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Abstract

For a graph G = (V,E) and a non-empty set X, a linear hypergraph
set-indexer (LHSI) is a function f : V (G)→ 2X satisfying the following
conditions: (i)f is injective (ii) the ordered pair Hf (G) = (X, f(V )),
where f(V ) = {f(v) : v ∈ V (G)}, is a linear hypergraph, (iii) the
induced set-valued function f⊕ : E → 2X , defined by f⊕(uv) = f(u)⊕
f(v),∀ uv ∈ E is injective, and (iv) Hf⊕(G) = (X, f⊕(E)), where
f⊕(E) = {f⊕(e) : e ∈ E}, is a linear hypergraph. In this paper,
we characterize graphs which admit 3-uniform LHSI and establish the
relation between the cyclomatic numbers of the given graph, its line
graph and the two hypergraphs associated with a 3-uniform LHSI. Also,
we determine the upper LHSI number of graph G having 2 ≤ δ(G) ≤
∆(G) ≤ 3 and girth g(G) ≥ 5.
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1 Introduction

For all terminology and notation in graphs and hypergraphs , not specifically
defined in this paper, we refer the reader to F. Harary [5] and C. Berge [3],
respectively. All graphs considered in this paper are simple and without self-
loops whereas hypergraphs are simple but may have edges of cardinality one.
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Let X be a nonempty finite set, and let E = {Ei : i ∈ I} be a family of subsets
of X. The family E is called a hypergraph on X if (i) Ei 6= ∅, for every i ∈ I,
and (ii)

⋃
i∈I Ei = X, then, H = (X, E) is called a hypergraph and |X| = n is

called its order. If all the edges of H are distinct, then H is called simple and,
H is linear if it satisfies the condition |Ei ∩Ej| ≤ 1, for all distinct Ei, Ej ∈ E .
Berge [3].
A set-valuation of a given graph G is an assignment f of subsets of an arbitrary
nonempty X to the vertices of G and the symmetric difference

f⊕(uv) = f(u)⊕ f(v) := (f(u)− f(v)) ∪ (f(v)− f(u))

to each edge uv ∈ E(G).
For a simple graph G = (V,E) and for an arbitrary set X, if f : V (G)→ 2X ,
is a set-valuation such that f(u) 6= ∅, for each u ∈ X and if

⋃
v∈V (G) f(v) = X,

then Hf (G) = (X, f(V )), f(V ) := {f(v) : v ∈ V (G)}, is a hypergraph.
Hence, given a property P of the subsets of X a study of P-hypergraphs
associated with a given set-valuation of a given graph G could be interesting.
Often, specific properties P are suggested from practical contexts. Acharya.
et.al [2] defined LHSI of a graph with P taken as the property of linearity of
hypergraphs, as formulated below.

Definition 1.1. [2] For a simple graph G, a set-valued function f : V (G) →
2X is a linear hypergraph set-indexer (LHSI in short) of G, if f satisfies the
following conditions:

(i) f is injective

(ii) Hf (G) = (X, f(V )) is a linear hypergraph, where f(V ) = {f(v) : v ∈
V (G)}

(iii) The induced set-valued function f⊕ : E → 2X defined by f⊕(uv) =
f(u)⊕ f(v), ∀ uv ∈ E, is injective

(iv) Hf⊕(G) = (X, f⊕(E)) is a linear hypergraph where, f⊕(E) := {f⊕(e) :
e ∈ E}

The least (largest) cardinality of the set X with respect to which G admits an
LHSI is called the LHSI number (upper LHSI number) of G, and it is denoted
by IL(G) (respectively, IUL(G)). �

An LHSI f of G is said to be r-uniform if |f(u)| = r for each u ∈ V (G)

2 Main Results

We need the following known results.
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Theorem 2.1. [2] For a graph G admitting an LHSI f : V → 2X , if u is any
vertex of G with d(u) ≥ 2, then, |f(u)| ≤ 3.

Theorem 2.2. [2] For a graph G admitting an LHSI f : V → 2X , if u is any
vertex of G with d(u) ≥ 4, then, |f(u)| ≤ 2.

Theorem 2.3. [2] For a simple graph G admitting an LHSI f : V (G)→ 2X ,
|X| can be any arbitrary positive integer greater than IL(G), if and only if G
contains a pendant vertex.

Proposition 2.4. [2] If G is a (p, q)-graph without pendant vertices and iso-
lated vertices, then IUL(G) ≤ 2p.

Theorem 2.5. [2] For a (p, q)-graph G with δ(G) ≥ 3, IUL(G) ≤ 3p
2

.

Theorem 2.6. If a graph G admits a 3-uniform LHSI, then G contains no
cycles of length ≤ 4.

Proof. Let f : V (G)→ 2X be a 3-uniform LHSI of G. Suppose, the vertices
v1, v2, v3 form a triangle in G and, let f(vi) = Ai. Then, |Ai ∩ Aj| ≤ 1, for
all i 6= j. Since Hf⊕(G) is linear, |(A1 ⊕ A2) ∩ (A1 ⊕ A3)| ≤ 1, which implies,
|A1 ∩ Ac2 ∩ Ac3) ∪ (Ac1 ∩ A2 ∩ A3)| ≤ 1, implies |A1 ∩ Ac2 ∩ Ac3| ≤ 1. But,
A1 ⊆ (A1 ∩Ac2 ∩Ac3)∪ (A1 ∩A2)∪ (A1 ∩A3). Since |A1| = 3, |A1 ∩Ac2 ∩Ac3| =
|(A1 ∩ A2)| = |(A1 ∩ A3)| = 1 and A2 ∩ A3 = ∅. Similarly, interchanging the
role of A1 and A2, we get |A2 ∩ Ac1 ∩ Ac3| = |(A1 ∩ A2)| = |(A2 ∩ A3)| = 1 and
A1 ∩ A3 = ∅, a contradiction.
Now, let G contain a cycle of length 4 and let A1, B1, A2, B2 be the sets assigned
to the vertices v1, v2, v3, v4 in a cyclic order, under the LHSI f . As argued in
the previous paragraph, we get, |A1∩Bc

1∩Bc
2| = |(A1∩B1)| = |(A1∩B2)| = 1

and B1 ∩ B2 = ∅. Similarly, |B1 ∩ Ac1 ∩ Ac2| = |(A1 ∩ B1)| = |(B1 ∩ A2)| = 1
and A1∩A2 = ∅. Hence, there exists an element x ∈ A1∩B2 and x 6∈ A2∪B1.
Similarly, there exists y ∈ B1∩A2 and y 6∈ B2∪A1. Then, {x, y} ⊂ (A1

⊕
B1)∩

(A2

⊕
B2), contradicting the linearity of Hf⊕(G).

From the arguments given in the above proof, the following proposition is
immediate.

Proposition 2.7. If f : V (G)→ 2X is an LHSI of a graph G and u ∈ V (G)
with |f(u)| = 3 and d(u) ≥ 2, then |f(u) ∩ f(vi)| = 1 and f(vi) ∩ f(vj) = ∅,
for all vi, vj ∈ N(u), the open neighborhood of u.

Theorem 2.8. If G is a (p, q)-graph with 2 ≤ δ(G) ≤ ∆(G) ≤ 3, then
IUL(G) ≤ 3p− q.
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Proof. Let X be a non-empty set and and f : V (G) → 2X be an LHSI of
a (p, q)-graph G with 2 ≤ δ ≤ ∆ ≤ 3. By Theorem 2.1, |f(u)| ≤ 3, for every
u ∈ V (G).
Hence, let V1, V2, V3 be the subsets of V (G) such that |f(u)| = i, for every
u ∈ Vi, i = 1, 2, 3 and, let |Vi| = pi. Then, p1 + p2 + p3 = p.
If |f(u)| = 3, since f⊕E(G) :→ 2X is linear, |f(u) ∩ f(vi)| = 1, where vi is
any vertex adjacent to u. Also, f(vi) ∩ f(vj) = ∅, where each of vi and vj are
adjacent to u. If |f(u)| = 2, then |f(u) ∩ f(vi)| = 1, for all adjacent vertex vi
of u, except possibly one. Now, X =

⋃
u∈V

f(u) and
∑
u∈V

|f(u)| = p1 + 2p2 + 3p3.

Therefore, |X| ≤ p1 + 2p2 + 3p3 − 1
2
(
∑
u∈V2

(d(u) − 1) +
∑
u∈V3

d(u)). That is,

|X| ≤ p1 + 2p2 + 3p3− 1
2
(
∑

u∈V2∪V3

d(u)−p2) = p1 +
5p2

2
+ 3p3−

1

2
(2q−

∑
u∈V1

d(u))

Hence, |X| ≤ p1 + 5p2
2

+ 3p3− q+ 3p1
2

= 5p1
2

+ 5p2
2

+ 3p3− q, which is maximum
when p3 = p. Hence, |X| ≤ 3p− q, which implies IUL(G) ≤ 3p− q.

The following theorem is a characterization of graphs without isolated
points, which admit a 3-uniform LHSI.

Theorem 2.9. A graph G without isolated points admits a 3-uniform LHSI
if and only if (1) ∆(G) ≤ 3 and (2) girth g(G) ≥ 5.

Proof. Condition (1) of the necessary part follows from Theorem 2.2 and
condition (2) follows from Theorem 2.6.
Let G = (V,E) be a (p, q)-graph without containing any K2 component and
satisfying the conditions in the theorem. Let V = {v1, v2, . . . , vp}, V0 = {vi ∈
V : d(vi) = 1 or 2}, I = {i : d(vi) = 1} and X = E ∪ V0 ∪ I. We denote by
Evi

, the set of all edges incident with vi. Define f : V (G)→ 2X as follows.

f(vi) =


Evi

if d(vi) = 3
Evi
∪ {vi} if d(vi) = 2

Evi
∪ {vi, i} if d(vi) = 1

Clearly f is injective, Hf (G) is linear and ∪vi∈V f(vi) = X. The induced edge
function f⊕ : E(G) → 2X given by, f⊕(vivj) = (Evi

⊕ Evj
) ∪ ({vi, vj} ∩ V0) ∪

({i, j}∩I) is injective. Since G contains no components of K2,∪e∈Ef⊕(e) = X.
Now, we claim that Hf⊕(G) is linear. On the contrary, suppose |f⊕(vivj) ∩
f⊕(vkvr)| ≥ 2, where {vi, vj} 6= {vk, vr}. Let S = f⊕(vivj) ∩ f⊕(vkvr). Then,
S ∩ I = ∅ and |S ∩ Ve| ≤ 1. Also, |S ∩ Ve| = 1 if and only if the edges vivj and
vkvr are incident at common vertex of even degree.
Case 1: The edges vivj and vkvr are adjacent. Without loss of generality, let
vj = vk = v. Then, either v or the third edge incident with v belongs to S.
Since, |S| ≥ 2, there exists an edge ei in S which is not incident with v. Then,
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ei = vivr, whence vi, vr, v form a triangle in G, a contradiction, since girth
g(G) ≥ 5.
Case 2: The edges vivj and vkvr are non-adjacent. Then, S ∩ V0 = ∅. Let
e1, e2 ∈ S.
Subcase 1: Let e1, e2 be adjacent with vi as their common vertex. Then
vi, vk, vr form a triangle in G, a contradiction.
Subcase 2: The edges e1 and e2 are non-adjacent. Each of e1 and e2 has one
end vertex in {vi, vj} and the other in {vk, vr}. Therefore, vi, vj, vk, vr are the
vertices of a cycle of length 4 in G, a contradiction, as girth g(G) ≥ 5 .
Thus, f is an LHSI of G and |X| = 3p− q.
If G′ = G∪mK2, containing m components of K2, a 3-uniform LHSI of G can
be extended to a 3-uniform LHSI of G′ by assigning disjoint sets of cardinality
3 to the vertices of K2 components.

Remark 2.10. For a graph G with 2 ≤ δ(G) ≤ ∆(G) ≤ 3, girth g(G) ≥ 5
and Ve = {v ∈ V (G) : d(v) = 2, the function f : V (G)→ 2E(G)∪Ve, defined by

f(vi) =

{
Evi

if d(vi) = 3
Evi
∪ {vi} if d(vi) = 2

is an LHSI with the underlying set E(G) ∪ Ve of cardinality 3p− q.

Invoking Theorem 2.8 and Remark 2.10, we get the following result.

Theorem 2.11. If G is a (p, q)-graph with 2 ≤ δ(G) ≤ ∆(G) ≤ 3 and girth
g(G) ≥ 5, then IUL(G) = 3p− q.

Corollary 2.12. For a cycle Cn with n ≥ 5, IUL(Cn) = 2n.

Corollary 2.13. If G is a 3-regular graph of order p having girth g(G) ≥ 5,
then, IUL(G) = 3p

2
.

Let H = (E;X1, X2, . . . , Xn) be a hypergraph with n edges. The represen-
tative graph of H is defined to the simple graph L(H) of order n whose vertices
x1, x2, . . . , xn respectively represent the edges X1, X2, . . . , Xn of H and with
vertices xi and xj joined by an edge if, and only if, Xi ∩ Xj 6= ∅. For any
graph G, the square of G, denoted by G2, has the same vertices as G, with two
vertices u and v adjacent if and only if d(u, v) ≤ 2 in G, where d(u, v) denotes
the usual graph distance. We denote square of the line graph of G by (L(G))2.

Theorem 2.14. For a graph G with 2 ≤ δ(G) ≤ ∆(G) ≤ 3 and girth
g(G) ≥ 5, there exists a 3-uniform LHSI f of G satisfying the following.

1. G is isomorphic to the representative graph of Hf (G).

2. The line graph L(G) of G is isomorphic to a spanning subgraph of the
representative graph of Hf⊕(G).
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3. (L(G))2 is isomorphic to the representative graph of Hf⊕(G).

Proof. Let V (G) = {v1, v2, . . . , vp}, E(G) = {e1, e2, . . . , eq} and Ve = {v ∈
V (G) : d(v) = 2, where G is a graph with 2 ≤ δ(G) ≤ ∆(G) ≤ 3 and girth
g(G) ≥ 5. Define f : V (G) → 2E(G)∪Ve as follows. f(v) = Ev, the set of edges
incident with the vertex v, for all v ∈ V −Ve and f(v) = {v}∪Ev, for all v ∈ Ve.
The induced edge function is given by f⊕(uv) = (Eu⊕Ev)∪({u, v}∩Ve). Then,
f is an LHSI of G as it is shown in the proof of Theorem 2.9.
(1) Two vertices vi and vj in G are adjacent if and only if there exists an edge
ek incident with both vi and vj, which is true if and only if ek ∈ f(vi) ∩ f(vj),
which, in turn, is true if and only if the vertices in the representative graph
of Hf (G) corresponding to the sets f(vi) and f(vj) are adjacent. Thus, G is
isomorphic to the representative graph of Hf (G).
To prove statement (2), we proceed as follows. The number of vertices in L(G)
= the number of vertices in the representative graph of Hf⊕(G) = q. Let ei

′

denote the vertex in L(G) corresponding to the edge ei in G and let xi denote
the vertex in the representative graph L(Hf⊕(G)), corresponding to the edge
f⊕(ei) in Hf⊕(G). The vertices ei

′ and ej
′ are adjacent in L(G) implies, the

edges ei and ej in G are incident at a common vertex vk, say. If d(vk) = 2,
then f(vk) = {ei, ej, vk} and vk ∈ f⊕(ei) ∩ f⊕(ej). If d(vk) = 3, then, there is
a third edge ek incident with vk. Hence, ek ∈ f⊕(ei) ∩ f⊕(ej). Thus, in each
case, xi and xj are adjacent in L(Hf⊕(G)) establishing statement 2.
(3) Define g : V ((L(G))2) → V (L(Hf⊕(G))) as g(ei

′) = xi, for all i ∈
{1, 2, . . . , q}. We establish statement (3) by proving that g is a graphical
isomorphism between the respective graphs.
Let ei

′ and ej
′ are incident in (L(G))2. Then, the distance d(ei

′, ej
′) is either 1

or 2. If d(ei
′, ej

′) = 1, then ei
′ and ej

′ are adjacent in L(G), which implies, xi
and xj are adjacent in L(Hf⊕(G)) as argued in the proof of statement 2.
If d(ei

′, ej
′) = 2, then there exists a vertex ek

′ in L(G) such that ei
′ek
′ and

ek
′ej
′ are edges in L(G). Then ek is incident with each of ei and ej in G, which

implies ek ∈ f⊕(ei) ∩ f⊕(ej) which, in turn implies, xi and xj are adjacent in
L(Hf⊕(G)).
Conversely, let xi and xj are adjacent in L(Hf⊕(G)). Then, f⊕(ei)∩f⊕(ej) 6= φ
and it contains either a vertex of even degree or an edge.
Case1 : If a vertex vk ∈ f⊕(ei) ∩ f⊕(ej) , then ei and ej are incident with vk,
which implies ei and ej are adjacent in G, which in turn implies, ei

′ and ej
′

are adjacent in L(G). Hence, ei
′ and ej

′ are adjacent in (L(G))2.
Case2 : If an edge ek ∈ f⊕(ei) ∩ f⊕(ej), then ek is incident with each of ei
and ej, which implies, either ei, ej and ek are incident at a common vertex in
G, or ek joins the two edges ei and ej in G. Hence, d(ei

′, ej
′) is either 1 or 2 in

L(G), which implies, ei
′ and ej

′ are adjacent in (L(G))2.
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3 Cyclomatic number of graphs and set-indexed

hypergraphs

Let G be a (p,q)-graph with k components, then the cyclomatic number of
G is given by µ(G) = q − p + k. Let H = (X, ξ) be a simple hypergraph
without isolates. The weighted intersection graph is denoted by Lw(H). The
vertex set of Lw(H) is the edge set of H. Two vertices E and E ′ of Lw(H)
are joined by an edge with weight |E ∩E ′|, if E ∩E ′ 6= ∅, and are not jointed
otherwise. Let w(H) be the maximal weight of a forest of Lw(H). Acharya
and Las Vergnas [1] defined the cyclomatic number of the hypergraph H as
µ(H) = ΣE∈ξ|E| − |X| − w(H).
When H is a graph, µ(H) is the usual cyclomatic number.

Theorem 3.1. If G is a conn(p, q)-graph with 2 ≤ δ(G) ≤ ∆(G) ≤ 3 and
girth g(G) ≥ 5, there exists a 3-uniform LHSI f of G satisfying the following.
(1)µ(Hf (G) = µ(G)
(2)µ(Hf⊕(G)) = µ(L(G)) + q, where L(G) represents the line graph of G.

Proof. Let Ve be the set of vertices of G with even degree and f : V (G) →
2E(G)∪Ve be the LHSI of G as mentioned in the proof of Theorem 2.14. Then, G
is isomorphic to the representative graph of Hf (G) and (L(G))2 is isomorphic
to the representative graph of Hf⊕(G). Since Hf (G) and Hf⊕(G) are linear,
their weighted intersection graphs will be corresponding representative graphs.
Let G contains k components. Then, the number of components of L(G) =
the number of components of (L(G))2 = k. Then, w(Hf (G)) = p − k and
w(Hf⊕(G)) = q − k.
(1) µ(G) = q − p+ k

µ(Hf (G) =
∑

E∈f(V )

|E| − |X| −w(Hf (G)) = 3p− (3p− q)− (p− k) = q− p+ k

Thus, µ(G) = µ(Hf (G))
(2) Applying fundamental theorem of Graph Theory, 2|Ve|+ 3(p− |Ve|) = 2q,
which implies, |Ve| = 3p− 2q. Number of vertices of L(G) = q.

The number of edges of L(G) = −q +
Σid

2
i

2

= −q +
∑
v∈Ve

22

2
+

∑
v∈V−Ve

32

2

= −q + 2|Ve|+
9

2
(p− |Ve|) =

9p

2
− q − 5

2
|Ve|

=
9p

2
− q − 5

2
(3p− 2q) = 4q − 3p
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µ(L(G) = 4q − 3p− q + k = 3q − 3p+ k

µ(Hf⊕(G)) =
∑

e∈E(G)

|f⊕(e)| − |X| − w(Hf⊕(G))

= 4q − (3p− q)− (q − k) = 4q − 3p+ k = µ(L(G)) + q
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