = {f(v) : v €
V(G)}

(iii) The induced set-valued function f® : E — 2% defined by f®(uv) =
f(u) ® f(v), Y uv € E, is injective

(iv) Hye(G) = (X, fO(E)) is a linear hypergraph where, f®(E) := {f®(e) :
e€ E}

The least (largest) cardinality of the set X with respect to which G admits an
LHSI is called the LHSI number (upper LHSI number) of G, and it is denoted
by I1(G) (respectively, IVE(G)). A

An LHSI f of G is said to be r-uniform if | f(u)| = r for each u € V(G)

2 Main Results

We need the following known results.
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Theorem 2.1. /2] For a graph G admitting an LHSI f : V — 2% if u is any
vertex of G with d(u) > 2, then, |f(u)] < 3.

Theorem 2.2. [2] For a graph G admitting an LHSI f : V — 2% if u is any
vertex of G with d(u) > 4, then, |f(u)] < 2.

Theorem 2.3. [2]  For a simple graph G admitting an LHSI f : V(G) — 2%,
| X| can be any arbitrary positive integer greater than Ip(G), if and only if G
contains a pendant vertex.

Proposition 2.4. [2] If G is a (p, q)-graph without pendant vertices and iso-
lated vertices, then IYL(G) < 2p.

Theorem 2.5. [2] For a (p,q)-graph G with §(G) > 3, IVH(G) < 2.

Theorem 2.6. If a graph G admits a 3-uniform LHSI, then G contains no
cycles of length < 4.

Proof.  Let f: V(G) — 2% be a 3-uniform LHSI of G. Suppose, the vertices
v1,v2,v3 form a triangle in G' and, let f(v;) = A;. Then, |A; N A;] < 1, for
all i # j. Since He(G) is linear, |(A; @ Az) N (A @ A;)| < 1, which implies,
|A; NAS N AS) U (AS N Ay N Ag)| < 1, implies [A; N AS N AS| < 1. But,
|(A; N As)| = [(A1 N A3)] =1 and Ay N A3 = (. Similarly, interchanging the
role of A; and Ay, we get |[As NAT N AS| = [(A1 N Ag)| = [(A2 N A3)| = 1 and
A; N Az =0, a contradiction.

Now, let G contain a cycle of length 4 and let A, By, Ay, Bs be the sets assigned
to the vertices vy, v9,v3,v4 in a cyclic order, under the LHSI f. As argued in
the previous paragraph, we get, |[A;NB{NBS| = [(AiNBy)| = [(AiNBy)| =1
and A; N Ay = (). Hence, there exists an element z € A; N By and o € Ay U B;.
Similarly, there exists y € BiNAs and y ¢ BoUA;. Then, {x,y} C (41 @ B1)N
(A2 @ Bs), contradicting the linearity of He(G). O

From the arguments given in the above proof, the following proposition is
immediate.

Proposition 2.7.  If f : V(G) — 2% is an LHSI of a graph G and u € V(G)
with | f(u)| = 3 and d(u) > 2, then |f(u) N f(v;)] =1 and f(v;) N f(v;) =0
for all v;,v; € N(u), the open neighborhood of .

Y

Theorem 2.8. If G is a (p,q)-graph with 2 < §(G) < A(G) < 3, then
I"HG) <3p—q.
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Proof. Let X be a non-empty set and and f : V(G) — 2% be an LHSI of
a (p,q)-graph G with 2 < § < A < 3. By Theorem 2.1, |f(u)| < 3, for every
u e V(G).

Hence, let Vi, V5, V3 be the subsets of V(G) such that |f(u)| = i, for every
weV;, i=1,2,3 and, let |V;| = p;. Then, p; + ps + p3 = p.

If | f(u)] = 3, since fEE(G) :— 2% is linear, |f(u) N f(v;)] = 1, where v; is
any vertex adjacent to u. Also, f(v;) N f(v;) = 0, where each of v; and v; are
adjacent to u. If |f(u)| =2, then |f(u) N f(v;)| = 1, for all adjacent vertex v;
of u, except possibly one. Now, X = U f(u) and Z |f(w)| = p1 + 2p2 + 3ps.

ueV ueV
Therefore, |X| < p1 + 2ps + 3ps — %(Z(d(u) - 1)+ Z d(u)). That is,
ueVy 5 uEV31
X[ < pu+2p+3p =30 D dlu)—p2) = i 222 +3ps— 5(20— Y d(u))
ueVoUVs ueVy

Hence, | X| < p; + 5’% +3ps —q+ 3% = 5% + 5% + 3p3 — ¢, which is maximum
when p3 = p. Hence, | X| < 3p — ¢, which implies IV(G) < 3p — ¢q. O

The following theorem is a characterization of graphs without isolated
points, which admit a 3-uniformm LHSI.

Theorem 2.9. A graph G without isolated points admits a 3-uniform LHSI
if and only if (1) A(G) < 3 and (2) girth g(G) > 5.

Proof.  Condition (1) of the necessary part follows from Theorem 2.2 and
condition (2) follows from Theorem 2.6.

Let G = (V, F) be a (p, q)-graph without containing any K> component and
satisfying the conditions in the theorem. Let V = {vy,vq,...,0,}, Vo = {v; €
Vidw)=1or2}, I ={i:dv;) =1} and X = EUV,UI. We denote by
E,., the set of all edges incident with v;. Define f : V(G) — 2% as follows.

E, U{v,i}  ifdv) =1

Clearly f is injective, H¢(G) is linear and U,,ev f(v;) = X. The induced edge
function f® : E(G) — 2% given by, f®(viv;) = (B, & E,,) U ({vi,v;} N Vo) U
({7, 7}N1I) is injective. Since G contains no components of Ky, Ueep f¥(e) = X.
Now, we claim that He(G) is linear. On the contrary, suppose |f®(v;v;) N
[ (vkv,)| > 2, where {v;,v;} # {vg, v, }. Let S = f®(vv;) N f®(vv,). Then,
SNI=0and |SNV,| <1. Also, |[SNV,| = 1if and only if the edges v;v; and
vV, are incident at common vertex of even degree.

Case 1: The edges v;v; and viv, are adjacent. Without loss of generality, let
v; = v = v. Then, either v or the third edge incident with v belongs to S.
Since, |S| > 2, there exists an edge e; in S which is not incident with v. Then,
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e; = v;v,, whence v;,v,,v form a triangle in G, a contradiction, since girth
9(G) > 5.

Case 2: The edges v;v; and vyv, are non-adjacent. Then, SNV, = (. Let
e1,eg € 5.

Subcase 1: Let eq,es be adjacent with v; as their common vertex. Then
Vi, Uk, v form a triangle in GG, a contradiction.

Subcase 2: The edges e; and ey are non-adjacent. Each of e; and ey has one
end vertex in {v;,v;} and the other in {vy,v,}. Therefore, v;, vj, vy, v, are the
vertices of a cycle of length 4 in G, a contradiction, as girth ¢(G) > 5 .

Thus, f is an LHSI of G and | X| =3p —q.

If G' = GUmKS,, containing m components of K5, a 3-uniform LHSI of G can
be extended to a 3-uniform LHSI of G’ by assigning disjoint sets of cardinality
3 to the vertices of Ky components. O]

Remark 2.10.  For a graph G with 2 < §(G) < A(G) < 3, girth g(G) > 5
and V, = {v € V(G) : d(v) = 2, the function f : V(G) — 2E@OYVe  defined by

E, if d(vi)
f(vi) = { E, U{v}y  ifd(v)

is an LHSI with the underlying set E(G) UV, of cardinality 3p — q.

3
2

Invoking Theorem 2.8 and Remark 2.10, we get the following result.

Theorem 2.11.  If G is a (p,q)-graph with 2 < §(G) < A(G) < 3 and girth
g(G) > 5, then IL(G) = 3p — q.

Corollary 2.12.  For a cycle C,, with n > 5, IL(C,) = 2n.

Corollary 2.13.  If G is a 3-regular graph of order p having girth g(G) > 5,
then, IVH(G) = 2.

Let H = (E; X1, Xa, ..., X,) be a hypergraph with n edges. The represen-
tative graph of H is defined to the simple graph L(H) of order n whose vertices
X1, %, ..., T, respectively represent the edges Xy, Xo,..., X, of H and with
vertices x; and z; joined by an edge if, and only if, X; N X; # 0. For any
graph G, the square of G, denoted by G2, has the same vertices as G, with two
vertices u and v adjacent if and only if d(u,v) < 2 in G, where d(u,v) denotes
the usual graph distance. We denote square of the line graph of G by (L(G))?.

Theorem 2.14.  For a graph G with 2 < 6(G) < A(G) < 3 and girth
g(G) > 5, there exists a 3-uniform LHSI f of G satisfying the following.

1. G is isomorphic to the representative graph of H¢(G).

2. The line graph L(G) of G is isomorphic to a spanning subgraph of the
representative graph of Hye(G).
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3. (L(G))? is isomorphic to the representative graph of Hye(G).

Proof.  Let V(G) = {v1,va,...,0,}, E(G) = {e1,ea,...,e,} and V. = {v €
V(G) : d(v) = 2, where G is a graph with 2 < §(G) < A(G) < 3 and girth
g(G) > 5. Define f : V(G) — 2F@VVe a5 follows. f(v) = E,, the set of edges
incident with the vertex v, for allv € V-V, and f(v) = {v}UE,, forallv € V..
The induced edge function is given by f(uv) = (E,®E,)U({u,v}NV,). Then,
f is an LHSI of G as it is shown in the proof of Theorem 2.9.

(1) Two vertices v; and v; in G are adjacent if and only if there exists an edge
ex incident with both v; and v;, which is true if and only if e, € f(v;) N f(v;),
which, in turn, is true if and only if the vertices in the representative graph
of H¢(G) corresponding to the sets f(v;) and f(v;) are adjacent. Thus, G is
isomorphic to the representative graph of H(G).

To prove statement (2), we proceed as follows. The number of vertices in L(G)
= the number of vertices in the representative graph of Hse(G) = ¢q. Let ¢’
denote the vertex in L(G) corresponding to the edge e; in G and let x; denote
the vertex in the representative graph L(He(G)), corresponding to the edge
f®(e;) in Hys(G). The vertices e; and e;’ are adjacent in L(G) implies, the
edges e; and e; in G are incident at a common vertex vy, say. If d(v;) = 2,
then f(vgy) = {ei, e;, v} and v, € f&(e;) N f9(e;). If d(vy,) = 3, then, there is
a third edge ej incident with vg. Hence, ex € f¥(e;) N f€(e;). Thus, in each
case, x; and x; are adjacent in L(H e (G)) establishing statement 2.

(3) Define g : V((L(G))*) — V(L(H;(G))) as g(e/') = w;, for all i €
{1,2,...,q}. We establish statement (3) by proving that ¢ is a graphical
isomorphism between the respective graphs.

Let ¢,/ and e;’ are incident in (L(G))?. Then, the distance d(e;, ;') is either 1
or 2. If d(e;’,e;') =1, then e,/ and e;’ are adjacent in L(G), which implies, z;
and z; are adjacent in L(He(G)) as argued in the proof of statement 2.

If d(e’,e;’) = 2, then there exists a vertex e’ in L(G) such that e;'e;’ and
ex'e;’ are edges in L(G). Then ey, is incident with each of e; and e; in G, which
implies e, € f€(e;) N f€(e;) which, in turn implies, z; and x; are adjacent in
L(Hye (G)).

Conversely, let z; and z; are adjacent in L(H e (G)). Then, f%(e;)Nf¥(e;) # ¢
and it contains either a vertex of even degree or an edge.

Casel : If a vertex v, € f¥(e;) N f®(e;) , then e; and e; are incident with v,
which implies e; and e; are adjacent in G, which in turn implies, e;" and e’
are adjacent in L(G). Hence, ¢,/ and e, are adjacent in (L(G))%

Case2 : If an edge e, € f¥(e;) N f®(e;), then e, is incident with each of e;
and e;, which implies, either e;, e; and ej, are incident at a common vertex in
G, or e, joins the two edges e; and e; in G. Hence, d(e;, e;’) is either 1 or 2 in
L(G), which implies, e,/ and e, are adjacent in (L(G))%. O
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3 Cyclomatic number of graphs and set-indexed
hypergraphs

Let G be a (p,q)-graph with k components, then the cyclomatic number of
G is given by u(G) = ¢ —p+ k. Let H = (X,§) be a simple hypergraph
without isolates. The weighted intersection graph is denoted by L, (H). The
vertex set of L, (H) is the edge set of H. Two vertices F and E’ of L, (H)
are joined by an edge with weight |E'N E’|, if EN E’ # (), and are not jointed
otherwise. Let w(H) be the maximal weight of a forest of L, (H). Acharya
and Las Vergnas [1] defined the cyclomatic number of the hypergraph H as
u(H) = Speel E| - [X| — w(H).

When H is a graph, u(H) is the usual cyclomatic number.

Theorem 3.1. If G is a conn(p, q)-graph with 2 < 6(G) < A(G) < 3 and
girth g(G) > 5, there exists a 3-uniform LHSI f of G satisfying the following.
(Du(Hf(G) = u(G)

(2)(Hpe (G)) = (L(G)) + q, where L(G) represents the line graph of G.

Proof.  Let V. be the set of vertices of G with even degree and f : V(G) —

2E(G)UVe he the LHSI of G as mentioned in the proof of Theorem 2.14. Then, G

is isomorphic to the representative graph of H;(G) and (L(G))? is isomorphic

to the representative graph of Hye(G). Since Hy(G) and Hye(G) are linear,

their weighted intersection graphs will be corresponding representative graphs.

Let G contains k components. Then, the number of components of L(G) =

the number of components of (L(G))? = k. Then, w(H;(G)) = p — k and

w(Hyo(G)) = g — k.

(1) w(G) =q—p+k

p(Hi(G) = Y |E|—|X|—w(H((G) =3p—(Bp—q)—(p—k)=q—p+k
Eef(V)

Thus, u(G) = p(Hs(G))

(2) Applying fundamental theorem of Graph Theory, 2|V, |+ 3(p — |V.|) = 2¢,

which implies, |V.| = 3p — 2¢. Number of vertices of L(G) = q.

The number of edges of L(G) = —q + Zle?

22 32
AP IR IE

vEVL veV -V,
9 9p 5
= 42V +=(p—|V.]) = = —qg— 2|V,
a+ 2Vl + 50— Vi) = 5 — g — 5[V

9p 5)
=5 —4-50p—2¢) =4g-3p
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WL(G)=4¢—3p—q+k=3q—3p+k

pu(H

(@)= D 12| = 1X] —w(He ()

e€E(Q)
=49—Bp—q) —(q—k)=4¢—3p+k=pu(L(G)) +¢

]
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