σ -Connectivity in L-Topological Spaces

Bo Chen

School of Mathematics and Statistics Southwest University Chongqing 400715, P.R. China bobochen@swu.edu.cn

Abstract

In this paper, the concept of σ -connectivity in L-topological spaces is introduced. Some properties for σ -connectivity in L-topological spaces are characterized systematically. The famous K.Fan's Theorem holds for σ -connectivity in L-topological spaces.

Mathematics Subject Classification: 54A40

Keywords: L-topological space; Ordered closed R- neighborhood; σ separated set; σ -connectedness

1 Introduction

Connectivity is one of the most important notions in topology. Pu and Liu [10] introduced the definition of connectedness in fuzzy topological spaces. Since then, many other authors have presented different kinds of connectivity in fuzzy setting([8], [11], [7], [12]). In [3, 4, 5], Chen proposed the concept of σ -closed L-set in fuzzy lattices and further developed different important topological concepts such as σ -convergence and σ -continuous order homomorphisms by means of fuzzy σ -open L-set.

In this paper, along the line of [4], we introduce the concept of $\sigma-$ connectedness in L- topological spaces based on $\sigma-$ open L-sets. $\sigma-$ connectedness preserves many nice properties of connectedness in general topological spaces. Meanwhile, the famous K.Fan's Theorem can be generalized to L-topological spaces for $\sigma-$ connectedness.

2 Preliminaries

Throughout this paper, $(L, \vee, \wedge,')$ will denote a complete DeMorgan algebra. For a nonempty set X, L^X denotes the set of all L-fuzzy sets (L-sets for

short) on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$ respectively.

A non-null element a in L is called \bigvee -irreducible element if $a \leq b \bigvee c$ implies $a \leq b$ or $a \leq c$. The set of all \bigvee -irreducible elements in L is denoted by $M^*(L)$.

An L-topological space is a pair (L^X, δ) , where δ is a subfamily of L^X which contains 0,1 and is closed for any suprema and finite infima. δ is called an L-topology on X. Every member of δ is called an open L-set and its quasicomplementation is called a closed L-set. The interior and closure of $P \in L^X$ will be denoted by int(P) and cl(P) respectively.

Definition 2.1 [3] Let (L^X, δ) be an L-topological space, $e \in M^*(L^X)$ and $P, Q \in \delta$. Then P, Q are called an ordered pair of closed remote-neighborhood of e, in symbol $< P, Q > \in \eta(e) \times \eta(e)$, if $e \not\leq P$ and $Q \leq int(P)$.

Definition 2.2 [4] Let (L^X, δ) be an L-topological space, $A \in L^X$ and $e \in M^*(L^X)$.

- (1) e is said to be a σ -adherence point of A, if $A \not\leq Q$ for each $\langle P, Q \rangle \in \eta(e) \times \eta(e)$. The union of all σ -adherence points of A is called the σ -closure of A which denoted by $cl_{\sigma}(A)$.
 - (2) A is called a σ -closed set if $cl_{\sigma}(A) \leq A$.
 - (3) A is called a σ -open set if A' is a σ -closed set.

Definition 2.3 [5] Let $(L^{X_i}, \delta_i)(i = 1, 2)$ be L-topological spaces and $f: L^{X_1} \to L^{X_2}$ an order-homomorphism. Then f is called σ -continuous if $f^{-1}(A)$ is σ -open for each σ -open set A in (L^{X_2}, δ_2) .

3 σ -connectivity in L-topological spaces

In this section, we will introduce the concept of σ -connectivity in L-topological spaces and discuss its basic properties.

Definition 3.1 Let (L^X, δ) be an L-topological space and $A, B \in L^X$. Then A and B are called σ -separated if $cl_{\sigma}(A) \land B = A \land cl_{\sigma}(B) = \underline{0}$.

Definition 3.2 Let (L^X, δ) be an L-topological space and $A \in L^X$. A is called σ -connected subset if there do not exist two non-null σ -separated subsets B, C in L^X such that $A = B \vee C$. (L^X, δ) is said to be a σ -connected space if $\underline{1}$ is σ -connected.

Theorem 3.3 Let (L^X, δ) be an L-topological space. Then the following statements are equivalent:

(1) (L^X, δ) is not a σ -connected space.

- (2) There exist two non-null σ -closed subsets A, B such that $A \vee B = \underline{1}$ and $A \wedge B = \underline{0}$.
- (3) There exist two non-null σ -open subsets A, B such that $A \vee B = \underline{1}$ and $A \wedge B = \underline{0}$.

Proof (1) \Rightarrow (2) Suppose (L^X, δ) is not a σ -connected space. Then there exist two non-null σ -separated subsets A, B such that $A \vee B = \underline{1}$. It is obvious that $A \wedge B = \underline{0}$. The fact that A is σ -closed follows from

$$cl_{\sigma}(A) = cl_{\sigma}(A) \bigwedge (A \bigvee B) = (cl_{\sigma}(A) \bigwedge A) \bigvee (cl_{\sigma}(A) \bigwedge B) = A.$$

Similarly, one can see that B is a σ -closed subset.

- $(2) \Rightarrow (1)$ It follows from Definition 3.1 and Definition 3.2.
- $(2) \Rightarrow (3)$ Assume that there exist two non-null σ -closed subsets C, D such that $C \vee D = \underline{1}$ and $C \wedge D = \underline{0}$. Then, C', D' are two non-null σ -open sets such that $C' \vee D' = \underline{1}$ and $C' \wedge D' = \underline{0}$. Let A = C', B = D', thereby, A and B satisfy (3). Similarly, one can prove (3) \Rightarrow (2).

Corollary 3.4 Let (L^X, δ) be an L-topological space, then (L^X, δ) is not a σ -connected space if and only if there exist non-null subset A in L^X such that A is both σ -closed and σ -open .

Theorem 3.5 Let (L^X, δ) be an L-topological space and $A \in L^X$. Then the following statements are equivalent:

- (1) A is σ -connected.
- (2) There do not exist two σ -closed subsets C, D such that

$$C \wedge A \neq \underline{0}, D \wedge A \neq \underline{0}, A \leq C \vee D \text{ and } C \wedge D \wedge A = \underline{0}.$$

(3) There do not exist two σ -closed subsets C, D such that

$$A \nleq C, A \nleq D, A \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge A = \underline{0}.$$

Proof (1) \Rightarrow (2) Suppose A is σ -connected and there exist two σ -closed subsets C, D such that

$$C \bigwedge A \neq \underline{0}, D \bigwedge A \neq \underline{0}, A \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge A = \underline{0}.$$

Then $(C \wedge A) \vee (D \wedge A) = (C \vee D) \wedge A = A$. One can see that $cl_{\sigma}(C \wedge A) \wedge (D \wedge A) = \underline{0}$ by

$$cl_{\sigma}(C \land A) \land (D \land A) \leq cl_{\sigma}(C) \land (D \land A) = C \land D \land A = \underline{0}.$$

Similarly, $cl_{\sigma}(D \wedge A) \wedge (C \wedge A) = \underline{0}$. Hence, A is not σ -connected which is a contradiction.

 $(2) \Rightarrow (3)$ Suppose there exist two σ -closed subsets C, D such that

$$A \nleq C, A \nleq D, A \leq C \bigvee D$$
 and $C \bigwedge D \bigwedge A = \underline{0}$.

One can easily prove that $C \wedge A \neq \underline{0}, D \wedge A \neq \underline{0}$ which is a contradiction.

(3) \Rightarrow (1) Suppose A is not σ -connected. Then there exist two non-null σ -separated subsets E, F in L^X such that $A = E \vee F$. Take $C = cl_{\sigma}(E)$ and $D = cl_{\sigma}(F)$. Then $A = E \vee F \leq cl_{\sigma}(E) \vee cl_{\sigma}(F) = C \vee D$ and $C \wedge D \wedge A = \underline{0}$ by that

$$cl_{\sigma}(E) \bigwedge cl_{\sigma}(F) \bigwedge A = cl_{\sigma}(E) \bigwedge cl_{\sigma}(F) \bigwedge (E \bigvee F)$$

$$= (cl_{\sigma}(E) \bigwedge cl_{\sigma}(F) \bigwedge E) \bigvee (cl_{\sigma}(E) \bigwedge cl_{\sigma}(F) \bigwedge F)$$

$$= (cl_{\sigma}(F) \bigwedge E) \bigvee (cl_{\sigma}(E) \bigwedge F) = \underline{0}.$$

Moreover one can get that $A \not\leq C$ and $A \not\leq D$. In fact, if $A \leq C$, then $D \wedge A = D \wedge (A \wedge C) = \underline{0}$, i.e. $cl_{\sigma}(F) \wedge A = \underline{0}$. Hence, $F = F \wedge A \leq cl_{\sigma}(F) \wedge A = \underline{0}$. This is a contradiction. Similarly, one can have $A \not\leq D$. By the contradiction to (3), we have that A is σ -connected.

Theorem 3.6 Let (L^X, δ) be an L-topological space and $A \in L^X$. Then the following statements are equivalent:

- (1) A is σ -connected.
- (2) For any two non-null points $a, b \leq A$, there exists a σ -connected subset E in (L^X, δ) such that $a, b \leq E \leq A$.
- (3) For any two non-null points $a, b \in M^*(A)$, there exists a σ -connected subset E in (L^X, δ) such that $a, b \leq E \leq A$.

Proof (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious, we only prove (3) \Rightarrow (1). Suppose A is not σ -connected in (L^X, δ) , then there exist two σ -closed subsets $C, D \in L^X$ such that

$$A \nleq C, A \nleq D, A \leq C \bigvee D$$
 and $C \bigwedge D \bigwedge A = \underline{0}$.

By $A = \bigvee M^*(A)$, there exist $a, b \in M^*(A)$ such that $a \not\leq C, b \not\leq D$. Let E be a σ -connected set in (L^X, δ) such that $a, b \leq E \leq A$. Then we have that

$$E \nleq C, E \nleq D, E \leq C \bigvee D$$
 and $C \bigwedge D \bigwedge E = \underline{0}$.

By Theorem 3.5, E is not σ -connected which is a contradiction.

Theorem 3.7 Let A be σ -connected in an L-topological space (L^X, δ) . If $A \leq B \leq cl_{\sigma}(A)$, then B is a σ -connected subset in (L^X, δ) .

Proof Suppose B is not a σ -connected subset in (L^X, δ) . Then there exist two non-null σ -separated subsets C, D in L^X such that $B = C \vee D$. Let $E = A \wedge C$ and $F = A \wedge D$. Then

$$E \bigvee F = (A \bigwedge C) \bigvee (A \bigwedge D) = A \bigwedge (C \bigvee D) = A \bigwedge B = A$$

and

$$cl_{\sigma}(E) \bigwedge F = E \bigwedge cl_{\sigma}(F) = \underline{0}.$$

Hence, $E = \underline{0}$ or $F = \underline{0}$ for A is σ -connected. If $E = \underline{0}$, then $A = F = A \wedge D \leq D$, $cl_{\sigma}(A) \leq cl_{\sigma}(D)$. On the other hand, $C \leq B \leq cl_{\sigma}(A)$, $C = C \wedge cl_{\sigma}(A) \leq C \wedge cl_{\sigma}(D) = \underline{0}$. That is, $C = \underline{0}$ which leads to a contradiction. Similarly, one can get $D = \underline{0}$ if $F = \underline{0}$. So, B is σ -connected in (L^X, δ) .

Corollary 3.8 If A is σ -connected in (L^X, δ) , then so is $cl_{\sigma}(A)$.

Theorem 3.9 Let (L^X, δ) be an L-topological space and $A \in L^X$ is σ connected. If there exist two σ -separated subsets B and C in L^X such that $A \leq B \vee C$, then $A \leq B$ or $A \leq C$.

Proof Let B and C be two σ -separated subsets in (L^X, δ) such that $A \leq B \vee C$. Then $A \wedge B$ and $A \wedge C$ are two σ -separated subsets by the followings

$$cl_{\sigma}(A \bigwedge C) \bigwedge (A \bigwedge B) \le cl_{\sigma}(C) \bigwedge B = \underline{0}$$

and

$$cl_{\sigma}(A \bigwedge B) \bigwedge (A \bigwedge C) \le cl_{\sigma}(B) \bigwedge C = \underline{0}.$$

Since A is σ -connected and $A = A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$, we get $A \wedge B = \underline{0}$ or $A \wedge C = \underline{0}$. If $A \wedge B = \underline{0}$, then $A = A \wedge C \leq C$. Similarly, if $A \wedge C = 0$, then $A \leq B$.

Theorem 3.10 Let $\{A_t\}_{t\in T}\subset L^X$ be a family of σ -connected subsets in (L^X,δ) . Suppose there exists $s\in T$ such that A_t and A_s are not σ -separated for each $t\in T\setminus\{s\}$, then $A=\bigvee_{t\in T}A_t$ is σ -connected in (L^X,δ) .

Proof Let B and C be two σ -separated subsets in (L^X, δ) such that $A = B \vee C$. We will show that $B = \underline{0}$ or $C = \underline{0}$ by Definition 3.2.

Take $B_t = A_t \wedge B$, $C_t = A_t \wedge C$ for each $t \in T$. Then $cl_{\sigma}(B_t) \wedge C_t = cl_{\sigma}(C_t) \wedge B_t = \underline{0}$. That is, B_t and C_t are σ -separated for each $t \in T$. One can see that $B_t = \underline{0}$ or $C_t = \underline{0}$ by $A_t = A_t \wedge A = (A_t \wedge B) \vee (A_t \wedge C) = B_t \vee C_t$ and and A_t is σ -connected. It follows that $A_t = C_t \leq C$ or $A_t = B_t \leq B$. Especially, $A_s = C_s \leq C$ or $A_s = B_s \leq B$. Without loss of generality, we

may assume that $A_s = C_s \leq C$. Then $A_t \leq C$ for each $t \in T \setminus \{s\}$. In fact, if $A_t \not\leq C$ for some $t \in T \setminus \{s\}$, then $A_t \leq B$ and

$$cl_{\sigma}(A_t) \bigwedge A_s = cl_{\sigma}(A_t) \bigwedge C_s \le cl_{\sigma}(B) \bigwedge C = \underline{0},$$

$$A_t \wedge cl_{\sigma}(A_s) = A_t \wedge cl_{\sigma}(C_s) \leq B \wedge cl_{\sigma}(C) = \underline{0}.$$

That is, A_t and A_s are σ -separated which is a contradiction. Therefore, $A_t \leq C$ for each $t \in T$. It follows that $A \leq C$ and $B = B \land A \leq B \land C \leq B \land C_{\sigma}^{-} = \underline{0}$, i.e., $B = \underline{0}$. Hence, $A = \bigvee_{t \in T} A_t$ is a σ -connected subset in (L^X, δ) .

Corollary 3.11 Let $\{A_t\}_{t\in T}\subset L^X$ be a family of σ -connected subsets in (L^X,δ) . If $\bigwedge_{t\in T}A_t\neq \underline{0}$, then $A=\bigvee_{t\in T}A_t$ is σ -connected in (L^X,δ) .

Definition 3.12 Let (L^X, δ) be an L-topological space and $A \in L^X$. A is called a σ -connected component in (L^X, δ) if A is a maximal σ -connected L-set, i.e., A = B for each σ -connected L-set B in (L^X, δ) such that $A \leq B$.

Theorem 3.13 Let (L^X, δ) be an L-topological space, then

- (1) The union of all the σ -connected components of (L^X, δ) equals $\underline{1}$.
- (2) The intersection of different σ -connected components of (L^X, δ) is empty.
 - (3) Each σ -connected component of (L^X, δ) is a σ -closed L-set.

Proof (1) Firstly, for each $e \in M^*(L^X)$, e is a σ -connected subset. In fact, if e is not a σ -connected subset, there exist two non-null σ -separated subsets A and B such that $e = A \vee B$. Since e is a molecule, e = A or e = B. Then, $A = \underline{0}$ or $B = \underline{0}$ which is a contradiction.

For each $e \in M^*(L^X)$, define $\mathcal{A} = \{A(e) \in L^X | A(e) \text{ is } \sigma\text{-connected such that } e \leq A(e)\}$. Obviously, $\mathcal{A} \neq \emptyset$. Let $A = \bigvee \mathcal{A}$, then A is $\sigma\text{-connected by Corollary 3.11. Clearly, <math>A$ is a $\sigma\text{-connected component } (L^X, \delta)$. And $A = \underline{1}$ follows from that $\bigvee M^*(L^X) = \underline{1}$.

- (2) Suppose A and B are different σ -connected components and $A \wedge B \neq \emptyset$. Then $A \vee B$ is σ -connected by Corollary 3.11 which is a contradiction.
- (3) Suppose A is a σ -connected component in (L^X, δ) , then $cl_{\sigma}(A)$ is σ -connected and $A \leq cl_{\sigma}(A)$. Therefore, $A = cl_{\sigma}(A)$ and A is σ -closed by Definition 2.2, .

Theorem 3.14 Let $(L^{X_i}, \delta_i)(i = 1, 2)$ be two L-topological spaces and $f: L^{X_1} \to L^{X_2}$ be a σ -continuous order homomorphism. If A is σ -connected in (L^{X_1}, δ_1) , then f(A) is σ -connected in (L^{X_2}, δ_2) .

Proof Suppose f(A) is not σ -connected. Then there are two σ -closed L-sets $C, D \in L^{X_2}$ such that

$$f(A) \not\leq C, f(A) \not\leq D, f(A) \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge f(A) = \underline{0}.$$

So,

$$A \not \leq f^{-1}(C), A \not \leq f^{-1}(D), A \leq f^{-1}(C \bigvee D) = f^{-1}(C) \bigvee f^{-1}(D)$$

and

$$f^{-1}(C) \bigwedge f^{-1}(D) \bigwedge A \leq f^{-1}(C) \bigwedge f^{-1}(D) \bigwedge f^{-1}(f(A))$$

$$= f^{-1}(C \bigwedge D \bigwedge f(A))$$

$$= \underline{0}.$$

Since f is σ -continuous, $f^{-1}(C)$ and $f^{-1}(D)$ are two σ - closed L-sets in (L^{X_1}, δ_1) . This shows that A is not σ -connected which is a contradiction. Therefore f(A) is σ -connected in (L^{X_2}, δ_2) .

Corollary 3.15 Let $(L^{X_i}, \delta_i)(i = 1, 2)$ be two L-topological spaces and $f: L^{X_1} \to L^{X_2}$ be a σ -continuous onto order homomorphism. If (L^{X_1}, δ_1) is a σ -connected L-topological space, then so is (L^{X_2}, δ_2) .

Definition 3.16 Let (L^X, δ) be an L-topological space and $e \in M^*(L^X)$. Then $P \in L^X$ is called σ -closed remote neighborhood of e if P is a σ -closed subset such that $e \not\leq P$. The family of all σ -closed remote neighborhoods of e is denoted by $\eta_{\sigma}^-(e)$. $Q \in L^X$ is called σ -remote neighborhood of e if there exists $P \in \eta_{\sigma}^-(e)$ such that $Q \leq P$. The family of all σ -remote neighborhoods of e is denoted by $\eta_{\sigma}(e)$.

Theorem 3.17 (K.Fan Theorem) Let (L^X, δ) be an L-topological space and $A \in L^X$. Then A is σ -connected if and only if for each pair a, b in $M^*(A)$ and each σ -remote neighborhood mapping $P: M^*(A) \to \bigcup \{\eta_{\sigma}(e) | e \in M^*(A)\}$ where $P(e) \in \eta_{\sigma}(e)$ for each $e \in M^*(A)$, there exists a finite number of points $e_1 = a, e_2, \dots, e_n = b$ in $M^*(A)$ such that $A \not\leq P(e_i) \lor P(e_{i+1}), i = 1, 2, \dots, n-1$.

Proof Sufficiency. Suppose that A is not σ -connected. Then there exist two non-null σ -separated L-subsets $B, C \in L^X$ such that $A = B \vee C$. Define the mapping $P: M^*(A) \to \bigcup \{\eta_{\sigma}(e) | e \in M^*(A)\}$ as the following:

$$P(e) = \begin{cases} cl_{\sigma}(C), & \text{if } e \leq B, \\ cl_{\sigma}(B), & \text{if } e \leq C. \end{cases}$$

We have $e \not\leq P(e)$ since $cl_{\sigma}(B) \wedge C = B \wedge cl_{\sigma}(C) = \underline{0}$. By P(e) is a σ -closed L-subset, $P(e) \in \eta_{\sigma}(e)$ for each $e \in M^*(A)$. Take the points $a, b \in M^*(A)$ such that $a \leq B, b \leq C$. Since for arbitrary finite points $e_1 = a, e_2, \dots, e_n = b$ there is only one of $e_i \leq B$ and $e_i \leq C$ holds, we have $P(e_i) = cl_{\sigma}(B)$ or $P(e_i) = cl_{\sigma}(C)$. But $P(e_1) = cl_{\sigma}(C)$ and $P(e_n) = cl_{\sigma}(B)$, hence there exists some $j(1 \leq j \leq n-1)$ such that $P(e_j) = cl_{\sigma}(C)$ and $P(e_{j+1}) = cl_{\sigma}(B)$. This shows that

$$A = B \bigvee C \leq P(e_j) \bigvee P(e_{j+1})$$

which is a contradiction.

Necessity. Suppose that condition of theorem is not true, i.e, there are two points $a,b \in M^*(A)$ and a σ -remote neighborhood mapping $P: M^*(A) \to \bigcup \{\eta_{\sigma}(e) | e \in M^*(A)\}$ such that

$$A \not\leq P(e_i) \bigvee P(e_{i+1}), i = 1, 2, \dots, n-1$$

is not true for arbitrary finite points $e_1, \dots, e_n \in M^*(A)$. For the sake of convenience, we follow the agreement that two points r and k are σ -linked if there exist finite points $e_1 = r, e_2, \dots, e_n = k$ in $M^*(A)$ such that $A \not\leq P(e_i) \vee P(e_{i+1}), i = 1, 2, \dots, n-1$. Otherwise, r and k are not σ - linked. Let

$$\Phi = \{e \in M^*(A) | a \text{ and } e \text{ are } \sigma\text{-linked}\},$$

$$\Psi = \{e \in M^*(A) | a \text{ and } e \text{ are not } \sigma\text{-linked}\},\$$

$$B=\bigvee\Phi,C=\bigvee\Psi.$$

Obviously, a and a are σ -linked for that $a \not\leq P(a)$ implies $A \not\leq P(a)$. So, $a \in \Phi, a \leq B$. By the hypothesis, a and b are not σ -linked, then $b \in \Psi$ and $b \leq C$. Hence, $B \neq \underline{0}, C \neq \underline{0}$. Since for each $e \in M^*(A)$, $e \in \Phi$ or $e \in \Psi$, we have $A = B \vee C$. We will prove $cl_{\sigma}(B) \wedge C = B \wedge cl_{\sigma}(C) = \underline{0}$. Hence, A is not σ -connected which is a contradiction.

In fact, suppose $cl_{\sigma}(B) \wedge C \neq \underline{0}$ and take point $d \leq cl_{\sigma}(B) \wedge C$. By $d \leq cl_{\sigma}(B)$, we have $d \not\leq P(d)$ and $B \not\leq P(d)$. So there is $e \in \Phi$ such that $e \not\leq P(d)$. Hence $e \not\leq P(d) \vee P(e)$ and $e \leq B \leq A$. Thus, $A \not\leq P(d) \vee P(e)$. For e and a are σ -linked, then a and d are σ -linked. On the other hand, by $d \leq C$, we have $C \not\leq P(d)$. There exists $\lambda \in \Psi$ such that $\lambda \not\leq P(d)$. Hence $\lambda \not\leq P(d) \vee P(\lambda)$ and $\lambda \leq C \leq A$. Therefore, $A \not\leq P(d) \vee P(\lambda)$. By d and d are d-linked, we have d and d are d-linked. This contradicts that d are d-linked. Thus, d-linked d-linked d-linked d-linked. Thus, d-linked d-

References

[1] D.M. Ali, A.K. Srivastava, On fuzzy connectedness, Fuzzy Sets and Systems, 28(1998), 203-208.

- [2] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl,24(1968), 182-190.
- [3] S.L. Chen, Urysohn-closedness on fuzzy lattices, *J. Uncertainty, Fuzziness* and *Knowledge-Based Systems*, **64**(1994), 105-112.
- [4] S.L. Chen, σ -convergence theory and its applications in fuzzy lattices, Information Sciences, **165**(2004), 45-58.
- [5] S.L. Chen, J.H. Zhang, M.X. Weng, L-fuzzy σ -continuous order homomorphisms and some characterizatons, Fuzzy systems and mathematics, **14**(2000), 15-18.
- [6] S.L. Chen, U-convergence and L-fuzzy U-sets, Information Sciences, 87(1995), 205-213.
- [7] U.V. Fatteh, D.S. Bassan, Fuzzy connectedness and its stronger forms, *J. Math. Anal. Appl*, **111**(1985), 449-464.
- [8] S.G. Li, Connectedness in L-fuzzy topological spaces, Fuzzy Sets and Systems, **116**(2000), 361-368.
- [9] Y.M. Liu, M.K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
- [10] P.M. Pu, Y.M. Liu, Fuzzy topology I,neighborhood structure of a fuzzy point and Moore-Smith convergence, *J. Math. Anal. Appl.*, **76**(1980), 571-599.
- [11] S.E. Rodabaugh, Connectivity and the L-fuzzy unit interval, Rocky Mount.J.Math, 12(1982), 113-121.
- [12] F.G. Shi, C.Y. Zheng, Connectivity in L-fuzzy topological molecular lattices, Fuzzy Sets and Systems, **29**(1989), 363-370.
- [13] N. Turnli, D. Coker, On some types of fuzzy connectedness in fuzzy topological spaces, Fuzzy Sets and Systems, **60**(1993), 97-102.
- [14] G.J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an, 1988.

Received: July, 2010