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Abstract

The aim this note is to consider the problem of optimal state esti-
mation for a linear system driven by a fractional process and expressed
by a fractional Langevin equation. From an approximation approach
we obtained equations of the estimation for an approximate model, and
proved that the true solution for the initial problem is the limit case.
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1 Introduction

Under certain situation the state of a system can influence upon its long-range
behaviour. It is the case of motion in a fractal medium on which some abso-
lutely continuous limiting distribution are supported. Also, various quantities
in dynamic of financial asset prices or indexes has a long memory property.

On the other hand, not always one can directly obtain true values of these
states from their system dynamics. One can only observe them via other quan-
tities. The problem now is how to estimate the state of a system perturbated
by a long memory noise.
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In this note we consider a linear system described a fractional Langevin
equation

dXt = −bXtdt + σdBH
t , (1.1.1)

where BH
t =

t∫
0

(t − s)H− 1
2 dWs is a fractional Brownian motion of Liouville

form, H is the Hurst index (0 < H < 1), b, σ > 0 are constants, and W is an
ordinary standard Brownian motion.

The formal writing form (1.1.1) is understood as

Xt = X0 −
t∫

0

bXsds + σBH
t . (1.1.2)

It is well-known that a Liouville fractional Brownian motion can be consid-
ered as the limits case of a time series of ARIMA type of long memory defined
as

Xt = (1 − L)−dΦ(L)−1Θ(L)εt ,

where (εt) is a sequence of centered and uncorrelated random variables of the
same variance, L is the lag operator, Φ and Θ are polynomials of L with roots
outside of the unit disc.

The system Xt in (1.1.2) describes a motion of particles in a liquid medium
of fractal structure or the volatility of a financial asset in a financial market
or merely some diffusion coefficient σt for various quantities in physics and
technology of the form

dZt = a(t, Zt)dt + σtdWt .

The observation for the system (1.1.1) or (1.1.2) is given by a point process Yt

of the form

Yt =

t∫
0

hsds + Mt (1.1.3)

where Mt is a Poissonian square integrable martingale and hs = h(Xs) satisfies
the condition

E

t∫
0

h2
sds < ∞ .

Basing on a fundamental result on L2-approximation of BH
t given in [3, 4], we

will solve the problem of optimal state-estimation (1.1.1)-(1.1.3).
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2 Approximation Method

It is known that BH
t =

t∫
0

(t−s)H− 1
2 dWs is neither a semimartingale nor Markov

process but as shown in [3, 4], BH
t can be approximated in L2 by semimartin-

gale. We recall this result as follows.
For a sake of simplicity we put α = H− 1

2
and write from now on Bt instead

of BH
t . For every ε > 0 define

Bε
t =

t∫
0

(t − s + ε)H− 1
2 dWs . (2.2.1)

We have the following assertions (refer to [3, 4])

Lemma 2.1. Bε
t is a semimartingale:

dBε
t = ϕ(t)dt + εαdWt , (2.2.2)

where ϕ(t) = α
t∫

0

(t − s + ε)α−1dWs is a process having absolutely continuous

trajectories.

Theorem 2.2. Bε
t converges to Bt in L2(Ω) when ε tends to 0. This conver-

gence is uniform with respect to t ∈ [0, T ] .

Now we replace BH
t in (1.1.1) by Bε

t and we consider the approximation
problem of state-estimation as follows:

The system process is described by

dXt = −bXtdt + σdBε
t , (2.2.3)

And the observation process is given as (1.1.3):

Yt =

t∫
0

hsds + Mt (2.2.4)

After solving this problem to obtain the approximate estimation

πt(X
ε) = X̂ε

t = E[Xε
t |FY

t ] (2.2.5)

where Xε
t is the solution of (2.2.3) we will prove that the true estimation

πt = X̂t = E[Xt|FY
t ] is the L2-limit of πt(X

ε) when ε tends to 0.
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3 Solution of (2.2.3) (refer to [3])

Substituting dBε
t in (2.2.3) by its expression from (2.2.2) we have

dXt = −[bXt + σϕ(t)]dt + εασdWt , (3.3.1)

where ϕ(t) = α
t∫

0

(t − s + ε)α−1dWs .

The equation (3.3.1) can be splitted into two equations

dX1(t) = −bX1(t)dt + εασdWt , (3.3.2)

and

dX2(t) = −bX2(t)dt − σϕ(t)dt . (3.3.3)

The solution of (3.3.1) will be Xt = X1(t) + X2(t) .
It is well known that (3.3.2) is a classical Langevin equation whose solution

is an Ornstein-Uhlenbeck process

Xε(t) = X
(0)
1 e−bt + σεα

t∫
0

e−b(t−s)dWs , (3.3.4)

where X
(0)
1 is the initial value of X1(t) : X

(0)
1 = X1(0) that is supposed to be

a random variable independent of (Wt, 0 ≤ t ≤ T ).
The equation (3.3.3) is an ordinary differential equation for every fixed ω

and its solution is

Xε
2(t) = X

(0)
2 e−bt − σ

t∫
0

e−b(t−s)ϕ(s)dWs . (3.3.5)

where X
(0)
2 = X2(0) independent of (Wt, 0 ≤ t ≤ T ) and X

(0)
1 + X

(0)
2 is the

initial value of Xt : X0 = X
(0)
1 + X

(0)
2 .

Now the solution (3.3.1) is

Xε
t = Xε

1(t) + Xε
2(t) . (3.3.6)

4 Solution of (1.1.2)

We will show that approximate solution Xε
t converges to the solution Xt of

(1.1.2). Indeed,

Xt − Xε
t = −b

t∫
0

(Xs − Xε
s )ds + σ(Bt − Bε

t ) , (4.4.1)
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hence

‖Xt − Xε
t ‖ = ‖b

t∫
0

(Xs − Xε
s )ds‖ + σ‖(Bt − Bε

t )‖ , (4.4.2)

where ‖.‖ stands for the norm in L2(Ω), and it follows from the proof of the

convergence Bε
t

L2−→ Bt in [4] that

‖(Bt − Bε
t )‖ ≤ C(α)εα+ 1

2 (4.4.3)

where C(α) depends only on α .

Applying Gronwall’s lemma to (4.4.2) yields

‖Xt − Xε
t ‖ ≤ σC(α)εα+ 1

2 ebt (4.4.4)

and therefore

sup
0≤t≤T

‖Xt − Xε
t ‖ ≤ σC(α)εα+ 1

2 ebt ,

So Xε
t → Xt in L2(Ω) uniformly with respect to t ∈ [0, T ] .

5 State-estimation for Xε
t

We return back to the approximation problem of state estimation:

dXt = −bXtdt + σdBε
t , (5.5.1)

Yt =

t∫
0

hsds + Mt (5.5.2)

and we see that

E[Xε
t |FY

t ] = E[Xε
1(t) + Xε

2(t)|FY
t ] = E[Xε

1(t)|FY
t ] + E[Xε

2(t)|FY
t ] ,

So

πt(X
ε) = πt(X

ε
1) + πt(X

ε
2) (5.5.3)
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5.1 Equation for πt(X
ε
1)

Note again that Xε
1(t) is an Ornstein-Uhlenbeck process satisfying the classical

Langevin equation

dXε
1(t) = −bXε

1(t)dt + adWt (5.5.4)

where a = σεα > 0 . According to a result in [1] on the state estimation from
point process observation we can write the estimation equation for πt(X

ε
1) =

̂Xε
1(t) as follows

πt(X
ε
1) = π0(X

ε
1)e

−bt −
t∫

0

[
b πs(X

ε
1)

]
ds

+

t∫
0

[
πs(h)

]−1[
πs(hXε

1) − πs(X
ε
1)πs(h)

](
dYs − πs(h)ds

)
(5.5.5)

where πs(h) = E[h(Xs)|FY
s ] .

5.2 Equation for πt(X
ε
2) = ̂Xε

2(t) = E[Xε
2(t)|FY

t ]

We know that Xε
2(t) is the solution of (3.3.3) that is

dXε
2(t) = −bXε

2(t)dt − σϕ(t)dt .

or

Xε
2(t) = X

(0)
2 e−bt − σ

t∫
0

e−b(t−s)ϕ(s)dWs .

Hence

̂Xε
2(t) = X̂

(0)
2 e−bt − σ

t∫
0

e−b(t−s)ϕ̂(s)dWs

or

πt(X
ε
2) = π0(X

ε
2)e

−bt − σ

t∫
0

e−b(t−s)πs(ϕ)dWs (5.5.6)

where πs(ϕ) = ϕ̂ = E[ϕ(s)|FY
s ] . Combining (5.5.3), (5.5.5) and (5.5.6) we

have
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5.3 Theorem 5.1

The state estimation for Xε
t is given by the following equation:

πt(X
ε) = π0(X

ε)e−bt −
t∫

0

[
b πs(X

ε
1) + σe−b(t−s)πs(ϕ)

]
ds

+

t∫
0

[
πs(h)

]−1[
πs(hXε

1) − πs(X
ε
1)πs(h)

](
dYs − πs(h)ds

)
. (5.5.7)

We are now in the position to get the estimation of the fractional Ornstein-
Uhlenbeck process Xt given by (1.1.2), based on observation given by (1.1.3).
We see from the Jensen inequality that

‖πt(X) − πt(X
ε)‖2 = ‖E[Xt|FY

t ] − E[Xε
t |FY

t ]‖2

= ‖E[(Xt − Xε
t )|FY

t ]‖2 = E
{
E[(Xt − Xε

t )|FY
t ]2

}
≤ E

{
E[(Xt − Xε

t )
2|FY

t ]
}

= E[(Xt − Xε
t )

2] = ‖Xt − Xε
t ‖2 → 0

when ε → 0 as mentioned in (4.4.4).

6 State-estimation πt

It follows from all what presented in Section 5 that we have
Theorem 5.2. The optimal state estimation πt of the fractional process Xt

given by

dXt = −bXtdt + σdBt ,

from the point observation Yt given by

Yt =

t∫
0

hsds + Mt

is the L2-limit of πε
t given by (5.5.7) as ε → 0 .
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