Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 12, 569 - 578

On the Spectral Norms of r-Circulant Matrices
with the k-Fibonacci and k-Lucas Numbers!
Shou-qiang SHEN

Department of Mathematics
Ningbo University, 315211 Ningbo, P.R. China
shenshouqgiang0@sina.com

Jian-miao CEN

Department of Mathematics
Ningbo University, 315211 Ningbo, P.R. China
cjmelj@mail.nbptt.zj.cn

Abstract

In this paper, we consider the k-Fibonacci and k-Lucas sequences
{sz,n}nEN and {Lk,n}nGN- Let A= Cr(Fk,O; Fk,l; te ,ka_l) and B =
Cr(Lko, L1, Lin—1) be r-circulant matrices. Afterwards, we give
upper and lower bounds for the spectral norms of matrices A and B. In
addition, we obtain some bounds for the spectral norms of Hadamard
and Kronecker products of these matrices.

Mathematics Subject Classification: 15A45, 15A60

Keywords: r-Circulant matrix; Spectral norm; k-Fibonacci number; k-
Lucas number

1 Introduction and Preliminaries

Forn > 1, let k£ be any positive real number, then the k-Fibonacci sequence
{Fin}tnen and the k-Lucas sequence { Ly, }nen are defined respectively by the
following equations:

Fyni1 = kFyp+ Fypno1, Fro=0, Fp1=1

Lyns1 =kLpy + Liypn—1, Lio=2, Ly1=k
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Obviously, when k = 1, these two sequences reduce to the well-known Fi-
bonacci sequence {F,, },en and Lucas sequence { L, },cn, respectively.

Let o and 3 be the roots of the characteristic equation 2> — kx — 1 = 0,
then the Binet formulas of the sequences {Fj ,}nen and {Lg,}nen have the
form 5

a — (3"
Fk,n - a4 — ﬂ 9

Recently, some authors have given generating functions, derivation of sums
and combinatorial representations of the k-Fibonacci numbers and its certain
generalizations [1-4]. For example, Kilic [2] has given the sums of squares of the
terms of sequence {u,,} and the sums of products of consecutive terms of {u,,},
then he has obtained the generating functions and combinatorial representa-
tions of the products u,u, 1 and u,u, 9. Falcon and Plaza [3] have derived
the generating functions and sums of the k-Fibonacci sequence {Fy antr pnen
and the alternating sequence {(—1)"Fj antr tnen, Where a,r are integers and
0<r<a-1.

Further, there have been several papers on the norms of some special matri-
ces [5-11]. For example, Solak and Bozkurt [5] have found out upper and lower
bounds for the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matri-
ces in the forms 7, = [m]?g’:l’ H, = [m]%ﬂ Solak [7,8] has defined
A = [a;;] and B = [b;;] as nxn circulant matrices, where a;; = Flimod(j—in)) and
bij = Lmod(j—in)), then he has given some bounds for the A and B matrices
concerned with the spectral and Euclidean norms. Bani-Domi and Kittaneh
[11] have established two general norm equalities for circulant and skew cir-
culant operator matrices, furthermore, they also have obtained pinching type
inequalities for operator matrices.

In this paper, let A = C,(Fgo, Fi1,- -+, Frn1) and B = C.(Lyo, Lg 1, - -,
Ly ,—1) be r-circulant matrices. Afterwards, we give upper and lower bounds
for the spectral norms of matrices A and B. In the partial case k = 1, we
find out lower and upper bounds for the spectral norms of r-circulant matrices
with the Fibonacci and Lucas numbers. In addition, we obtain some bounds
for the spectral norms of Hadamard and Kronecker products of these matrices.

Lk,n =a" + 3"

Now we give some preliminaries related to our study. A matrix C' = [¢;;] €
M, ,,(C) is called a r-circulant matrix if it is of the form

C“_{Cj—iu J =
4 TCntj—ir, J <1

Obviously, the r-circulant matrix C' is determined by parameter r and its
first row elements ¢, ¢, -+, ¢,1, thus we denote C' = Cy(co,c1, -+, Cn1).
Especially, let r = 1, the matrix C is called a circulant matrix.

For any A = [a;;] € M, »(C). The well-known Frobenius (or Euclidean)
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norm of matrix A is

IAllF =

ii ’%’\2]%

i=1j=1

and also the spectral norm of matrix A is

— . H
4l = s A(A72)

where \;(A% A) is eigenvalue of A# A and A is conjugate transpose of matrix
A. Then the following inequality holds:

1
j%ﬂMMSHMbSHMM (1)

Lemma 1! For any A, B € M,,.,(C), we have
|40 Blla < [[All2[|Bll2

where A o B is the Hadamard product of A and B.
Lemma 23 Let A € M,,,(C), B € M, ,(C) be given, then we have

IA® B2 = [|All2|| Bl

where A ® B is the Kronecker product of A and B.
Lemma 32 et Fi.n be the n-th term of the sequence {F}nen, then we
have

- Fk,n 1Fk,n
ZFsz = +T (2>

=0

Lemma 4 Forn > 1, then we have the following recursion formulas
(Z) Lk,n = ka:,n + 2Fk,n—1

(Z'Z')Lk:,nLk,n—l = (kQ + 4)Fk,an,n—1 + (—1)"71 - 2k.

Proof: (i) Since Fj,, = a:_ﬁn and a + 3 = k, then we have

-8B
kFipn+2Fn = 2Fpi1 — kFip
2 k
2 /on+l __ ont+ly Y n on
1
= e K - (25~ )
= "+ 08" =Ly

(ii) Taking into account o + § = k and a5 = —1, then we have

a — Bn . an—l _ ﬁn—l B &2n—1 _'_ﬂ2n—1 _ (Odﬂ)n_l(Od _'_ﬁ)
a—pf a—g (a —p)?
Oé2n71 + 527171 - (_1)n71k
k2 +4

Fk,an,nfl =
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then we obtain
Oé2n71 4 ﬁanl — (k2 4 4)Fk,an,n—1 + (_1)7171]{/,
hence

Lk,nLk,nfl — (an 4 Bn) A (anfl 4 ﬁnfl) — 0427171 4 ﬂ2n71 4 (_1)7171]f
(K +4) FpnFrr + (=1)"1 -2k

Thus, the proof is completed.

2 Main Results

Theorem 1 Let A= Cy(Fyo, Fin, -, Fin1) be r-circulant matriz, where
recC.
(i) If |r| > 1, then

Fkann—l |T‘ - |T‘n(Fkn+‘r|szn—l)
i i < < b bl
\ k < [All> < 1—klr| —1r?

(1)If |r| < 1, then

Fk,an,nfl Fk,n + Fk,nfl -1
e e

Proof: The matrix A is of the form

Fro Fia Fro ++ Fyna
TFk,nq Fk,o Fk,l te Fk,n72
A= | 7Frn—2 vFin-1 Fro - Fin-s
TFM TFk,z TFk,a te Fk,o
then we have
n—1 n—1
2 _ N 2 122
JA[[F = (n— i)y + > ilrPE
i=0 i=1

when |r| > 1, by Lemma 3, we obtain
2 S ) F2 - S 2 = 2 FenFin—1
i=0

i=1 =0

1 Fkannfl
> > o -
Al > Al 2 |

hence
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when |r| < 1, we also obtain

2 = N[22 = 2 122 2n71 2 MQFIC nFrn-1
JAIE = 3 (0= Dl PRE + Y ilrPEe = nlr? Y By = - =i
=0 i=1 i=0

FinFyn—
All = Al > [rlyf ekt

n—1 )
On the other hand, let f(x) = > Fj ;2" be a scalar-valued polynomial, and
i=0

7. = C(0,1,0,---,0) be a r-circulant matrix. then we have

n—1
— f(ﬂ-r) = Z Fk,iﬂ-:n
1=0

hence

hence

n—1 n—1 n—1
[All2 = 1Y Feamplla < 30 1 Framille < D Feallmellb

=0 1=0 1=0

Since the matrix 78, is of the form

7> 0 0 --- 0

0o 10 ---0

gz, = 0 01 0

0 00 1

hence

_ (o H _ Ir|, |r|>1
Il = M) = {1002

when |r| > 1,1 —a|r| # 0 and 1 — §|r| # 0, so we have

—F 1 [i=(al)" 1= (@)
Al < ZFmM—ZII | T
(o= 81— (o — Pl + @ )

(= B)1— (a+ )] +aBlrP)
| = Ir["(Fon + 7 Frn-1)
L= klr| = IrP

when |r| < 1, similarly, we have

n-l Fip+ Fopg—1
[ All2 < 3 i = ===

1=0
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Thus, the proof is completed.
If we choose k = 1 in Theorem 1, then we have the following result:

Corollary 1 Let A = C.(Fy, Fy,- -, F,_1) be r-circulant matriz, where
r € C, and F,, 1s the n-th Fibonacci number.
(i) If |r| > 1, then
| = |r|"(Fo + |7 Faa)

FLF < <
Vi = Ml = T

(1)If |r| < 1, then

7|/ FoFna < ||All2 < Fryr — 1.

In fact, this Corollary gives lower and upper bounds for the spectral norm
of r-circulant matrix with the Fibonacci numbers.
Theorem 2 Let B = C,.(Lgo, Lg1,- -+, Lk n—1) be r-circulant matriz, where

recC.
(i) If |r| > 1, then

4

< 2= kil = [k + 20r) Fn + 2 = ki P
- L=kl P

(1)If |r] < 1, then

4
\7“!\/(/6 + ) Fin -1+ 2(1+ (=1)"71) < [IB]2

< (k+2)Fen+ 2—k)Fypn1+k—2
—_— k .
Proof: The matrix B is of the form
Lo L1 Lyo -+ Lgp
TLk,nq Lk-,o Lk,l te Lk,n72
B = rLk,n72 TLk,nfl Lk-,o T Lk,n73

Ly rLys TLps -+ Lo

then we have .
.

n—1
||B||% = Z(n - Z)Lzz + Z Z'|T|2Li,i

=0 1=1
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since
Lk,nLk,nfl = (kLk,nfl + Lk,n72>Lk,n71 = kLiynfl + Lk,nflLk,n72 =
= kLj, + kL, o+ + kL + LiiLyyo
n—1
=0

then we have
n—1
Ly Ly
i=0
when |r| > 1, from (3), we obtain
2 S T2 = T2 = 2 Lk,nLk,n—l
=0 i=1 i=0

hence, by Lemma 4, we have

1 LinLi e 4
18]z > WHBHF > \/% +2= \/(k + E)sz,an:,n—l +2(14 (=1) 1)

when |r| < 1, we also obtain

n—1 n—1 n—1
Ly nLipn—
IBIE > 3 (n=dlrPLE o+ X ilrPLE, =l Y- L7, = nlrf? (En2t y2)
1=0 i=1 1=0

hence

1 4
1Bl > =Bl > 5+ D)o 5201+ (1)

n—1 i
On the other hand, let g(z) = > L ;2" be a scalar-valued polynomial, and
i=0

. = C.(0,1,0,---,0) be a r-circulant matrix. then we have

n—1
B = Q(Wr) = Z Lk,ﬂf«
=0

hence
n—1 ) n—1 ] n—1 ]
1Blla = I Y Liamplla < D [ Lkamylle < Y Ll |l
i=0 i=0 i=0
while
_ Il =1
Il = | fmase M) = {1012
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hence, when |r| > 1, by Lemma 4, we have

= i = i i i 1—(afr)™ 1= (BIr)"
I8l < 3 bl = X Ilfof +) = 0 e +
2 (a+ Blrl = (0" + el + aBlr]"* (0" + 57)
1= (a+B)|r|+aB|r?
2 —klr| = |r|™(Lgn + 7| Lin—1)

1 —klr|—|r]?
_ 2= Klr[ = [r|"[(k + 2|r) e + (2 — K[r]) Fini]
1—klr| —|r|? '

when |r| < 1, similarly, we have

(k+2)Fen+ 2—k)Fppn1+k—2

n—1
1Bll2 <> Li; = r

1=0

Thus, the proof is completed.

When k£ =1 in Theorem 2, then we have the following result:

Corollary 2 Let B = C,.(Lo, L1, -+, L,_1) be r-circulant matriz, where
r €C, and L, s the n-th Lucas number.

(i) If |r| > 1, then

VBEFoss +2(1+ (=1)71) < || Bl

< 2= Il = PP+ 2D o + 2 = Do)
. T—p— 1P

(1)If |r] < 1, then

|y /5EFrmy + 21+ (=1)7=1) < [|B]ly < 3F, + Foy — 1.

In fact, this Corollary gives lower and upper bounds for the spectral norm
of r-circulant matrix with the Lucas numbers.

Considering the results of Theorem 1 and Theorem 2, then we have the
following important results.

Corollary 3 Let A= CT(Fk,Ou FkJ, Ty ka_l) and B = Cr(Lkp, Lkz,la R
Ly n—1) be r-circulant matrices, where r € C.

(i) If |r| > 1, then

|T‘ - |T‘n(Fk,n + |T‘Fk,n—1)
1 —klr| —|r|?
2 Kl = [k 20r]) Fr + (2 = K|r|) Fr o]
L —Elr| —|r|?

[AoB|, <
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(1)If |r| <1, then

(Fk,n + Fk,n—l B 1) X [(k + Q)Fk:,n + (2 B k)Fk,n—l +k— 2]
k2

Ao By <

Proof: Since || Ao Bl < ||A|l2|B]|2, the proof is trivial by Theorems 1
and 2.

Corollary 4 Let A= C,(Fyo, Fr1,- -+, Frn1) and B = C,(Lyo, L1, - -,
Ly n—1) be r-circulant matrices, where r € C.

(i) If |r| > 1, then

|T‘ — |T‘n(Fk,n + ‘T|Fk,n—1)

B <
Aol < Mt
2 Rl = [k + 200 Fr + (2 = K|r[) Fro-i]
1—klr| —1r?

and

1
|A® B2 > E\/Fk,an,nfl[(k2 + ) FynFrn—1 + 2k(1 + (—=1)"1)]

(1)If |r] < 1, then

(Fk,n + Fk,nfl — 1) X [(l{ + 2)Fk,n + (2 — k)Fkynfl + k — 2]
k2

|A® Bl <

and

2
.
lA® B, = %% Fin Frn 1[(k2 + 4) Fyn Fropn 1 + 2k(1 + (—1)n1)].

Proof: Since || A ® B2 = || A||2||B]|2, the proof is trivial by Theorems 1
and 2.
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