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Abstract

Let G be a graph. The path graph of G, denoted T (G), is defined
as follows:

(a) V (T (G) is the set of paths of G whose length is at least one.
(b) For h, k ∈ V (T (G)), (h, k) ∈ E(T (G)) if and only if they are

adjacent as paths in G (i.e. they have only one common endpoint).
In this paper we prove the two following results:
(1) Let D be an orientation of T (G) such that each directed triangle

is symmetrical. If each odd directed cycle of D, −→C = (0, 1, . . . , n− 1, 0)
with �(

−→
C ) ≥ 5 has a chord (i, j) such that at least one of the two

following properties holds:
(a) j �∈ {i − 2, i + 2} or
(b) if j ∈ {i − 2, i + 2}, then there exists another chord of −→C ; (r, s)
then D has a kernel.
(2) Let D be an orientation of T (G) such that Asym(D) is strongly

connected and each directed triangle has two symmetrical arcs. If every
directed cycle of D, −→

C = (0, 1, . . . , n − 1, 0) with �(−→C ) �≡ 0 (mod k)
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has a chord (i, j) such that at least one of the two following properties
holds:

(a) j �∈ {i − 2, i + 2} or
(b) if j ∈ {i − 2, i + 2}, then there exists another chord of −→C ; (r, s)

with (r, s) �= (j, i),
then D has a k-kernel, (k ≥ 3).

Mathematics Subject Classification: 05C20
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1 Introduction

For general Graph Theory concepts we refer the reader to [1]. Let G be a graph;

V (G) and E(G) will denote the sets of vertices and edges of G respectively. A

digraph D is an orientation of G if D is obtained by directing each edge of G

in at least one of the two possible directions. If S ⊆ V (G) or T ⊆ E(G), then

G[S] and G[T ] will denote the subgraphs of G induced by S and T respectively.

Let D be a digraph; V (D) and A(D) will denote the sets of vertices and arcs

of D respectively. An arc (u1, u2)∈A(D) is called asymmetrical (respectively

symmetrical) if (u2, u1) �∈ A(D) (resp. (u2, u1) ∈ A(D)). The asymmetrical

part of D (resp. symmetrical part of D) which is denoted by Asym(D) (resp.

Sym(D)) is the spanning subdigraph of D whose arcs are the asymmetrical

(resp. symmetrical) arcs of D.

If T = (0, 1, . . . , n − 1, n) is a path of the graph G, then the vertices 0 and

n are called the ends of T. The endpoint 0 and path T are incident with each

other, as are n and T. If T1 and T2 are distinct paths of G incident with only

one common endpoint, then T1 and T2 are adjacent paths.

The path graph of G is the graph T (G) = (V (T (G)), E(T (G))) whose

vertices set is the set of paths of G whose length is at least one; and for

h, k ∈ V (T (G)), (h, k) ∈ E(T (G)) if and only if they are adjacent as paths

in G (i.e. they have only one common endpoint). We denote the path h =

(0, 1, . . . , n − 1, n) and the vertex h ∈ V (T (G)) by the same symbol.

If C is a walk of G (resp. a directed walk of D) we will denote by �(C) its

length.

Along this work all notation will be taken modulo n without more expla-

nation.
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A cycle of G (resp. a directed cycle of D) is a sequence of vertices of

G (resp. of D), C = (0, 1, . . . , n − 1, 0), such that [i, i + 1] ∈ E(G) (resp.

(i, i + 1)∈A(D)), for i∈{0, 1, . . . , n − 1}.
Walks, paths and cycles are partial subgraphs or partial subdigraphs.

Let C be a cycle of G (resp. a directed cycle of D). For {i.j} ⊆ V (C) we

denote by [i,C, j] (resp. by (i, C, j)) the path from i to j, [i, i + 1, i + 2, . . . , j]

(resp. the directed path (i, i + 1, i + 2, . . . , j)) contained in C. A chord of C

is an edge (resp. an arc) [i, j] ∈ A(G) − A(C) (resp. (i, j) ∈ A(D) − A(C))

such that 1 < �(i, C, j) < �(C) − 1; with {i, i + 1, . . . , j} ⊆ V (C). Two vertices

joined by an arc of C are said to be consecutive on C. A pole of the cycle C is

the terminal vertex of a chord (x, y) of C.

By the directed distance dD(x, y) from the vertex x to vertex y in a digraph

D we mean the length of the shortest directed path from x to y in D. We put

d
D
(x, y) = ∞ if there is no directed path from x to y in D.

Let k be a natural number with k ≥ 2. A set J ⊆ V (D) will be called a

k-kernel of the digraph D if:

(1) for {x, x′} ⊆ J we have dD(x, x′) ≥ k and

(2) for each y ∈ (V (D) − J) there exists x ∈ J such that dD(y, x) ≤ k − 1.

k-kernels were first defined and studied by M. Kwaśnik in [8]. In [8], M.

Kwaśnik proved the following interesting result: Let D be a strongly connected

digraph such that every directed cycle of D has length ≡ 0(mod k), k ≥ 2, then

D has a k-kernel.

For k = 2 we have a kernel in the sense of Berge [1]. When every induced

subdigraph of D has a kernel, D is said to be kernel-perfect or a KP -digraph.

In 1976 H. Meyniel [3] conjectured: Let D be a digraph; if every odd

directed cycle of D possesses two chords, then D is a KP -digraph. In general,

the condition that each odd directed cycle has two chords is not sufficient for a

digraph to be kernel-perfect. In [4], Galeana-Sánchez constructed for each k a

triangle free digraph Dk with no kernel such that every odd directed cycle in Dk

has at least k chords. In [7], Galeana-Sánchez and V. Neumann-Lara proved

that if every odd directed cycle C has two chords whose terminal endpoints

are consecutive on C, then D is kernel-perfect. Still under some restrictions on

the structure of the underlying graph of a digraph D the condition: Each odd

directed cycle has two chords is not enough for a digraph to be kernel-perfect.

However in [2], O.V. Borodin, A.V. Kostochka and D.R. Woodall proved: Let

H be the line graph of a graph G; an orientation D of H is kernel-perfect if

and only if each odd directed cycle has a chord and each clique has a kernel.
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A feasible extention of the Meyniel’s Conjecture for k-kernels k ≥ 2 would

say: Let D be a digraph; if every directed cycle of length�≡ 0 (mod k) has two

chords, then D has a k-kernel.

In [6], we proved that this assertion is not true for digraphs in general. We

proved the following extention of Borodin, Kostochka and Woodall result for

k-kernels (k ≥ 3): Let G be a graph, L(G) its line graph and D an orientation

of L(G) such that Asym(D) is strongly connected and each directed triangle

has two symmetrical arcs; if every directed cycle of D,
−→
C = (0, 1, . . . , n−1, 0)

with �(
−→
C ) �≡ 0 (mod k) has a chord (i, j) such that at least one of the two

following properties holds:

(1) j �∈ {i − 2, i + 2} or

(2) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s) with

(r, s) �= (j, i),

then D has a k-kernel, (k ≥ 3).

In this paper we under similar conditions as in [6] with extend our results to

the path graph: Let G be a graph, T (G) its path graph and D an orientation

of T (G) such that each directed triangle is symmetrical; if each odd directed

cycle
−→
C = (0, 1, . . . , n−1, 0) of D whose �(

−→
C ) ≥ 5 has a chord (i, j) such that

at least one of the two following properties holds:

(1) j �∈ {i − 2, i + 2} or

(2) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s)

then D has a kernel.

Let G be a graph, T (G) its path graph and D an orientation of T (G)

such that Asym(D) is strongly connected and each directed triangle has two

symmetrical arcs; if every directed cycle of D,
−→
C = (0, 1, . . . , n − 1, 0) with

�(
−→
C ) �≡ 0 (mod k) has a chord (i, j) such that at least one of the two following

properties holds:

(1) j �∈ {i − 2, i + 2} or

(2) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s) with

(r, s) �= (j, i),

then D has a k-kernel, (k ≥ 3).

As a consequence it is proved the following assertion which is a particular

case in which the feasible extention of the Meyniel’s Conjecture for k ≥ 3

holds: Let G be a graph and D an orientation of T (G) such that Asym(D) is

strongly connected and each directed triangle is symmetrical; if every directed

cycle of D whose length is �≡ 0(mod k) has two chords, then D has a k-kernel,

k ≥ 3.
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The existence of k-kernels of digraphs have been studied by several authors,

namely: M. Kwaśnik, A. Wloch and I. Wloch [9], Q. Lu, E. Shan and M. Zhao

[10], W. Szumny, A. Wloch and I. Wloch [11], [12], and A. Wloch and I. Wloch

[13].

2 Kernels in orientations of the path graph

Lemma 2.1. Let G be a graph, T (G) its path graph and C = (0, 1, . . . , n−1, 0)

be a cycle in T (G). If [i, j] ∈ E(T (G)) − E(C) with j �∈ {i − 2, i + 2}, then at

least one of the following conditions holds:

(a) {[s − 1, s + 1], [s, t]} ⊆ E(T (G)) with; (s = i and t ∈ {j − 1, j + 1}) or

(s = j and t ∈ {i − 1, i + 1}).
(b) {[i − 1, i + 1], [j − 1, j + 1]} ⊆ E(T (G)).

(c) T (G)[{s − 1, s, t, t + 1}] ∼= K4 with s ∈ {i, i + 1}, t ∈ {j − 1, j}.

Proof: Let G be a graph, T (G) its path graph and C = (0, 1, . . . , n−1, 0) be a

cycle in T (G), [i, j] ∈ E(T (G))−E(C) with {i.j} ⊆ V (C) and j �∈ {i−2, i+2}.
Let u and v the terminal vertices of the path i.

We consider several possible cases:

Case 1) The path i−1 is incident to u and the path i+1 is incident to u.

Clearly in this case we have [i − 1, i + 1] ∈ E(T (G)).

If the path j − 1 (resp. j + 1) is incident to some endpoint of i (u or v),

then [i, j − 1] ∈ E(T (G)) (resp. [i, j + 1] ∈ E(T (G))) and (a) holds with s = i

and t = j − 1 (resp. s = i and t = j + 1). So we can assume the path j − 1 is

not adjacent to path i and path j + 1 is not adjacent to i. This there exist w

endpoint of j such that w �∈ {u, v}. Since j − 1 (resp. j + 1) is not adjacent

to i but j − 1 (and j + 1) is adjacent to j it follows that j − 1 (and j + 1) is

incident to w; so [j − 1, j + 1] ∈ E(T (G)) and (b) holds.

Case 2) The path i−1 is incident to v and the path i+1 is incident to v.

In this case the proof is exactly as those of Case 1.

Case 3) The path i−1 is incident to u and the path i+1 is incident to v.

Since the path j is adjacent to path i, we have that j is incident to u or j

is incident to v.

First suppose that j is incident to u.

If j−1 (resp. j +1) is incident to u, then (c) holds with s = i and t = j−1

(resp. s = i and t = j). So we can assume that both j−1 and j +1 is incident
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to the other endpoint of j and then [j−1, j +1] ∈ E(T (G)) and (a) holds with

s = j and t = i − 1. Now suppose that j is incident to v.

When j − 1 (resp. j + 1) is incident to v, then (c) holds with s = i + 1 and

t = j − 1 (resp. s = i + 1 and t = j). When j − 1 and j + 1 both is incident to

the other endpoint of j we obtain [j − 1, j + 1] ∈ E(T (G)) and (a) holds with

s = j and t = i + 1.

Case 4) The path i−1 is incident to v and the path i+1 is incident to u.

Proceed as in Case 3 by interchanging u with v.

Lemma 2.2. Let G be a graph, T (G) its path graph and D an orientation of

T (G) such that each directed triangle is symmetrical. If each odd directed cycle−→
C = (0, 1, . . . , n − 1, 0) of D whose �(

−→
C ) ≥ 5 has a chord (i, j) such that at

least one of the two following properties holds:

(1) j �∈ {i − 2, i + 2} or

(2) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s)

then each odd directed cycle of D has at least two consecutive poles.

Proof: When �(
−→
C ) = 3, the hypothesis each directed triangle is symmetrical

implies that
−→
C has two consecutive poles.

If �(
−→
C ) ≥ 5, then we consider the two possible cases:

Case 1) j �∈ {i − 2, i + 2}
This case implies that �(

−→
C ) ≥ 7.

Considering C and [i, j] ∈ E(T (G)) we have from Lemma 2.1 that at least

one of the three properties (a), (b) or (c) holds.

Subcase 1.a) Assume property (a) holds; four possibilities will be ana-

lyzed.

1.a.1) {[i−1, i+1], [i, j+1]} ⊆ E(T (G)). (Considering s = i and t = j+1)

If (i, j + 1) ∈ A(D), then j and j + 1 are two consecutive poles of
−→
C .

If (j + 1, i) ∈ A(D), then:

When (i − 1, i + 1) ∈ A(D), then i and i + 1 are two consecutive poles of−→
C .

When (i + 1, i − 1) ∈ A(D), then i and i − 1 are two consecutive poles of−→
C .

1.a.2) {[i−1, i+1], [i, j−1]} ⊆ E(T (G)). (Considering s = i and t = j−1)

Proceed as in (1.a.1) by changing j + 1 by j − 1.

1.a.3) {[j−1, j+1], [j, i+1]} ⊆ E(T (G)). (Considering s = j and t = i+1)

1.a.4) {[j−1, j+1], [j, i−1]} ⊆ E(T (G)). (Considering s = j and t = i−1)
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Subcase 1.b) Assume that property (b) holds (i.e. {[i−1, i+1], [j−1, j +

1]} ⊆ E(T (G))).

In this cases (1.a.3), (1.a.4), and (1.b) we have [j − 1, j + 1] ∈ E(T (G))

and since (i, j) ∈ A(D), then
−→
C has two consecutive poles.

Subcase 1.c) Assume that property (c) holds: Here we have four possibil-

ities.

1.c.1) T (G)[{i, i + 1, j, j + 1}] ∼= K4 (Here we are considering s = i + 1

and t = j).

If (i, j + 1) ∈ A(D) or (i + 1, j + 1) ∈ A(D), then j and j + 1 are two

consecutive poles of
−→
C .

If (j + 1, i) ∈ A(D) or (j + 1, i + 1) ∈ A(D), then i and i + 1 are two

consecutive poles of
−→
C .

1.c.2) T (G)[{i, i+1, j−1, j}] ∼= K4 (Considering s = i+1 and t = j−1).

Proceed as in (1.c.1) by changing j + 1 by j − 1.

1.c.3) T (G)[{i − 1, i, j − 1, j}] ∼= K4 (Here we are considering s = i and

t = j − 1).

Proceed as in (1.c.2) by changing i + 1 by i − 1.

1.c.4) T (G)[{i − 1, i, j, j + 1}] ∼= K4 (Considering s = i and t = j).

Proceed as in (1.c.1) by changing i + 1 by i − 1.

Case 2) j ∈ {i − 2, i + 2}
In this case the hypothesis on Lemma imply that there exists another chord

of
−→
C , (r, s), and �(

−→
C ) ≥ 5

2.1) If j = i− 2, then (i, i − 2, i− 1, i) is a symmetrical triangle, that why−→
C has two consecutive poles.

2.2) If j = i + 2, then for hypothesis on Lemma imply that there exists

another chord of
−→
C , (r, s).

It follows from above that (r, s) �= (j, i) and (r, s) is a short chord. In view

of Case 1 we can assume that there exist a, b, with a �= b;

{a, b} ⊆ (0, 1, . . . , n − 1, 0) such that {(a − 1, a + 1), (b − 1, b + 1)} ⊆
A(D) − A(

−→
C ), without loss of generality we suppose that a < b.

If a + 1 = b, then b and b + 1 are two consecutive poles of
−→
C .

If a + 1 �= b, then we can assume that every diagonal of
−→
C are short and

asymmetrical. (�)

Now we consider H subdigraph of D induced by vertices the
−→
C .

Let γ be a cycle of minimum length such that γ ⊆ H .

At least one arc of γ is one diagonal of
−→
C .

We will analyze the possible cases:
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Case a) �(
−→
C ) is odd.

If �(
−→
C ) = 3, then γ is symmetrical, which implies that a diagonal of

−→
C is

symmetrical a contradiction with (�).

If �(
−→
C ) ≥ 5, then by hypothesis, γ has a diagonal (h, l), therefore (h, l) ∪

(h, γ, l) is a cycle of length shorter than γ within H , a contradiction the choice

of γ.

Case b) �(
−→
C ) is even.

For (1) and (2) exists (xi, xi + 1) ∈ A(γ) such that is an short chord of
−→
C ,

meanining (x − i, xi + 1) = (j, j + 2) with {j, j + 2} ⊆ V (
−→
C ).

b.1) If j + 1 �∈ V (γ), then (j, j + 1, j + 2) ∪ (j + 2, γ, j) is a cycle of odd

length with a short chord (j, j + 2), for hypothesis, it has another diagonal

(r, s).

For the choice of γ it follows that j + 1 ∈ {r, s} and in fact by (�); (r, s) ∈
{(j − 1, j +1), (j + 1, j + 3)}. Therefore j + 1 and j + 2 (resp. j + 2 and j + 3)

are two consecutive poles.

b.2) If j + 1 ∈ V (γ), then (j, j + 1) ∪ (j + 1, γ, j) is a directed cycle of

length shorther than γ, which contradicts the choice of γ.

Theorem 2.3. [7] If every directed cycle of odd length in D possesses at least

two consecutive poles, then D is a kernel-perfect digraph.

Theorem 2.4. Let G be a graph, T (G) its path graph and D an orientation

of T (G) such that each directed triangle is symmetrical. If each odd directed

cycle
−→
C = (0, 1, . . . , n − 1, 0) of D whose �(

−→
C ) ≥ 5 has a chord (i, j) such

that at least one of the two following properties holds:

(1) j �∈ {i − 2, i + 2} or

(2) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s)

then D is a kernel-perfect.

Proof: It follows from Lemma 2.2 each odd directed cycle of D has at least

two consecutive poles; then apply 2.3, D is a kernel-perfect.

3 k-kernels in orientations of the path graph

Lemma 3.1. Let G be a graph, T (G) its path graph and C = (0, 1, . . . , n−1, 0)

be a cycle in T (G). If there exists i, 0 ≤ i ≤ n−1 such that {[i−1, i+1], [i, i+

2]} ⊆ E(T (G)), then

{[i − 1, i + 2], [i, i + 3], [i + 1, i + 3], [i − 2, i], [i − 2, i + 1]} ∩ E(T (G)) �= ∅ .
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Proof: Let G be a graph, T (G) its path graph, C = (0, 1, . . . , n − 1, 0) be a

cycle in T (G), the path i, 0 ≤ i ≤ n − 1 such that {[i − 1, i + 1], [i, i + 2]} ⊆
E(T (G)).

Let u and v the terminal vertices of the path i.

We will consider the following possible cases:

Case 1 The path i− 1 is incident to u and the path i + 1 is incident to u.

Let z be the endpoint of i+1 different from u. Since [i, i+2] ∈ E(T (G)) we

have that i + 2 is incident to u or i + 2 is incident to v. When i + 2 is incident

to u we obtain [i− 1, i + 2] ∈ E(T (G)). When i + 2 is incident to v, the other

endpoint of i + 2 is z. If i + 3 is incident to v we have [i, i + 3] ∈ E(T (G)) and

if i + 3 is incident to z we obtain [i + 1, i + 3] ∈ E(T (G)).

Case 2 The path i− 1 is incident to v and the path i + 1 is incident to v.

This case follows as Case 1 by interchanging u with v.

Case 3 The path i− 1 is incident to u and the path i + 1 is incident to v.

Since [i− 1, i + 1] ∈ E(T (G)) and the path i + 1 is not incident to u, exist

z different from u such that is endpoint the i − 1 and i + 1. When i − 2 is

incident to u we obtain [i − 2, i] ∈ E(T (G)), and when i − 2 is incident to z

we have [i − 2, i + 1] ∈ E(T (G)).

Case 4 The path i− 1 is incident to v and the path i + 1 is incident to u.

This case follows as Case 3 by interchanging u with v.

We say [6] that a graph H satisfies the property C∗ if and only if for each

cycle C = (0, 1, . . . , n − 1, 0) the two following properties hold:

(1) If [i, j] ∈ E(H) − E(C) with j �∈ {i − 2, i + 2}, then at least one of the

following conditions holds:

(1.a) {[s − 1, s + 1], [s, t]} ⊆ E(H) with; (s = i and t ∈ {j − 1, j + 1}) or

(s = j and t ∈ {i − 1, i + 1}).
(1.b) {[i − 1, i + 1], [j − 1, j + 1]} ⊆ E(H).

(1.c) H [{s − 1, s, t, t + 1}] ∼= K4 with s ∈ {i, i + 1}, t ∈ {j − 1, j}.
(2) If there exists i, 0 ≤ i ≤ n−1 such that {[i−1, i+1], [i, i+2]} ⊆ E(H),

then

{[i − 1, i + 2], [i, i + 3], [i + 1, i + 3], [i − 2, i], [i − 2, i + 1]} ∩ E(H) �= ∅ .

Lemma 3.2. [6] Let H be a graph satisfying the property C∗, and D an ori-

entation of H such that each directed triangle has two symmetrical arcs. If

every directed cycle of D,
−→
C = (0, 1, . . . , n − 1, 0) with �(

−→
C ) �≡ 0 (mod k) has

a chord (i, j) such that at least one of the two following properties holds:
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(i) j �∈ {i − 2, i + 2} or

(ii) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C ; (r, s) with

(r, s) �= (j, i),

then every directed cycle of D,
−→
C with �(

−→
C ) �≡ 0 (mod k) has two symmetrical

arcs, (k ≥ 3).

Lemma 3.3. [6] Let H be a graph satisfying the property C∗, and D be an ori-

entation of H such that each directed triangle is symmetrical. If each directed

cycle of D whose length is �≡ 0 (mod k) has two chords, then each directed cycle

of D whose length is �≡ 0 (mod k) has two symmetrical arcs, (k ≥ 3).

Lemma 3.4. Let G be a graph, T (G) its path graph and D be an orientation

of T (G) such that each directed triangle is symmetrical. If each directed cycle

of D whose length is �≡ 0 (mod k) has two chords, then each directed cycle of

D whose length is �≡ 0 (mod k) has two symmetrical arcs, (k ≥ 3).

Proof: It follows from Lemmas 2.1 and 3.1 that T (G) satisfy property C∗, and

then apply Lemma 3.3.

Theorem 3.5. [5] Let D be a digraph such that Asym(D) is strongly con-

nected. If every directed cycle of length �≡ 0 (mod k) has at least two symmet-

rical arcs then D has a k-kernel, (k ≥ 2).

Theorem 3.6. Let G be a graph, T (G) its path graph and D be an orientation

of T (G) such that Asym(D) is strongly connected and each directed triangle

has two symmetrical arcs. If every directed cycle of D,
−→
C = (o, 1, . . . , n−1, 0)

with �(
−→
C ) �≡ 0 (mod k) has a chord (i, j) such that at least one of the following

properties holds.

(i) j �∈ {i − 2, i + 2}, or

(ii) if j ∈ {i − 2, i + 2}, then there exists another chord of
−→
C , (r, s) with

(r, s) �= (j, i),

then D has a k-kernel, (k ≥ 3).

Proof: It follows from Lemmas 2.1 and 3.1 that T (G) satisfy property C∗;
then apply Lemma 3.2 and Theorem 3.5.

Theorem 3.7. Let G be a graph, T (G) its path graph and D be an orientation

of T (G) such that Asym(D) is strongly connected and each directed triangle is

symmetrical. If every directed cycle of D whose length is �≡ 0 (mod k) has two

chords, then D has a k-kernel (k ≥ 3).
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Proof: It follows from Lemma 3.3 and Theorem 3.6 (as T (G) satisfies the

property C∗).

Clearly Theorem 3.7 is a particular case in which the feasible extention of

Meyniel’s Conjecture ennounced in the introduction holds.
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