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Abstract

In this paper, the concept of σ−connectivity in L−topological spaces

is introduced. Some properties for σ−connectivity in L−topological

spaces are characterized systematically. The famous K.Fan’s Theorem

holds for σ−connectivity in L−topological spaces.
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1 Introduction

Connectivity is one of the most important notions in topology. Pu and Liu [10]
introduced the definition of connectedness in fuzzy topological spaces. Since
then, many other authors have presented different kinds of connectivity in fuzzy
setting([8], [11], [7], [12]). In [3, 4, 5], Chen proposed the concept of σ−closed
L−set in fuzzy lattices and further developed different important topological
concepts such as σ−convergence and σ−continuous order homomorphisms by
means of fuzzy σ−open L−set.

In this paper, along the line of [4], we introduce the concept of σ− connect-
edness in L− topological spaces based on σ− open L−sets. σ−connectedness
preserves many nice properties of connectedness in general topological spaces.
Meanwhile, the famous K.Fan’s Theorem can be generalized to L−topological
spaces for σ− connectedness.

2 Preliminaries

Throughout this paper, (L,
∨

,
∧

,′ ) will denote a complete DeMorgan algebra.
For a nonempty set X, LX denotes the set of all L−fuzzy sets (L−sets for
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short) on X. The smallest element and the largest element in LX are denoted
by 0 and 1 respectively.

A non-null element a in L is called
∨

−irreducible element if a ≤ b
∨

c

implies a ≤ b or a ≤ c. The set of all
∨

−irreducible elements in L is denoted
by M∗(L).

An L−topological space is a pair (LX , δ), where δ is a subfamily of LX

which contains 0,1 and is closed for any suprema and finite infima. δ is called
an L−topology on X. Every member of δ is called an open L−set and its
quasicomplementation is called a closed L−set. The interior and closure of
P ∈ LX will be denoted by int(P ) and cl(P ) respectively.

Definition 2.1 [3] Let (LX , δ) be an L−topological space, e ∈ M ∗(LX)
and P, Q ∈ δ. Then P, Q are called an ordered pair of closed remote-neighborhood
of e, in symbol < P, Q >∈ η(e) × η(e), if e 6≤ P and Q ≤ int(P ).

Definition 2.2 [4] Let (LX , δ) be an L−topological space, A ∈ LX and
e ∈ M∗(LX).

(1) e is said to be a σ−adherence point of A, if A 6≤ Q for each < P, Q >∈
η(e)× η(e). The union of all σ−adherence points of A is called the σ−closure
of A which denoted by clσ(A).

(2) A is called a σ−closed set if clσ(A) ≤ A.
(3) A is called a σ−open set if A

′

is a σ−closed set.

Definition 2.3 [5] Let (LXi , δi)(i = 1, 2) be L−topological spaces and
f : LX1 → LX2 an order-homomorphism. Then f is called σ− continuous if
f−1(A) is σ−open for each σ−open set A in (LX2 , δ2).

3 σ−connectivity in L−topological spaces

In this section, we will introduce the concept of σ−connectivity in L−topological
spaces and discuss its basic properties.

Definition 3.1 Let (LX , δ) be an L−topological space and A, B ∈ LX .
Then A and B are called σ−separated if clσ(A)

∧

B = A
∧

clσ(B) = 0.

Definition 3.2 Let (LX , δ) be an L−topological space and A ∈ LX . A

is called σ−connected subset if there do not exist two non-null σ−separated
subsets B, C in LX such that A = B

∨

C. (LX , δ) is said to be a σ−connected
space if 1 is σ−connected.

Theorem 3.3 Let (LX , δ) be an L−topological space . Then the following
statements are equivalent:

(1) (LX , δ) is not a σ−connected space.
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(2) There exist two non-null σ−closed subsets A, B such that A
∨

B = 1
and A

∧

B = 0.
(3) There exist two non-null σ−open subsets A, B such that A

∨

B = 1 and
A

∧

B = 0.

Proof (1) ⇒ (2) Suppose (LX , δ) is not a σ−connected space. Then
there exist two non-null σ−separated subsets A, B such that A

∨

B = 1. It is
obvious that A

∧

B = 0. The fact that A is σ−closed follows from

clσ(A) = clσ(A)
∧

(A
∨

B) = (clσ(A)
∧

A)
∨

(clσ(A)
∧

B) = A.

Similarly, one can see that B is a σ−closed subset.
(2) ⇒ (1) It follows from Definition 3.1 and Definition 3.2.
(2) ⇒ (3) Assume that there exist two non-null σ−closed subsets C, D such

that C
∨

D = 1 and C
∧

D = 0. Then, C
′

, D
′

are two non-null σ−open sets
such that C

′ ∨

D
′

= 1 and C
′ ∧

D
′

= 0. Let A = C
′

, B = D
′

, thereby, A and
B satisfy (3). Similarly, one can prove (3) ⇒ (2).

Corollary 3.4 Let (LX , δ) be an L−topological space, then (LX , δ) is not a
σ−connected space if and only if there exist non-null subset A in LX such that
A is both σ−closed and σ−open .

Theorem 3.5 Let (LX , δ) be an L−topological space and A ∈ LX . Then
the following statements are equivalent:

(1) A is σ−connected.
(2) There do not exist two σ−closed subsets C, D such that

C
∧

A 6= 0, D
∧

A 6= 0, A ≤ C
∨

D and C
∧

D
∧

A = 0.

(3) There do not exist two σ−closed subsets C, D such that

A 6≤ C, A 6≤ D, A ≤ C
∨

D and C
∧

D
∧

A = 0.

Proof (1) ⇒ (2) Suppose A is σ−connected and there exist two σ−closed
subsets C, D such that

C
∧

A 6= 0, D
∧

A 6= 0, A ≤ C
∨

D and C
∧

D
∧

A = 0.

Then (C
∧

A)
∨

(D
∧

A) = (C
∨

D)
∧

A = A. One can see that clσ(C
∧

A)
∧

(D
∧

A) = 0 by

clσ(C
∧

A)
∧

(D
∧

A) ≤ clσ(C)
∧

(D
∧

A) = C
∧

D
∧

A = 0.

Similarly, clσ(D
∧

A)
∧

(C
∧

A) = 0. Hence, A is not σ−connected which is a
contradiction.
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(2) ⇒ (3) Suppose there exist two σ−closed subsets C, D such that

A 6≤ C, A 6≤ D, A ≤ C
∨

D and C
∧

D
∧

A = 0.

One can easily prove that C
∧

A 6= 0, D
∧

A 6= 0 which is a contradiction.
(3) ⇒ (1) Suppose A is not σ−connected. Then there exist two non-null

σ−separated subsets E, F in LX such that A = E
∨

F. Take C = clσ(E) and
D = clσ(F ). Then A = E

∨

F ≤ clσ(E)
∨

clσ(F ) = C
∨

D and C
∧

D
∧

A = 0
by that

clσ(E)
∧

clσ(F )
∧

A = clσ(E)
∧

clσ(F )
∧

(E
∨

F )

= (clσ(E)
∧

clσ(F )
∧

E)
∨

(clσ(E)
∧

clσ(F )
∧

F )

= (clσ(F )
∧

E)
∨

(clσ(E)
∧

F ) = 0.

Moreover one can get that A 6≤ C and A 6≤ D. In fact, if A ≤ C, then D
∧

A =
D

∧

(A
∧

C) = 0, i.e. clσ(F )
∧

A = 0. Hence, F = F
∧

A ≤ clσ(F )
∧

A = 0.
This is a contradiction. Similarly, one can have A 6≤ D. By the contradiction
to (3), we have that A is σ−connected.

Theorem 3.6 Let (LX , δ) be an L−topological space and A ∈ LX . Then
the following statements are equivalent:

(1) A is σ−connected.
(2) For any two non-null points a, b ≤ A, there exists a σ−connected subset

E in (LX , δ) such that a, b ≤ E ≤ A .
(3) For any two non-null points a, b ∈ M ∗(A), there exists a σ−connected

subset E in (LX , δ) such that a, b ≤ E ≤ A .

Proof (1) ⇒ (2) and (2) ⇒ (3) are obvious, we only prove (3) ⇒ (1).
Suppose A is not σ−connected in (LX , δ), then there exist two σ−closed

subsets C, D ∈ LX such that

A 6≤ C, A 6≤ D, A ≤ C
∨

D and C
∧

D
∧

A = 0.

By A =
∨

M∗(A), there exist a, b ∈ M ∗(A) such that a 6≤ C, b 6≤ D. Let E be
a σ−connected set in (LX , δ) such that a, b ≤ E ≤ A. Then we have that

E 6≤ C, E 6≤ D, E ≤ C
∨

D and C
∧

D
∧

E = 0.

By Theorem 3.5, E is not σ−connected which is a contradiction.

Theorem 3.7 Let A be σ−connected in an L−topological space (LX , δ). If
A ≤ B ≤ clσ(A), then B is a σ−connected subset in (LX , δ).
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Proof Suppose B is not a σ−connected subset in (LX , δ). Then there
exist two non-null σ−separated subsets C, D in LX such that B = C

∨

D. Let
E = A

∧

C and F = A
∧

D. Then

E
∨

F = (A
∧

C)
∨

(A
∧

D) = A
∧

(C
∨

D) = A
∧

B = A

and

clσ(E)
∧

F = E
∧

clσ(F ) = 0.

Hence, E = 0 or F = 0 for A is σ−connected. If E = 0, then A = F =
A

∧

D ≤ D, clσ(A) ≤ clσ(D). On the other hand, C ≤ B ≤ clσ(A), C =
C

∧

clσ(A) ≤ C
∧

clσ(D) = 0. That is, C = 0 which leads to a contradiction.
Similarly, one can get D = 0 if F = 0. So, B is σ−connected in (LX , δ).

Corollary 3.8 If A is σ−connected in (LX , δ), then so is clσ(A).

Theorem 3.9 Let (LX , δ) be an L−topological space and A ∈ LX is σ−
connected. If there exist two σ−separated subsets B and C in LX such that
A ≤ B

∨

C, then A ≤ B or A ≤ C.

Proof Let B and C be two σ−separated subsets in (LX , δ) such that
A ≤ B

∨

C. Then A
∧

B and A
∧

C are two σ−separated subsets by the
followings

clσ(A
∧

C)
∧

(A
∧

B) ≤ clσ(C)
∧

B = 0

and

clσ(A
∧

B)
∧

(A
∧

C) ≤ clσ(B)
∧

C = 0.

Since A is σ−connected and A = A
∧

(B
∨

C) = (A
∧

B)
∨

(A
∧

C), we get
A

∧

B = 0 or A
∧

C = 0. If A
∧

B = 0, then A = A
∧

C ≤ C. Similarly, if
A

∧

C = 0, then A ≤ B.

Theorem 3.10 Let {At}t∈T ⊂ LX be a family of σ−connected subsets in
(LX , δ). Suppose there exists s ∈ T such that At and As are not σ−separated
for each t ∈ T\{s}, then A =

∨

t∈T

At is σ−connected in (LX , δ).

Proof Let B and C be two σ−separated subsets in (LX , δ) such that
A = B

∨

C. We will show that B = 0 or C = 0 by Definition 3.2.
Take Bt = At

∧

B, Ct = At

∧

C for each t ∈ T . Then clσ(Bt)
∧

Ct =
clσ(Ct)

∧

Bt = 0. That is, Bt and Ct are σ−separated for each t ∈ T . One
can see that Bt = 0 or Ct = 0 by At = At

∧

A = (At

∧

B)
∨

(At

∧

C) = Bt

∨

Ct

and and At is σ−connected. It follows that At = Ct ≤ C or At = Bt ≤ B.
Especially, As = Cs ≤ C or As = Bs ≤ B. Without loss of generality, we
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may assume that As = Cs ≤ C. Then At ≤ C for each t ∈ T\{s}. In fact, if
At 6≤ C for some t ∈ T\{s}, then At ≤ B and

clσ(At)
∧

As = clσ(At)
∧

Cs ≤ clσ(B)
∧

C = 0,

At

∧

clσ(As) = At

∧

clσ(Cs) ≤ B
∧

clσ(C) = 0.

That is, At and As are σ−separated which is a contradiction. Therefore,
At ≤ C for each t ∈ T . It follows that A ≤ C and B = B

∧

A ≤ B
∧

C ≤
B

∧

Cσ
− = 0, i.e.,B = 0. Hence, A =

∨

t∈T

At is a σ−connected subset in (LX , δ).

Corollary 3.11 Let {At}t∈T ⊂ LX be a family of σ−connected subsets in
(LX , δ). If

∧

t∈T

At 6= 0, then A =
∨

t∈T

At is σ−connected in (LX , δ).

Definition 3.12 Let (LX , δ) be an L−topological space and A ∈ LX . A

is called a σ−connected component in (LX , δ) if A is a maximal σ−connected
L−set, i.e., A = B for each σ−connected L−set B in (LX , δ) such that A ≤ B.

Theorem 3.13 Let (LX , δ) be an L−topological space, then

(1) The union of all the σ−connected components of (LX , δ) equals 1.
(2) The intersection of different σ−connected components of (LX , δ) is

empty.
(3) Each σ−connected component of (LX , δ) is a σ−closed L−set.

Proof (1) Firstly, for each e ∈ M ∗(LX), e is a σ−connected subset. In
fact, if e is not a σ−connected subset, there exist two non-null σ−separated
subsets A and B such that e = A

∨

B. Since e is a molecule, e = A or e = B.
Then, A = 0 or B = 0 which is a contradiction.

For each e ∈ M ∗(LX), define A = {A(e) ∈ LX |A(e) is σ−connected such
that e ≤ A(e)}. Obviously, A 6= ∅. Let A =

∨

A, then A is σ−connected by
Corollary 3.11. Clearly, A is a σ−connected component (LX , δ). And A = 1
follows from that

∨

M∗(LX) = 1.
(2) Suppose A and B are different σ−connected components and A

∧

B 6=
∅. Then A

∨

B is σ−connected by Corollary 3.11 which is a contradiction.
(3) Suppose A is a σ−connected component in (LX , δ), then clσ(A) is σ−

connected and A ≤ clσ(A). Therefore, A = clσ(A) and A is σ−closed by
Definition 2.2, .

Theorem 3.14 Let (LXi , δi)(i = 1, 2) be two L−topological spaces and f :
LX1 → LX2 be a σ−continuous order homomorphism. If A is σ−connected in
(LX1 , δ1), then f(A) is σ−connected in (LX2 , δ2).
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Proof Suppose f(A) is not σ−connected. Then there are two σ−closed
L−sets C, D ∈ LX2 such that

f(A) 6≤ C, f(A) 6≤ D, f(A) ≤ C
∨

D and C
∧

D
∧

f(A) = 0.

So,

A 6≤ f−1(C), A 6≤ f−1(D), A ≤ f−1(C
∨

D) = f−1(C)
∨

f−1(D)

and

f−1(C)
∧

f−1(D)
∧

A ≤ f−1(C)
∧

f−1(D)
∧

f−1(f(A))

= f−1(C
∧

D
∧

f(A))

= 0.

Since f is σ−continuous, f−1(C) and f−1(D) are two σ− closed L−sets in
(LX1 , δ1). This shows that A is not σ−connected which is a contradiction.
Therefore f(A) is σ−connected in (LX2 , δ2).

Corollary 3.15 Let (LXi , δi)(i = 1, 2) be two L−topological spaces and f :
LX1 → LX2 be a σ−continuous onto order homomorphism. If (LX1 , δ1) is a
σ−connected L−topological space, then so is (LX2 , δ2).

Definition 3.16 Let (LX , δ) be an L−topological space and e ∈ M ∗(LX).
Then P ∈ LX is called σ−closed remote neighborhood of e if P is a σ−closed
subset such that e 6≤ P. The family of all σ−closed remote neighborhoods of e

is denoted by η−

σ (e). Q ∈ LX is called σ− remote neighborhood of e if there
exists P ∈ η−

σ (e) such that Q ≤ P. The family of all σ− remote neighborhoods
of e is denoted by ησ(e).

Theorem 3.17 (K.Fan Theorem) Let (LX , δ) be an L−topological space
and A ∈ LX . Then A is σ−connected if and only if for each pair a, b in M ∗(A)
and each σ−remote neighborhood mapping P : M ∗(A) →

⋃

{ησ(e)|e ∈ M∗(A)}
where P (e) ∈ ησ(e) for each e ∈ M ∗(A), there exists a finite number of points
e1 = a, e2, · · · , en = b in M∗(A) such that A 6≤ P (ei)

∨

P (ei+1), i = 1, 2, · · · , n−
1.

Proof Sufficiency. Suppose that A is not σ−connected. Then there exist
two non-null σ−separated L−subsets B, C ∈ LX such that A = B

∨

C. Define
the mapping P : M∗(A) →

⋃

{ησ(e)|e ∈ M∗(A)} as the following:

P (e) =

{

clσ(C), if e ≤ B,

clσ(B), if e ≤ C.
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We have e 6≤ P (e) since clσ(B)
∧

C = B
∧

clσ(C) = 0. By P (e) is a σ−closed
L−subset, P (e) ∈ ησ(e) for each e ∈ M ∗(A). Take the points a, b ∈ M ∗(A)
such that a ≤ B, b ≤ C. Since for arbitrary finite points e1 = a, e2, · · · , en = b

there is only one of ei ≤ B and ei ≤ C holds, we have P (ei) = clσ(B) or
P (ei) = clσ(C). But P (e1) = clσ(C) and P (en) = clσ(B), hence there exists
some j(1 ≤ j ≤ n − 1) such that P (ej) = clσ(C) and P (ej+1) = clσ(B). This
shows that

A = B
∨

C ≤ P (ej)
∨

P (ej+1)

which is a contradiction.
Necessity. Suppose that condition of theorem is not true, i.e, there are two

points a, b ∈ M∗(A) and a σ−remote neighborhood mapping P : M ∗(A) →
⋃

{ησ(e)|e ∈ M∗(A)} such that

A 6≤ P (ei)
∨

P (ei+1), i = 1, 2, · · · , n − 1

is not true for arbitrary finite points e1, · · · , en ∈ M∗(A). For the sake of
convenience, we follow the agreement that two points r and k are σ−linked
if there exist finite points e1 = r, e2, · · · , en = k in M∗(A) such that A 6≤
P (ei)

∨

P (ei+1), i = 1, 2, · · · , n− 1. Otherwise, r and k are not σ− linked. Let

Φ = {e ∈ M∗(A)|a and e are σ−linked},

Ψ = {e ∈ M∗(A)|a and e are not σ−linked},

B =
∨

Φ, C =
∨

Ψ.

Obviously, a and a are σ−linked for that a 6≤ P (a) implies A 6≤ P (a). So,
a ∈ Φ, a ≤ B. By the hypothesis, a and b are not σ−linked, then b ∈ Ψ and
b ≤ C. Hence, B 6= 0, C 6= 0. Since for each e ∈ M ∗(A), e ∈ Φ or e ∈ Ψ, we
have A = B

∨

C. We will prove clσ(B)
∧

C = B
∧

clσ(C) = 0. Hence, A is not
σ−connected which is a contradiction.

In fact, suppose clσ(B)
∧

C 6= 0 and take point d ≤ clσ(B)
∧

C. By d ≤
clσ(B), we have d 6≤ P (d) and B 6≤ P (d). So there is e ∈ Φ such that
e 6≤ P (d). Hence e 6≤ P (d)

∨

P (e) and e ≤ B ≤ A. Thus, A 6≤ P (d)
∨

P (e).
For e and a are σ−linked, then a and d are σ−linked. On the other hand, by
d ≤ C, we have C 6≤ P (d). There exists λ ∈ Ψ such that λ 6≤ P (d). Hence
λ 6≤ P (d)

∨

P (λ) and λ ≤ C ≤ A. Therefore, A 6≤ P (d)
∨

P (λ). By d and a are
σ−linked, we have a and λ are σ−linked. This contradicts that λ ∈ Ψ! Thus,
clσ(B)

∧

C = 0. Similarly, one can verify that B
∧

clσ(C) = 0.
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