Type II Codes over

$$F_2 + uF_2 + u^2F_2 + u^3F_2 + \dots + u^mF_2$$

Yasemin Cengellenmis

Department of Mathematics
Faculty of Science and Arts
Trakya University, 22030 Edirne, Turkey
ycengellenmis@yahoo.com

Abstract

We define Type II codes over $R = F_2 + uF_2 + u^2F_2 + u^3F_2 + + u^mF_2$, $m = 2k, k \in \mathbb{N}$. It is examined the existense of self dual code over R and we have the Gray images of the Type II codes over R.

Mathematics Subject Classification: 94B05

Keywords: Gray map; Type II codes; Self Dual codes

1. Introduction

Recently, self dual code over rings have received much attention. In [4], they studied Type II codes over $F_2 + uF_2$. Type II codes over $F_4 + uF_4$ were studied in [6]. In [2], Type II codes over $F_{2^m} + uF_{2^m}$ were studied. In [7], they defined Type II codes over $F_2 + uF_2 + u^2F_2$ as self dual codes with Lee weight a multiple of 4 and they examined the existence of self dual code $F_2 + uF_2 + u^2F_2$. Morever, they defined a Gray map from $F_2 + uF_2 + u^2F_2$ to F_2 and studied the properties of Type II codes in this rings.

In this paper, it is defined Type II codes over $F_2 + uF_2 + u^2F_2 + u^3F_2 + \dots + u^mF_2$, $m = 2k, k \in \mathbb{N}$. It is examined the existense of self-dual code over

R. We had defined a Gray map from $F_2 + uF_2 + u^2F_2 + u^3F_2 + \dots + u^mF_2$ to F_2 in [3]. By using this, we study the properties of the Type II code over R.

2. Preliminaries

Let R be the commutative ring $F_2 + uF_2 + u^2F_2 + u^3F_2 + + u^mF_2 := F_2[u]/\langle u^{m+1}\rangle$ where $m=2k, k\in N$. The ring is endowed with the obvious addition and multiplication with the property that $u^{m+1}=0$. Then R is a finite chain ring with maximal ideal uR. Since u is nilpotent with nilpotent index m+1, we have

$$R \subset (uR) \subset (u^2R) \ldots \subset (u^{m+1}R) = 0$$

Morever $R/uR \cong F_2$ and $|(u^iR)| = 2|(u^{i+1}R)| = 2^{(m+1)-i}, i = 0, 1, 2, ..., m$.

A linear code C over R of length n is a R-submodule of R^n . A element of C is called a codeword. The Hamming weight $wt_H(c)$ of a codeword c is the number of nonzero components. The minimum weight $wt_H(c)$ of a code C is the smallest weight among all its nonzero codewords.

For $x = (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, $d_H(x, y) = |\{i | x_i \neq y_i\}|$ is called Hamming distance between any distinct vectors $x, y \in \mathbb{R}^n$ is denoted

$$d_H(x,y) = wt_H(x-y)$$

The minimum Hamming distance between distinct pairs of codewords of a code C is called minimum distance of C and denoted by $d_H(C)$ or simply d_H .

If C is a linear code, then $d_H(C) = wt_H(C)$.

The definition Lee weight of an element $r \in R$ is analogous to the definition of the Lee weight of the element of the ring $Z_{2^{m+1}}$.

For example, if $M=F_2+uF_2+u^2F_2=\{0,1,u,u^2,v,v^2,uv,v^3\}$ where $u^3=0,v=1+u,v^2=1+u^2,uv=u+u^2,v^3=1+u+u^2$, the Lee weight a_r of an element r of the ring M is given by the following equations

Type II codes 597

$$a_r = \begin{cases} 0 & \text{if} & r = 0\\ 1 & \text{if} & r = 1 & \text{or} & r = v^2\\ 2 & \text{if} & r = u & \text{or} & r = uv\\ 3 & \text{if} & r = v & \text{or} & r = v^3\\ 4 & \text{if} & r = u^2 \end{cases}$$

The definition is analogous to the definition of the Lee weight of the elements of the ring Z_8 where $a_0 = 0$, $a_1 = a_7 = 1$, $a_2 = a_6 = 2$, $a_3 = a_5 = 3$, $a_4 = 4$.

The Lee weight of an element $x=(x_1,x_2,...,x_n)\in R^n$ is

$$wt_L(x) = \sum_{i=1}^n a_r$$

The Lee distance between $x, y \in \mathbb{R}^n$ is denoted $d_L(x, y) = wt_L(x - y)$. The minimum Lee distance d_L of a code C is defined analogously.[1]

Given $x = (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ their scalar pruduct is,

$$xy = x_1y_1 + x_2y_2 + \ldots + x_ny_n$$

Two words x, y are called orthogonal if xy = 0. For the code C over R, its dual C^{\perp} is defined as follows,

$$C^{\perp} = \{x | xy = 0, \forall y \in C\}$$

If $C \subseteq C^{\perp}$, we say that the code is self-orthogonal and, $C = C^{\perp}$ we say that the code is self-dual. Two codes are equivalent if one can be obtained from the other permuting the coordinates.

Any code over R is permutation equivalent to a code C with generator matrix of the form,

$$\begin{pmatrix}
I_{k_0} & A_{0,1} & A_{0,2} & \dots & A_{0,m+1} \\
0 & uI_{k_1} & uA_{1,2} & \dots & uA_{1,m+1} \\
0 & 0 & u^2I_{k_2} & \dots & u^2A_{2,m+1} \\
0 & 0 & 0 & \dots & u^3A_{3,m+1} \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & \dots & u^mA_{m,m+1}
\end{pmatrix}$$

where the matrices $A_{i,j}$ are binary matrices. A code with a generator matrix in this form is of type $\{k_0, k_1, \ldots, k_m\}$ and has $2^{(m+1)k_0+mk_1+\cdots+k_m}$ vectors.[8]

We had defined the Gray map ϕ in [3], as follows,

where $x_i = (x_0^i, x_1^i, \dots, x_{n-1}^i) \in F_2^n, i = 0, 1, 2, \dots, m.$

Proposition 2.1 The Gray map ϕ is distance preserving map or an isometry from (R^n, d_L) to $F_2^{2^m n}$ under the Hamming distance.

3. Self dual codes over R

In [5], they defined higher torsion codes. We follow the definition given there as in [7].

For the code C over R, we define the following torsion codes over F_2 . For $i = 0, 1, 2, \ldots, m$, define

$$Tor_i(C) = \{v | u^i v \in C\}$$

Type II codes 599

In general we note that

$$Tor_0(C) \subseteq Tor_1(C) \dots \subseteq Tor_m(C)$$

If $i = 0, Tor_i(C)$ is called the residue code and is often denoted by Res(C). In particular for a code over R with the following generator matrix

$$\begin{pmatrix}
I_{k_0} & A_{0,1} & A_{0,2} & \dots & A_{0,m+1} \\
0 & uI_{k_1} & uA_{1,2} & \dots & uA_{1,m+1} \\
0 & 0 & u^2I_{k_2} & \dots & u^2A_{2,m+1} \\
0 & 0 & 0 & \dots & u^3A_{3,m+1} \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & \dots & u^mA_{m,m+1}
\end{pmatrix}$$

the code $Res(C) = Tor_0(C)$ is the binary code generated by

$$(I_{k_0} \quad \bar{A_{0,1}} \quad \bar{A_{0,2}} \quad \dots \quad \bar{A_{0,m+1}})$$

where $\bar{A}_{0,j}$ is the reduction modulo u of $A_{0,j}$ for j=1,2,...,m+1

The code $Tor_1(C)$ is the binary code generated by

$$\begin{pmatrix}
I_{k_0} & \bar{A_{0,1}} & \bar{A_{0,2}} & \dots & \bar{A_{0,m+1}} \\
0 & I_{k_1} & \bar{A_{1,2}} & \dots & \bar{A_{1,m+1}}
\end{pmatrix}$$

and the code $Tor_i(C)$, s = 2, 3, ..., m is the binary code generated by

$$\begin{pmatrix}
I_{k_0} & A_{0,1}^{-} & A_{0,2}^{-} & \dots & A_{0,m+1}^{-} \\
0 & I_{k_1} & A_{1,2} & \dots & A_{1,m+1}^{-} \\
0 & 0 & I_{k_2} & \dots & A_{2,m+1}^{-} \\
0 & 0 & 0 & \dots & A_{3,m+1}^{-} \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & \dots & I_{k_s} & A_{s,m+1}^{-}
\end{pmatrix}$$

A code C over R has $2^{(m+1)k_0+mk_1+\cdots+k_m}$ elements and that

$$|Tor_0(C)||Tor_1(C)|\dots|Tor_m(C)| = 2^{k_0}2^{k_0+k_1}\dots2^{k_0+k_1+\dots+k_m}$$

then we have

$$|C| = |Tor_0(C)||Tor_1(C)|\dots|Tor_m(C)|$$

Lemma 3.1 If C is a self-orthogonal code over R, then $Res(C) = Tor_0(C)$ is a self-orthogonal code over F_2 .

Proof: If $[a, \acute{a}] = 0$ in R, then $[a(modu), \acute{a}(modu)] = 0$ in F_2 .

As a similar, it can be shown that $Tor_i(C)$ self-orthogonal code over F_2 , i = 1, 2, ..., m.

If C is a code over R of type $\{k_0, k_1, \ldots, k_m\}$ where $m = 2k, k \in N$, then C^{\perp} has type $\{n - k_0 - k_1 - \cdots - k_m, k_m, k_{m-1}, \ldots, k_1\}$. So we have

Theorem 3.2 Let *C* be a self dual code over *R* of type $\{k_0, k_1, ..., k_m\}$. Then $k_i = k_{(m+1)-i}$ for i = 1, 2, 3, ..., m/2 and $k_0 + k_1 + ... + k_{m/2} = n/2$.

Proof: As C is self dual code over R, therefore two type must be equal. So, we have $k_i = k_{(m+1)-i}$ for i = 1, 2, 3, ..., m/2. Then, if we apply this to the first coordinate in the type, we have $k_0 + k_1 + \cdots + k_{m/2} = n/2$.

Theorem 3.3 [9] Self dual codes of length n exist over F_2 if and only if n is even.

Corollary 3.4 Self dual codes of length n exist over R if and only if n is even .

In this section we study the Gray image of the Type II code over R.

4. The Gray image of type II code over R

Theorem 4.1 Let C be a code of length n over R. If C is self-orthogonal, so is $\phi(C)$. A code C is of Type II code over R if and only if $\phi(C)$ is a Type II

Type II codes 601

code over F_2 The minimum Lee weight of C is equal to the minimum Hamming weight of $\phi(C)$.

Proof: Let $a = a_0 + ua_1 + + u^m a_m, b = b_0 + ub_1 u + ... + u^m b_m$ be codewords in C.With Euclidean inner product,

$$ab = a_0b_0 + (a_0b_1 + a_1b_0)u + ... + u^m(a_0b_m + a_1b_{m-1} + ... + a_mb_0) = 0$$

Then we have

$$a_0b_0 = (a_0b_1 + a_1b_0)u = \dots = (a_0b_m + a_1b_{m-1} + \dots + a_mb_0) = 0$$

Because C is self orthogonal. Later, we have

$$\phi(a)\phi(b) = (a_m, a_m + a_0, \dots, a_m + a_{m-1} + \dots + a_0)(b_m, b_m + b_0, \dots, b_m + b_{m-1} + \dots + b_0) = 0$$

Because we study in F_2 . Using the fact that ϕ is a isometry, we have the last part of this theorem.

Corollary 4.2 There is a Type II of length n over R if and only if n is even.

References

- [1] M.Al Ashker, Simplex codes over $\sum_{s=0}^{n} u^{s} F_{2}$, Turk J. Math, 29, (2005), 221–233.
- [2] K. Betsumiya, S. Ling and F.R.Nemenzo, Type II codes over $F_{2^m} + uF_{2^m}$, Discrete Math., 275, no 7,(2004), 43–65.
- [3] Y.Cengellenmis, On the $(1 u^m)$ cyclic codes over $F_2 + uF_2 + \dots + u^m F_m$, Int J Comtemp Math. Sciences, 4, No 20, (2009), 987–992.
- [4] S.T.Dougherty, P. Gaboit, M. Harada, P Sole, Type II codes over $F_2 + uF_2$, IEEE Trans.Inf. Theory, **45**, No 6, (1999), 32–45.
- [5] S.T Dougherty ,Y.H. Park, *On modular cyclic codes*, Finite Fields and Their Appl., **13**, (2007), 31–57.

[6] S.Ling ,P.Sole, Type II codes over $F_4 + uF_4$, European J Combin.,12,no 7,(2001), 983–997.

- [7] Jian Fa Qian, L.Zhang, Z. Yin, Type II codes over $F_2 + uF_2 + u^2F_2$, Proceeding of 2006 IEEE Information Theory Workshop, (2006), 21–23.
- [8] Jian Fa Qian, W Ma, Self dual codes over the finite chain rings, IEEE Information Theory, (2008), 250–252.
- [9] E.M.Rains, N.J.Sloane, Self dual codes, Handbook of Coding Theory, (1998).

Received: August, 2009