Kernels and k-Kernels in Orientations of the Path Graph

Hortensia Galeana-Sánchez

Instituto de Matemáticas, UNAM Area de la Investigación Científica Ciudad Universitaria, 04510, México, D.F., México hgaleana@matem.unam.mx

Laura Pastrana-Ramírez

Departamento de Matemáticas Facultad de Ciencias, UNAM Area de la Investigación Científica Ciudad Universitaria, 04510, México, D.F., México

Abstract

Let G be a graph. The path graph of G, denoted T(G), is defined as follows:

- (a) V(T(G)) is the set of paths of G whose length is at least one.
- (b) For $h, k \in V(T(G))$, $(h, k) \in E(T(G))$ if and only if they are adjacent as paths in G (i.e. they have only one common endpoint).

In this paper we prove the two following results:

- (1) Let D be an orientation of T(G) such that each directed triangle is symmetrical. If each odd directed cycle of D, $\overrightarrow{\mathcal{C}} = (0, 1, \dots, n-1, 0)$ with $\ell(\overrightarrow{\mathcal{C}}) \geq 5$ has a chord (i, j) such that at least one of the two following properties holds:
 - (a) $j \notin \{i-2, i+2\}$ or
 - (b) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathcal{C}}$; (r, s) then D has a kernel.
- (2) Let D be an orientation of T(G) such that $\operatorname{Asym}(D)$ is strongly connected and each directed triangle has two symmetrical arcs. If every directed cycle of D, $\overrightarrow{C} = (0, 1, \dots, n-1, 0)$ with $\ell(\overrightarrow{C}) \not\equiv 0 \pmod{k}$

has a chord (i, j) such that at least one of the two following properties holds:

```
(a) j \notin \{i-2, i+2\} or

(b) if j \in \{i-2, i+2\}, then there exists another chord of \overrightarrow{\mathbb{C}}; (r,s) with (r,s) \neq (j,i),

then D has a k-kernel, (k \geq 3).
```

Mathematics Subject Classification: 05C20

Keywords: kernel, k-kernel, path graph

1 Introduction

For general Graph Theory concepts we refer the reader to [1]. Let G be a graph; V(G) and E(G) will denote the sets of vertices and edges of G respectively. A digraph D is an orientation of G if D is obtained by directing each edge of G in at least one of the two possible directions. If $S \subseteq V(G)$ or $T \subseteq E(G)$, then G[S] and G[T] will denote the subgraphs of G induced by S and T respectively.

Let D be a digraph; V(D) and A(D) will denote the sets of vertices and arcs of D respectively. An arc $(u_1, u_2) \in A(D)$ is called asymmetrical (respectively symmetrical) if $(u_2, u_1) \notin A(D)$ (resp. $(u_2, u_1) \in A(D)$). The asymmetrical part of D (resp. symmetrical part of D) which is denoted by Asym(D) (resp. Sym(D)) is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D.

If $\mathfrak{T} = (0, 1, \dots, n-1, n)$ is a path of the graph G, then the vertices 0 and n are called the ends of \mathfrak{T} . The endpoint 0 and path \mathfrak{T} are incident with each other, as are n and \mathfrak{T} . If \mathfrak{T}_1 and \mathfrak{T}_2 are distinct paths of G incident with only one common endpoint, then \mathfrak{T}_1 and \mathfrak{T}_2 are adjacent paths.

The path graph of G is the graph T(G) = (V(T(G)), E(T(G))) whose vertices set is the set of paths of G whose length is at least one; and for $h, k \in V(T(G))$, $(h, k) \in E(T(G))$ if and only if they are adjacent as paths in G (i.e. they have only one common endpoint). We denote the path $h = (0, 1, \ldots, n-1, n)$ and the vertex $h \in V(T(G))$ by the same symbol.

If $\mathcal C$ is a walk of G (resp. a directed walk of D) we will denote by $\ell(\mathcal C)$ its length.

Along this work all notation will be taken modulo n without more explanation.

A cycle of G (resp. a directed cycle of D) is a sequence of vertices of G (resp. of D), $\mathcal{C} = (0, 1, \dots, n-1, 0)$, such that $[i, i+1] \in E(G)$ (resp. $(i, i+1) \in A(D)$), for $i \in \{0, 1, \dots, n-1\}$.

Walks, paths and cycles are partial subgraphs or partial subdigraphs.

Let \mathcal{C} be a cycle of G (resp. a directed cycle of D). For $\{i.j\} \subseteq V(\mathcal{C})$ we denote by $[i,\mathcal{C},j]$ (resp. by (i,\mathcal{C},j)) the path from i to $j,[i,i+1,i+2,\ldots,j]$ (resp. the directed path $(i,i+1,i+2,\ldots,j)$) contained in \mathcal{C} . A chord of \mathcal{C} is an edge (resp. an arc) $[i,j] \in A(G) - A(\mathcal{C})$ (resp. $(i,j) \in A(D) - A(\mathcal{C})$) such that $1 < \ell(i,\mathcal{C},j) < \ell(\mathcal{C}) - 1$; with $\{i,i+1,\ldots,j\} \subseteq V(\mathcal{C})$. Two vertices joined by an arc of \mathcal{C} are said to be consecutive on \mathcal{C} . A pole of the cycle \mathcal{C} is the terminal vertex of a chord (x,y) of \mathcal{C} .

By the directed distance $d_D(x, y)$ from the vertex x to vertex y in a digraph D we mean the length of the shortest directed path from x to y in D. We put $d_D(x, y) = \infty$ if there is no directed path from x to y in D.

Let k be a natural number with $k \geq 2$. A set $J \subseteq V(D)$ will be called a k-kernel of the digraph D if:

- (1) for $\{x, x'\} \subseteq J$ we have $d_D(x, x') \ge k$ and
- (2) for each $y \in (V(D) J)$ there exists $x \in J$ such that $d_D(y, x) \le k 1$.

k-kernels were first defined and studied by M. Kwaśnik in [8]. In [8], M. Kwaśnik proved the following interesting result: Let D be a strongly connected digraph such that every directed cycle of D has length $\equiv 0 \pmod{k}, k \geq 2$, then D has a k-kernel.

For k = 2 we have a kernel in the sense of Berge [1]. When every induced subdigraph of D has a kernel, D is said to be kernel-perfect or a KP-digraph.

In 1976 H. Meyniel [3] conjectured: Let D be a digraph; if every odd directed cycle of D possesses two chords, then D is a KP-digraph. In general, the condition that each odd directed cycle has two chords is not sufficient for a digraph to be kernel-perfect. In [4], Galeana-Sánchez constructed for each k a triangle free digraph D_k with no kernel such that every odd directed cycle in D_k has at least k chords. In [7], Galeana-Sánchez and V. Neumann-Lara proved that if every odd directed cycle $\mathbb C$ has two chords whose terminal endpoints are consecutive on $\mathbb C$, then D is kernel-perfect. Still under some restrictions on the structure of the underlying graph of a digraph D the condition: Each odd directed cycle has two chords is not enough for a digraph to be kernel-perfect. However in [2], O.V. Borodin, A.V. Kostochka and D.R. Woodall proved: Let H be the line graph of a graph G; an orientation D of H is kernel-perfect if and only if each odd directed cycle has a chord and each clique has a kernel.

A feasible extention of the Meyniel's Conjecture for k-kernels $k \geq 2$ would say: Let D be a digraph; if every directed cycle of length $\not\equiv 0 \pmod{k}$ has two chords, then D has a k-kernel.

In [6], we proved that this assertion is not true for digraphs in general. We proved the following extention of Borodin, Kostochka and Woodall result for k-kernels ($k \geq 3$): Let G be a graph, L(G) its line graph and D an orientation of L(G) such that Asym(D) is strongly connected and each directed triangle has two symmetrical arcs; if every directed cycle of D, $\overrightarrow{C} = (0, 1, \ldots, n-1, 0)$ with $\ell(\overrightarrow{C}) \not\equiv 0 \pmod{k}$ has a chord (i, j) such that at least one of the two following properties holds:

- (1) $j \notin \{i-2, i+2\}$ or
- (2) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$; (r,s) with $(r,s) \neq (j,i)$,

then D has a k-kernel, $(k \ge 3)$.

In this paper we under similar conditions as in [6] with extend our results to the path graph: Let G be a graph, T(G) its path graph and D an orientation of T(G) such that each directed triangle is symmetrical; if each odd directed cycle $\overrightarrow{\mathbb{C}} = (0, 1, \dots, n-1, 0)$ of D whose $\ell(\overrightarrow{\mathbb{C}}) \geq 5$ has a chord (i, j) such that at least one of the two following properties holds:

- (1) $j \notin \{i-2, i+2\}$ or
- (2) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathcal{C}}$; (r, s) then D has a kernel.

Let G be a graph, T(G) its path graph and D an orientation of T(G) such that Asym(D) is strongly connected and each directed triangle has two symmetrical arcs; if every directed cycle of D, $\overrightarrow{\mathcal{C}} = (0, 1, \dots, n-1, 0)$ with $\ell(\overrightarrow{\mathcal{C}}) \not\equiv 0 \pmod{k}$ has a chord (i, j) such that at least one of the two following properties holds:

- (1) $j \notin \{i-2, i+2\}$ or
- (2) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$; (r, s) with $(r, s) \neq (j, i)$,

then D has a k-kernel, $(k \ge 3)$.

As a consequence it is proved the following assertion which is a particular case in which the feasible extention of the Meyniel's Conjecture for $k \geq 3$ holds: Let G be a graph and D an orientation of T(G) such that $\operatorname{Asym}(D)$ is strongly connected and each directed triangle is symmetrical; if every directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two chords, then D has a k-kernel, $k \geq 3$.

The existence of k-kernels of digraphs have been studied by several authors, namely: M. Kwaśnik, A. Wloch and I. Wloch [9], Q. Lu, E. Shan and M. Zhao [10], W. Szumny, A. Wloch and I. Wloch [11], [12], and A. Wloch and I. Wloch [13].

2 Kernels in orientations of the path graph

Lemma 2.1. Let G be a graph, T(G) its path graph and $\mathfrak{C} = (0, 1, ..., n-1, 0)$ be a cycle in T(G). If $[i, j] \in E(T(G)) - E(\mathfrak{C})$ with $j \notin \{i-2, i+2\}$, then at least one of the following conditions holds:

- (a) $\{[s-1, s+1], [s, t]\} \subseteq E(T(G))$ with; $(s = i \text{ and } t \in \{j-1, j+1\})$ or $(s = j \text{ and } t \in \{i-1, i+1\}).$
 - (b) $\{[i-1, i+1], [j-1, j+1]\} \subseteq E(T(G))$.
 - (c) $T(G)[\{s-1, s, t, t+1\}] \cong K_4$ with $s \in \{i, i+1\}, t \in \{j-1, j\}.$

Proof: Let G be a graph, T(G) its path graph and $\mathfrak{C} = (0, 1, \dots, n-1, 0)$ be a cycle in T(G), $[i, j] \in E(T(G)) - E(\mathfrak{C})$ with $\{i.j\} \subseteq V(\mathfrak{C})$ and $j \notin \{i-2, i+2\}$.

Let u and v the terminal vertices of the path i.

We consider several possible cases:

Case 1) The path i-1 is incident to u and the path i+1 is incident to u. Clearly in this case we have $[i-1,i+1] \in E(T(G))$.

If the path j-1 (resp. j+1) is incident to some endpoint of i (u or v), then $[i,j-1] \in E(T(G))$ (resp. $[i,j+1] \in E(T(G))$) and (a) holds with s=i and t=j-1 (resp. s=i and t=j+1). So we can assume the path j-1 is not adjacent to path i and path j+1 is not adjacent to i. This there exist w endpoint of j such that $w \notin \{u,v\}$. Since j-1 (resp. j+1) is not adjacent to i but j-1 (and j+1) is adjacent to j it follows that j-1 (and j+1) is incident to w; so $[j-1,j+1] \in E(T(G))$ and (b) holds.

Case 2) The path i-1 is incident to v and the path i+1 is incident to v. In this case the proof is exactly as those of Case 1.

Case 3) The path i-1 is incident to u and the path i+1 is incident to v. Since the path j is adjacent to path i, we have that j is incident to u or j is incident to v.

First suppose that j is incident to u.

If j-1 (resp. j+1) is incident to u, then (c) holds with s=i and t=j-1 (resp. s=i and t=j). So we can assume that both j-1 and j+1 is incident

to the other endpoint of j and then $[j-1, j+1] \in E(T(G))$ and (a) holds with s=j and t=i-1. Now suppose that j is incident to v.

When j-1 (resp. j+1) is incident to v, then (c) holds with s=i+1 and t=j-1 (resp. s=i+1 and t=j). When j-1 and j+1 both is incident to the other endpoint of j we obtain $[j-1,j+1] \in E(T(G))$ and (a) holds with s=j and t=i+1.

Case 4) The path i-1 is incident to v and the path i+1 is incident to u. Proceed as in Case 3 by interchanging u with v.

Lemma 2.2. Let G be a graph, T(G) its path graph and D an orientation of T(G) such that each directed triangle is symmetrical. If each odd directed cycle $\overrightarrow{\mathbb{C}} = (0, 1, \dots, n-1, 0)$ of D whose $\ell(\overrightarrow{\mathbb{C}}) \geq 5$ has a chord (i, j) such that at least one of the two following properties holds:

- (1) $j \notin \{i-2, i+2\}$ or
- (2) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$; (r,s) then each odd directed cycle of D has at least two consecutive poles.

Proof: When $\ell(\overrightarrow{\mathcal{C}}) = 3$, the hypothesis each directed triangle is symmetrical implies that $\overrightarrow{\mathcal{C}}$ has two consecutive poles.

If $\ell(\overrightarrow{\mathcal{C}}) \geq 5$, then we consider the two possible cases:

Case 1) $j \notin \{i - 2, i + 2\}$

This case implies that $\ell(\overrightarrow{\mathcal{C}}) \geq 7$.

Considering \mathfrak{C} and $[i,j] \in E(T(G))$ we have from Lemma 2.1 that at least one of the three properties (a), (b) or (c) holds.

Subcase 1.a) Assume property (a) holds; four possibilities will be analyzed.

1.a.1) $\{[i-1,i+1],[i,j+1]\}\subseteq E(T(G))$. (Considering s=i and t=j+1) If $(i,j+1)\in A(D)$, then j and j+1 are two consecutive poles of $\overrightarrow{\mathbb{C}}$. If $(j+1,i)\in A(D)$, then:

When $(i-1,i+1) \in A(D)$, then i and i+1 are two consecutive poles of $\overrightarrow{\mathcal{C}}$.

When $(i+1,i-1) \in A(D)$, then i and i-1 are two consecutive poles of $\overrightarrow{\mathcal{C}}$.

1.a.2) $\{[i-1, i+1], [i, j-1]\} \subseteq E(T(G))$. (Considering s = i and t = j-1) Proceed as in (1.a.1) by changing j + 1 by j - 1.

1.a.3)
$$\{[j-1,j+1],[j,i+1]\}\subseteq E(T(G))$$
. (Considering $s=j$ and $t=i+1$)

1.a.4)
$$\{[j-1, j+1], [j, i-1]\} \subseteq E(T(G))$$
. (Considering $s = j$ and $t = i-1$)

Subcase 1.b) Assume that property (b) holds (i.e. $\{[i-1,i+1],[j-1,j+1]\}\subseteq E(T(G))$).

In this cases (1.a.3), (1.a.4), and (1.b) we have $[j-1,j+1] \in E(T(G))$ and since $(i,j) \in A(D)$, then \overrightarrow{C} has two consecutive poles.

Subcase 1.c) Assume that property (c) holds: Here we have four possibilities.

1.c.1) $T(G)[\{i, i+1, j, j+1\}] \cong K_4$ (Here we are considering s = i+1 and t = j).

If $(i, j+1) \in A(D)$ or $(i+1, j+1) \in A(D)$, then j and j+1 are two consecutive poles of $\overrightarrow{\mathbb{C}}$.

If $(j+1,i) \in A(D)$ or $(j+1,i+1) \in A(D)$, then i and i+1 are two consecutive poles of $\overrightarrow{\mathbb{C}}$.

1.c.2) $T(G)[\{i, i+1, j-1, j\}] \cong K_4$ (Considering s = i+1 and t = j-1). Proceed as in (1.c.1) by changing j+1 by j-1.

1.c.3) $T(G)[\{i-1,i,j-1,j\}] \cong K_4$ (Here we are considering s=i and t=j-1).

Proceed as in (1.c.2) by changing i + 1 by i - 1.

1.c.4) $T(G)[\{i-1, i, j, j+1\}] \cong K_4$ (Considering s = i and t = j).

Proceed as in (1.c.1) by changing i + 1 by i - 1.

Case 2) $j \in \{i - 2, i + 2\}$

In this case the hypothesis on Lemma imply that there exists another chord of $\overrightarrow{\mathbb{C}}$, (r,s), and $\ell(\overrightarrow{\mathbb{C}}) \geq 5$

- 2.1) If j = i 2, then (i, i 2, i 1, i) is a symmetrical triangle, that why $\overrightarrow{\mathcal{C}}$ has two consecutive poles.
- 2.2) If j = i + 2, then for hypothesis on Lemma imply that there exists another chord of \overrightarrow{C} , (r, s).

It follows from above that $(r, s) \neq (j, i)$ and (r, s) is a short chord. In view of Case 1 we can assume that there exist a, b, with $a \neq b$;

 $\{a,b\} \subseteq (0,1,\ldots,n-1,0)$ such that $\{(a-1,a+1),(b-1,b+1)\} \subseteq A(D) - A(\overrightarrow{C})$, without loss of generality we suppose that a < b.

If a+1=b, then b and b+1 are two consecutive poles of $\overrightarrow{\mathbb{C}}$.

If $a+1 \neq b$, then we can assume that every diagonal of $\overrightarrow{\mathbb{C}}$ are short and asymmetrical. (\star)

Now we consider H subdigraph of D induced by vertices the $\overrightarrow{\mathbb{C}}$.

Let γ be a cycle of minimum length such that $\gamma \subseteq H$.

At least one arc of γ is one diagonal of $\overrightarrow{\mathcal{C}}$.

We will analyze the possible cases:

Case a) $\ell(\overrightarrow{\mathcal{C}})$ is odd.

If $\ell(\overrightarrow{\mathcal{C}}) = 3$, then γ is symmetrical, which implies that a diagonal of $\overrightarrow{\mathcal{C}}$ is symmetrical a contradiction with (\star) .

If $\ell(\overrightarrow{\mathcal{C}}) \geq 5$, then by hypothesis, γ has a diagonal (h, l), therefore $(h, l) \cup (h, \gamma, l)$ is a cycle of length shorter than γ within H, a contradiction the choice of γ .

Case b) $\ell(\overrightarrow{\mathcal{C}})$ is even.

For (1) and (2) exists $(x_i, x_i + 1) \in A(\gamma)$ such that is an short chord of $\overrightarrow{\mathbb{C}}$, meanining $(x - i, x_i + 1) = (j, j + 2)$ with $\{j, j + 2\} \subseteq V(\overrightarrow{\mathbb{C}})$.

b.1) If $j + 1 \notin V(\gamma)$, then $(j, j + 1, j + 2) \cup (j + 2, \gamma, j)$ is a cycle of odd length with a short chord (j, j + 2), for hypothesis, it has another diagonal (r, s).

For the choice of γ it follows that $j+1 \in \{r,s\}$ and in fact by (\star) ; $(r,s) \in \{(j-1,j+1),(j+1,j+3)\}$. Therefore j+1 and j+2 (resp. j+2 and j+3) are two consecutive poles.

b.2) If $j + 1 \in V(\gamma)$, then $(j, j + 1) \cup (j + 1, \gamma, j)$ is a directed cycle of length shorther than γ , which contradicts the choice of γ .

Theorem 2.3. [7] If every directed cycle of odd length in D possesses at least two consecutive poles, then D is a kernel-perfect digraph.

Theorem 2.4. Let G be a graph, T(G) its path graph and D an orientation of T(G) such that each directed triangle is symmetrical. If each odd directed cycle $\overrightarrow{\mathbb{C}} = (0, 1, \dots, n-1, 0)$ of D whose $\ell(\overrightarrow{\mathbb{C}}) \geq 5$ has a chord (i, j) such that at least one of the two following properties holds:

- (1) $j \notin \{i-2, i+2\}$ or
- (2) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$; (r, s) then D is a kernel-perfect.

Proof: It follows from Lemma 2.2 each odd directed cycle of D has at least two consecutive poles; then apply 2.3, D is a kernel-perfect.

3 k-kernels in orientations of the path graph

Lemma 3.1. Let G be a graph, T(G) its path graph and $\mathfrak{C} = (0, 1, ..., n-1, 0)$ be a cycle in T(G). If there exists $i, 0 \le i \le n-1$ such that $\{[i-1, i+1], [i, i+2]\} \subseteq E(T(G))$, then

$$\{[i-1,i+2],[i,i+3],[i+1,i+3],[i-2,i],[i-2,i+1]\} \cap E(T(G)) \neq \emptyset$$
.

Proof: Let G be a graph, T(G) its path graph, $\mathcal{C} = (0, 1, ..., n-1, 0)$ be a cycle in T(G), the path $i, 0 \le i \le n-1$ such that $\{[i-1, i+1], [i, i+2]\} \subseteq E(T(G))$.

Let u and v the terminal vertices of the path i.

We will consider the following possible cases:

Case 1 The path i-1 is incident to u and the path i+1 is incident to u. Let z be the endpoint of i+1 different from u. Since $[i,i+2] \in E(T(G))$ we have that i+2 is incident to u or i+2 is incident to v. When i+2 is incident to u we obtain $[i-1,i+2] \in E(T(G))$. When i+2 is incident to v, the other endpoint of i+2 is z. If i+3 is incident to v we have $[i,i+3] \in E(T(G))$ and if i+3 is incident to z we obtain $[i+1,i+3] \in E(T(G))$.

Case 2 The path i-1 is incident to v and the path i+1 is incident to v. This case follows as Case 1 by interchanging u with v.

Case 3 The path i-1 is incident to u and the path i+1 is incident to v. Since $[i-1,i+1] \in E(T(G))$ and the path i+1 is not incident to u, exist z different from u such that is endpoint the i-1 and i+1. When i-2 is incident to u we obtain $[i-2,i] \in E(T(G))$, and when i-2 is incident to z we have $[i-2,i+1] \in E(T(G))$.

Case 4 The path i-1 is incident to v and the path i+1 is incident to u. This case follows as Case 3 by interchanging u with v.

We say [6] that a graph H satisfies the property \mathbb{C}^* if and only if for each cycle $\mathbb{C} = (0, 1, \dots, n-1, 0)$ the two following properties hold:

- (1) If $[i, j] \in E(H) E(\mathcal{C})$ with $j \notin \{i 2, i + 2\}$, then at least one of the following conditions holds:
- (1.a) $\{[s-1,s+1],[s,t]\}\subseteq E(H)$ with; $(s=i \text{ and } t\in\{j-1,j+1\})$ or $(s=j \text{ and } t\in\{i-1,i+1\})$.
 - (1.b) $\{[i-1, i+1], [j-1, j+1]\} \subseteq E(H)$.
 - (1.c) $H[{s-1, s, t, t+1}] \cong K_4$ with $s \in {i, i+1}, t \in {j-1, j}$.
- (2) If there exists $i, 0 \le i \le n-1$ such that $\{[i-1,i+1],[i,i+2]\} \subseteq E(H)$, then

$$\{[i-1,i+2],[i,i+3],[i+1,i+3],[i-2,i],[i-2,i+1]\}\cap E(H)\neq\emptyset$$
.

Lemma 3.2. [6] Let H be a graph satisfying the property \mathbb{C}^* , and D an orientation of H such that each directed triangle has two symmetrical arcs. If every directed cycle of D, $\overrightarrow{\mathbb{C}} = (0, 1, \dots, n-1, 0)$ with $\ell(\overrightarrow{\mathbb{C}}) \not\equiv 0 \pmod{k}$ has a chord (i, j) such that at least one of the two following properties holds:

- (i) $j \notin \{i-2, i+2\}$ or
- (ii) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$; (r,s) with $(r,s) \neq (j,i)$,

then every directed cycle of D, $\overrightarrow{\mathbb{C}}$ with $\ell(\overrightarrow{\mathbb{C}}) \not\equiv 0 \pmod{k}$ has two symmetrical arcs, $(k \geq 3)$.

Lemma 3.3. [6] Let H be a graph satisfying the property \mathbb{C}^* , and D be an orientation of H such that each directed triangle is symmetrical. If each directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two chords, then each directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two symmetrical arcs, $(k \geq 3)$.

Lemma 3.4. Let G be a graph, T(G) its path graph and D be an orientation of T(G) such that each directed triangle is symmetrical. If each directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two chords, then each directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two symmetrical arcs, $(k \ge 3)$.

Proof: It follows from Lemmas 2.1 and 3.1 that T(G) satisfy property \mathcal{C}^* , and then apply Lemma 3.3.

Theorem 3.5. [5] Let D be a digraph such that Asym(D) is strongly connected. If every directed cycle of length $\not\equiv 0 \pmod{k}$ has at least two symmetrical arcs then D has a k-kernel, $(k \ge 2)$.

Theorem 3.6. Let G be a graph, T(G) its path graph and D be an orientation of T(G) such that $\operatorname{Asym}(D)$ is strongly connected and each directed triangle has two symmetrical arcs. If every directed cycle of D, $\overrightarrow{\mathbb{C}} = (o, 1, \dots, n-1, 0)$ with $\ell(\overrightarrow{\mathbb{C}}) \not\equiv 0 \pmod{k}$ has a chord (i, j) such that at least one of the following properties holds.

- (i) $j \notin \{i-2, i+2\}, or$
- (ii) if $j \in \{i-2, i+2\}$, then there exists another chord of $\overrightarrow{\mathbb{C}}$, (r,s) with $(r,s) \neq (j,i)$,

then D has a k-kernel, $(k \ge 3)$.

Proof: It follows from Lemmas 2.1 and 3.1 that T(G) satisfy property \mathfrak{C}^* ; then apply Lemma 3.2 and Theorem 3.5.

Theorem 3.7. Let G be a graph, T(G) its path graph and D be an orientation of T(G) such that $\operatorname{Asym}(D)$ is strongly connected and each directed triangle is symmetrical. If every directed cycle of D whose length is $\not\equiv 0 \pmod{k}$ has two chords, then D has a k-kernel $(k \geq 3)$.

Proof: It follows from Lemma 3.3 and Theorem 3.6 (as T(G) satisfies the property \mathcal{C}^*).

Clearly Theorem 3.7 is a particular case in which the feasible extention of Meyniel's Conjecture ennounced in the introduction holds.

Acknowledgments. We thank an anonymous referee for a thorough review and useful suggestions.

References

- [1] C. Berge, Graphs, North Holland, Amsterdam, New York, 1985.
- [2] O. V. Borodin, A. V. Kostochka and D. R. Woodall, On kernel perfect orientations of line graphs, Discrete Mathematics, 191 (1998), 45–49.
- [3] P. Duchet. *Graphes noyau-parfaits*, in: M. Deza and I.G. Rosenberg, eds; Combinatorics 79, part II, Ann. Discrete Mathematics, 9 (North-Holland, Amsterdam, 1980), 93–101.
- [4] H. Galeana-Sánchez, A counterexample to a conjecture of Meyniel on Kernel-perfect graphs, Discrete Mathematics 41 (1982), 105–107.
- [5] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Mathematics 110 (1992), 251–255.
- [6] H. Galeana-Sánchez and L. Pastrana Ramírez, k-kernels in Orientations of the Line Graph, International Journal of Contemporary Mathematical Sciences Vol. 2 (31) (2007), 1511–1525.
- [7] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Mathematics 48 (1984), 67–76
- [8] M. Kwaśnik, The generalization of Richardson theorem, Discussiones Math. IV (1981), 11–14.
- [9] M. Kwaśnik, A. Wloch and I. Wloch, Some remarks about (k, l)-kernels in directed and undirected graphs, Discussiones Math. 13 (1993), 29–37.
- [10] Q. Lu, E Shan and M. Zhao, (k, l)-kernels in line digraphs, Journal of Shanghai University (English Edition) Vol. 10 (6) (2006), 484–486

- [11] W. Szumny, A. Wloch and I. Wloch, On(k, l)-kernels in D-join of digraph, Discussiones Math. **27** (2007), 457–470.
- [12] W. Szumny, A. Wloch and I. Wloch, On the existence and on the number of (k, l)-kernels in lexicographic product of graphs, Discrete Mathematics **308** (2008), 4616–4624.
- [13] A. Wloch and I. Wloch, On(k, l)-kernels in generalized products, Discrete Mathematics **164** (1997), 295–301.

Received: June, 2009