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Abstract. Let H be the 3—dimensional Heisenberg group and R, be
the multiplicative group of all positive real numbers. Let G4 = H x, R% be
the nilpotent Lie group, which is the semi-direct product of H by R* and Let
U be the complexified universal enveloping algebra of the real Lie algebra g
of G4. In this paper the Fourier transform on Gy is discussed for generalizing
the methods in [3] and [1] to prove the existence of a tempered fundamental
solution of the invariant differential operator on GG4. Out of these theorem a
global solvability of the Lewy operator has been obtained.
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1 Results and Introduction.

1.1. Let G4 be the real nilpotent Lie group of dimension 4, which consists of
all matrices of the form:

(1.1)

O O =
O+ 8
[l SN



404 K. El-Hussein

where x € R,y € R, 2 € R, and ¢t € R’ It is shown that the group G4 contains
the Heisenberg H as normal sub-group consisting of all matrices as follows

(1.2)

O O =
(eI )
[l SR

where © € R, y € R, z € R. Then by[13, P.238 — 240], G4 can be identi-
fied with the group H xR semi—direct product of H byR? , via the group

p
homomorphism p; : R — Aut(H), which is defined by

ot )z, y, v)=(z ty, t ') (1.3)

for any r € R, y € R, 2 € R and t € R, where R} = {# € R ; )0} is the

multiplicative group of all positive real numbers and Aut(H) is the group of

all automorphisms of H. By [13, P.238 —240] and [3, 601 — 612] the Heisenberg

group can be identified with the group R? x R via the group homomorphism
p2

p2 : R — Aut(R?), which is defined by

pa(z)(2,9) = (2 + 2y, y) (1.4)
Hence the group G4 can be identified with the group R* x R x R of the

P2 p1
successive semi—direct product R?, R and R?% , where the multiplication of two

elements X = (z,y, 7; t) andY = (2/,y/, 2/, t) in G4 is given by

XY = (z4; x; )2y, o, t’)
((zy, o)ty t712)), t 1)
= 4+ 4oty y+ty, x4+t 2, th)

(1.5)

and the inverse of an element X € Gy is

Xt =

p(t ) (=2 +ay, —y, —w)),t7")

)
(
((p2(=2) (=2, —y)), —@)),t7")
(
(
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1.2. Let C*(Gy4), D(G4), D'(Gy), E'(G4) be the space of C*°— func-
tions, C'*°—functions with compact support, distributions and distributions
with compact support on G4. Let U be the complexified universal enveloping
algebra of the real Lie algebra g of G4; which is canonically isomorphic onto
the algebra of all distributions on G supported by {0}, where 0 = (0,0,0,1) is
the identity element of GG4. For any u € U one can define a differential operator
P, on G, as follows:

Puf(X) = ux[f(X)
= /f Y X )u(Y)dY
(1.6)

for any f € C®(Gy), where X = (2, y, z, t), Y = (¢, ¢/, 2/, '), dY =
dz' dy'dz’ %' is the Haar measure on G4 and * denotes the convolution product
on (4. The mapping u — P, is an algebra isomorphism of U onto the algebra
of all invariant differential operators on Gy

1.3. Let B = R* x R x R% be the group of the direct product of R? R
and R’ , and let S(B) be the symmetric algebra over B. Then there exists a
unique hnear bijection

A S(B)—U

For every u € S(B), we can associate a differential operator with constant
coefficients (), on B as follows

Quf(X) = ux f(X)
= f*u )

:/fXY Y)dy

(1.7)

for any f € C*(B), X € B,Y € B. where . signify the convolution product
on the commutative group B and dY = dz'dy’ da:’ 4t is the Haar measure on
B. The mapping u — @, is an algebra 1somorphlsm of S(B) onto the algebra
of all invariant differential operators on B, which are nothing but the algebra
of all differential operators with constant coefficients on B. For more details
see[5, 9]. In this paper we will prove the following results

I- Fourier Transform and Plancherel Formula, theorem 2.1

II-Existence theorem of fundamental solution, see theorem 3.1

I11-Solvability of the Lewy operator corollary 4.1 and theorem 4.2
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2 Parseval - Plancheral formulas on Gy.

The Schwartz space S(Gy4)(resp.S'(G4)) of G4 can be considered as the Schwartz
spaces S(B) = S(R* xR% ) (resp.S'(B)) of the direct product of the real vector
group R* by R%. The actions pjof the group R% on R*® and p, of the group
R on R? define a natural actions p; on the dual group (R?)* of the group
R3, ((R®)* ~ R3) and p, on the dual group (R?)* of the group R?, ((R?)* ~ R?)
, which are given by :

pr(t ) (&1, &, E3) = (&1, 160,17 1E3) (2.1)
and
p2(x)(&1,&2) = (&1, & + 1&) (2.2)
So
pa(x)p1(t )6 = pa(w)pr(t ) (&1, &2, E3)
= pa(x) (&, &, t7'Es)
= (&4, t& + 26, 1718)
(2.3)
and
pr(t )p2(x)E = pi(t )(p2(2)(&1,62),E3)
= pu(t )&, &+ 261, E3)
= (&, & +taéy, t71E)
(2.4)

for any & = (&,&,&) € R*, v e Rand t € R%,
Definition 2.1. For every f € S(G,4), one can define its Fourier transform
Ff by:

@ x (2.5)

- —i(€,X) 4—ix "
FIEN = [ f0) 60 0
Ga
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where (§, X) = z& +yéa+u83, X = (z,y,2) € R3, £ = (&,6,&) e R¥, t e RY,
A€ R and dXdt = dz dy dx% is the Lebesque measure on Gy. It is clear that
the function Ff € S(Gy), and the mapping f+— Ff is an isomorphism from
the topological vector space S(Gy) onto itself.

Theorem 2.1. The Fourier transform F satisfies :
i 10) = [ FHEN Ful€ Nandg (26)
R4

for every f € S(G4) and u € E'(Gy4), where &(X,t) = u(X" 1t € =
(€1,62,83), AN = d&1d&adE3d), is the Lebesgue measure on R*, % denotes the
convolution product on G4 and F is the inverse of the Fourier transform.

Proof : By the classical Fourier transform, we have:

ux f(0) = / F (U £) (&, N)dEdA

R4
. . ds
= / / Uk f(X,8) e 16X ¢ gx §d5d>\

R4 G4
: . ds' dt
= / / / FY, (X, )u(Y, ) e "% gy dx —f?dgdx
S
R4 G4 Gy

By change of variable(Y,?)(X,s) = (X', t) with (X', t) = (z,y,z,t), we get

(X,s) = (V) '(Xit) = (2, ¢, 2", 1) (z,y;2:1)
= ((p1(=t)(p2(=2) (=2, —=y) + (z,9)), 2 — ), t"t)

and

—i((§, ), (X, 9))
= —i{(&N), (V)X 9)
—i{(&N), (2, 2 ) (2, y a5 t))
—i{(&1, 62, &5, A), (01 (7 ) (p2(=2) (=2, =) + (2,9)), & — 2), £71F))
= —i{((p2(=2) (Mt )(&,&),&),N), (2 — 2y — v, — 2/, t7'1))
= —i((&, 17 — a6, 5, M), (2 — 2y — v — 2 M)
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(2.7)
So, we obtain
e e E)E Y, )T Ew ) (p-1p)=ix
= emlE@eN &P E (- (= =)+ (), a=2) (p-1p)=iA

e~ (p2(=2) (1 () (€1, E2. 8 (=2 =1 )+ (2w, a=0') (p=14)=iX
= (@t e 1) (=2 y—yia—a)) (p-1py —id

By the invariance of the Lebesgue measures, dé»d€s and d€,, we obtain

wx f(0)
f'i<(£1 t e —ak,tl3),(2—2' yfy/':pfz’)> —~1 4\ —iA dt dt
= f(X, t)e ’ SB)AETELYTY ()" u(Y, t)dY ?dX7 d&d\
Gy G4 R4
. . —i) dt o DY 2 S i\ dt/
— f(X, t)e Z<(§17§27§3)7(Zay7x)>t ? dX?U(Y,t e Z<(§17£27£3)7( Z257Y5 m)>t” dY?dfd)\
Gy G4 R4
LileX) 4—in g A iey) gix gy A
= f(X, t)e s ¢ dX7u<Y’ t)e'ST ¢ dy ?dfd/\
G4 Gy R4
= [ FreN) Fute Naxig
R4
where 0 = (0,0,0, 1) is the identity of G4. The theorem is proved.O
Corollary 2.1. (i) In Theorem 2.1, if we take U= fv, we obtain
~ dt
Fero) = [irexopfax
Gy
= [1FreN aig
R4
(2.8)

where f(X,t) = f(X~1,t1), which is the Plancheral’s formula on Gy.
(11) If we take u =7 € S(G4), we find
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[reogenTax - [Fren Fenoe @9

which is the Parseval formula on Gy.
(iii) The Fourier transform can be extended to an isometry of L*(Gy).

3 Extension Group and Fundamental Solution.

Let L =R* x R x R xR* xR% be the group with law:

XY zyysxyrit, s) (2 y s

(2 ) () 1) 18 55)
(z,y;2,7) (¢, sy's 2/, s~ 1)), ', s5")
((z,y:2)(p2(r) (2, sy'), 2'), 571"+, tt 58)
(z,y;2) + (&' +rsy,sy'),2"), s 1 4+t 58")
242 sy y+syix 4o, s 4o tt) ss))

(
(
(
(
(
(

(3.1)

for all X = (z,y,z,mt,s) € Land Y = (2, ¢/, 2/,7',t',s') € L. In this case the
group G4 can be identified with the closed sub—group R? x {0} x R x {1} x
R*% of L and B with the subgroup R? x R x {0} x R% x {1} of L. The group
L can be called the extension group of the both groups G4, and B B

Definition 3.1 For every f € C*®(L), one can define a function f €
C*(L) as follows:

f(z,y,x,r,t, S) = f ((Pl(t)((PQ(IIJ)(Z»Z/))aOJ"+95)>1750
= f((m@)(z+2y,y,0,r+x)),1,st)
= f(z+ayty,0,t  (r+x),1,st)
(3.2)

for any (z,y,x,r,t,s) € L.

Remark 3.1. The function f 15 invariant in the following sense:
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f((pl(h)(pQ(k)(zu y))v T — k7T + k)’th_17 Sh) = fv(z,y,x, T, S) (3?’)

for any (z,y,x,7,t,s) € L, k € R and h € R}
Definition 3.2. If u € U and f € C*(L), we can define the convolution
product of u and f on Gy by

&*f(z,y,x,r,t,s)
/

d
f [(Z,’ y,’ Tl? S,)_l(za Yy, xr, T, L, S):| 1\2<Z/7 y/7 7",7 S/)dzldy,dT/g

(3.4)

where

(a,b,c,d)(z,y;z,1;t,8) (a,b,c)(p1(d)(z,y,x,7)),t,sd)
(a,b,c)(z,dy,x,d"'r),t,sd)
(a,b)(pa(c)(z, dy)), z,d"'r + c,t, sd)

a+z+cdy,b+dy,x,d'r +c,t,sd)

o~ o~~~

(3.5)
for any (a,b,c,d) € G4 and (z,y;x,7;t,s) € L.

Proposition 3.1. For every f € D(L) and uw € U , we have

[F @ D) (€mrnduto = FP) €001 Fli) (€3 (6)

where F(q\i*f) & v)=[ [ f f (X, 7, t, 8)e” {Em X =idg=ivg X dr L 45 gy dy
G4 R3 R

5: (51752753) € Rga X = (Zayax)> dX = dzdyda:, <(£7,u)7 (Xa T)) = 251 +y£2+
&3 +rp,r €R, t € RY and s € RY
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Proof: First, we have

(

[(////—1 V//////fd_sl
Z7y7T7S) (27y7x’r’t78)]U(Z7y7r7s)dZdyd/rl 4
S

/
B / (o1 (5 )Y 8 Ny s o' o )y
S

G

/
1

7 - - d
B / (o1 (870 s )t iy o o)l dy =
G

!/

- / Fll(or(8 ™Yoo= (2 5/) ™ + (2, 9)) 2y — 1), £ 58 Nl o 7, s’)dz’dy’dr’d%
G

/
= [ fl(pu(8" Y pa(=1")(z = 2y — )y, — 1), t, 58 (2 g7, S')dz’dy'dr/d%

Gy

By the invariance of f, we get:

!/

- d
)((Z - Zla y— y,)a T — Tl: T)a t> SS, 1)] u('zla yla rla Sl)d'z/dy,dr/ S/
S

-1

)

_(Pl(sl

!/

d
)] uw(2',y ', ") dZ dy'dr —S
s

—1 1

(5 ) (2 = 2y =)o =1, 7), 58

~ _ ds'
fle=2y—vy,x =1 rts | s)] u(2,y',r', s )d2 dy' dr—
I s

— T P
k)

~

*C f(z7 y? x’ T, t7 S)

=< W

Second, we have
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[ F P A 0) due

. . dt ds ds
- ////f(X—Y,r,ts’  $)U(Y, 8)e HEm(Xmg=irg *WdeXdr?ffdudu
G4 G4 R3 R*
= ////fX r,t, s)e M =idj(y, ¢)e=iEY) g *WdeXdﬂﬁﬁdudu
S
G4 G4 R3 R*
N V
= F(f) (§&0,\1) F(u) (€, 7)
(3.8)

where Y = (2,y/,7) € R?, dY = d2'dy'dr, dX = dzdydz,t € R%,s € R%,
seR,, reR, peRandveR.
Whence the proposition. Now we can state the following result.

Theorem 3.2. Every invariant differential operator on G, which is not

tdentically 0 has a tempered fundamental solution.

Proof: For each complex number s with positive real part, we can define
a distribution 7 on L by:

<Wf—/“f (€M)

RG

rﬂﬂ@m&W%wme

for each f € S(L ). By Atiyah theorems[1], the function s — T has a mero-
morphic continuation in the whole complex plan, which is analytic at s = 0
and its value at this point is the Dirac measure on the group L. Now we can
define another distribution, Ts as follows.

(1) = {T0)
= [ |l nf

Rﬁ

rﬂﬁame%wwmj

(3.9)
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for any f € S(L ) and s € C , with Re (s) > 0.
Note that the distribution 7 is invariant in the sense (3.3), and we have

(i Tres) = (ueser

< v
= <T“”, Uso Uk | >
_ [)f

N ~

]S F (@ #e w5 F)(E, p, A, v)dEdNdp dv

R6
where
w(z,y,x,t) = u(—z, —y, —x,t71)
and
%*C f(z,y,x,t) = /f((z —a,y—b,x—c, tr’l)%((a, b, c, r)dadbdc% (3.10)

B

is the commutative convolution product on G4. By proposition 3.1, we get:

<u */aZTs,f> :/ Uf(&)(g, A)ﬂsf(A)(g,u, X, v)dédrdy dv

Rﬁ

hence

—

Wk ik, T3 = T5F1 (3.11)

—

In view of the invariance(3.3), the restriction of the distributions u % u . T =
Ts+! on the sub-group R? x {0} x R x {1} x R* ~ G4 are nothing but the
distributions

uxux, TS =Tt

The distribution 7% can be expanded a round s = —1 in the form

(e 9]

T = Z C(j(S + 1)‘7

j=—4
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where each o is a distribution on Gy But uwxu . T° = Tt can not have a

pole at s = —1 (since T'° = §g,) and so we must have:
uxux.a; = 0 for j<O
uxu*x.ap = 0g,

(3.12)

Whence the theorem.

4 Remark on the Lewy Operator and Hor-

mander Condition.
Lewy [10] had proved that if the equation
Lf = (-0, —i0, — 2y0, + 2ix0,)f =g (4.1)

has a solution f € CY(R?) for ¢ € C'(R), then g is analytic, and by the
Hormander necessary condition [8, P.156], the equation 4.1 does not have any
distribution solution.

Since then, and in dealing with the non existence of solutions of partial
differential operators it was customary during the last fifty years and it still is
to day in larger applications, to appeal to the example of the Lewy operator
and Hormander condition which guarantees the non existence of (distribution)
solutions of the equation 4.1.

Understanding the nature of the kind of these partial differential opera-
tors and their invariance on the Heisenberg group requires the admission of
solutions.

K. El- Hussein in [3] have proved the local solvability of the similar Lewy
operator

i0y + 0, + iy, (4.2)

Definition4.1. For every function f € C*°(R3), one can define a function
A(f ) € C*(R?), by the following manner

Af)zy,z)=f(2—22y,y,—) (4.3)

It is clear that A? = I, where I is the identity operator of C*°(RR?).
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Theorem 4.1. For any f € C™(R3), we get

Pf(zy,x) = AQAf(z,y, x) (4.4)

where @ = 0, — 10, and P = -0, — 2y0, — 10, — 2ix0,
Proof: In fact if f € C°°(R?), then we have

MOz)Af(z,y, )

= (%)OA][(Z - 2xy7 Y, =T+ t)
= (%)Of(z - 2yt,y,x - t)

= (_ax - 2y82>f(2,y,$)

(4.5)

and

A(—iay)Af(Z, Y, x)

= (—i0y)Af (z —2zxy,y ,—x)
d

= (_Z@)OAJC(Z - 2[)3y, Y+ t7 —[E)

= (—i%)of(z +2xt,y + t, )
= (—i0, —220,)f(z,y,x)

(4.6)
Finally for any f € C*®(R3), we get

(=0, — 290, —i0y — 2i20,)f(2,y,z) = Pf(z,y,2)
= AQAf(z,y,7)

and

(_a:t - anz - Zay + QZJZ'aZ)f(Z, Y, x) = Lf(Z, Y, —l’)
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Corollary 4.1. The Lewy operator L = —0, — 2y0, — i0, + 2ix0,, verifies
the following property

LC™®(R?*) = C™(R?) (4.8)

Proof. In fact for any function g € C*°(R3), there is a function f such that
[Pfl(z,y, —x) = Lf(2,y, —x) = 9(2,y, —x) (4.9)
If ¢ € C°(R?), we denote by ¢ the function defined by
8(2,9,7) = ¢(z,y, —2)
then the mapping T" — T defined by
(T(z,y,2),6(2,9,2)) = (T(2,9.2), 6(z,y, 7))

is a topological isomorphism of D'(R?).
Theorem 4.2. The Lewy operator L has a fundamental solution
Proof: Let T be a fundamental solution of the operator P, then for any
¢ € C3°(R?), we get
<LT(27 y? x)’¢(z7 y? x)> = <T('Z’ y7 ‘/I/‘)7tL¢(Z7y7 x)>
= <T(Zay7‘r)7tp¢(zaya_x)>

(4.10)

Changing the variable x by —x, we obtain

(LT (2,y,7),6(2,y, 7))
= (T(z,y,—x), (0 + 290, + 10, — 2ix0,)P(z,y, x))
—0, — an 10y + 2i20,)T (2, y, —x), ¢(z,y, x))
—0, — 2y0, — 10y — 2i20.)T(2,y,z), (2,y, —1))
Ors (2,9, ), ¢(2,Y, —))

= (0ws(z,,2),6(2,y,2))
(4.11)

where L (resp.!P ) is the transpose of the operator L (resp.P ). Then we
have

Lf(z,y,:z:) = 5R3(Z>y7x) (412)

Consequently if T' is a fundamental solution of P, then T is a fundamental
solution of L.
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