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Abstract

In this paper, a matrix corresponding to Hamilton operators is de-
fined for generalized quaternions is detemined a Hamilton motion in
four-dimensional space E4

αβ . It is shown that this is a homothetic mo-
tion. Also, it is found that the Hamilton motion defined by a regular
curve of order r has only one acceleration center of order (r−1) at every
instant t.
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1 Introduction

To investigate the geometry of the motion of a line or a point in the motion of
space is important in the study of space kinematices or spatial mechanisms or
in physics. The geometry of such a motion of a point or a line has a number
of applications in geometric modeling and model-based manufacturing of me-
chanical products or in the design of robotic motions. Hacısalihoğlu[3] showed
some properties of 1-parameter homothetic motion in Euclidean space En. In
addition, he found that this motion is regular and has one pole point at every
t-instant. After him, Yaylı[7] gave homothetic motions with aid of the Hamil-
ton operators in four-dimensional Euclidean space E4. Subsequently, Kula
and Yaylı[5] expressed Hamilton motions by means of Hamilton operators in
semi-Euclidean space E4

2 and showed that this motions, are a homothetic mo-
tion. Also, this subject is investigated in algebra[2]. Recently, we studied the
generalized quaternions, and presented some of their algebraic properties[4].
Furthermore, we give some algebraic properties of Hamilton operators of gen-
eralized quaternion. In [4], generalized quaternions have expressed in terms
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of 4 × 4 matrices by means of these operators. In this paper, first, we define
a motion by using these matrices, and show that this motion is a homothetic
motion in four-dimensional space E4

αβ. We find that the homothetic motion
has only one pole point at every instant t, and prove that this motion has only
one acceleration center of high order at every instant t.

2 Preliminaries

Definition 1. A generalized quaternion q is defined as

q = a· + a1i + a2j + a3k

where a·, a1, a2 and a3 are real numbers and 1, i, j, k of q may be interpreted
as the four basic vectors of cartesian set of coordinates; and they satisfy the
non-commutative multiplication rules

i2 = −α, j2 = −β, k2 = −αβ

ij = k = −ji, jk = βi = −kj

and

ki = αj = −ik, α, β ∈ R.

The set of all generalized quaternions are denoted by Hαβ. So, a generalized
quaternion q is a sum of a scalar and a vector, called scalar part, Sq = a·,
and vector part Vq = a1i + +a2j + a3k ∈ R3

αβ. Therefore, Hαβ is form a
4-dimensional real space which contains the real axis R and a 3-dimensional
real linear space R3

αβ, so that, Hαβ = R ⊕ R3
αβ. It is clear, if α = β = 1

then Hαβ = H (real quaternions), and if α = 1, β = −1 then Hαβ = H ′(split
quaternions) [4].

Definition 2. We define a generalized inner product in R4,

〈u, v〉 = u1v1 + αu2v2 + βu3v3 + αβu4v4

where u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) ∈ R4 and α, β ∈ R. We put
E4

αβ = (R4, 〈, 〉). So, we identity Hαβ with the 4-dimensional space E4
αβ.

Definition 3. A matrix A is called a quasi-orthogonal matrix if AT εA = ε

and detA = 1, where ε =

⎡
⎢⎢⎣

1 0 0 0
0 α 0 0
0 0 β 0
0 0 0 αβ

⎤
⎥⎥⎦ and α, β ∈ R [4].
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3 Homothetic motions in E4
αβ

The 1-parameter homothetic motions of a body in four-dimensional space E4
αβ

is generated by transformation

[
Y
1

]
=

[
hA C
0 1

] [
X
1

]

where A is a quasi-orthogonal matrix. The matrix B = hA is called a homo-
thetic matrix and Y, X and C are n × 1 real matrices. The homothetic scalar
h and the elements of A and C are continuously differentiable functions of a
real parameter t. Y and X correspond to the position vectors of the same
point with respect to the rectangular coordinate systems of the moving space
R and the fixed space R◦,respectively. At the initial time t = t◦, we consider
the coordinate systems of R and R◦ as coincident. To avoid the case of affine
transformation we assume that

h = h(t) �= cons. , h(t) �= 0.

and to avoid the case of a pure translation or a pure rotation, we also
assume that

d

dt
(hA) �= 0,

d

dt
(C) �= 0.

4 Hamilton motions in E4
αβ

Let q = a·+a1i+a2j+a3k be a generalized quaternion, and let hq : Hαβ → Hαβ,
hq(x) = qx. The matrix of hq relative to the natural basis {1, i, j, k} for Hαβ is

H(q) =

⎡
⎢⎢⎣

a· −αa1 −βa2 −αβa3

a1 a· −βa3 βa2

a2 αa3 a· −αa1

a3 −a2 a1 a·

⎤
⎥⎥⎦ (1)

(see [4]).

Let us consider the following curve:

a : I ⊂ R → E4
αβ

a(t) = [a·(t), a1(t), a2(t), a3(t)], ∀t ∈ I
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we suppose that the unit velocity curve a(t) is differentiable regular curve
of order r. The operator B called the generalized Hamiltonian operator, cor-
responding to a(t) is defined by the following matrix;

B = H[a(t)] =

⎡
⎢⎢⎣

a·(t) −αa1(t) −βa2(t) −αβa3(t)
a1(t) a·(t) −βa3(t) βa2(t)
a2(t) αa3(t) a·(t) −αa1(t)
a3(t) −a2(t) a1(t) a·(t)

⎤
⎥⎥⎦ . (2)

Definition 4. The 1-parameter Hamilton motions of a body in E4
αβ are gen-

erated by transformation [
Y
1

]
=

[
B C
0 1

] [
X
1

]

or equivalently

Y = BX + C. (3)

Here B = H[a(t)] and Y, X and C are n × 1 real matrices, A and C are
continuously differentiable functions of a real parameter t; Y and X correspond
to the position vectors of the same point P.

Theorem 1. The Hamilton motion determined by equation (3) is a homoth-
etic motion in E4

αβ .

Proof. We suppose that length of a(t) is not zero, so the matrix B can be
represented as

B = h

⎡
⎢⎢⎢⎣

a·(t)
h

−αa1(t)
h

−βa2(t)
h

−αβa3(t)
h

a1(t)
h

a·(t)
h

−βa3(t)
h

βa2(t)
h

a2(t)
h

αa3(t)
h

a·(t)
h

−αa1(t)
h

a3(t)
h

−a2(t)
h

a1(t)
h

a·(t)
h

⎤
⎥⎥⎥⎦ = hA (4)

where h : I ⊂ R → R,

t → h(t) = ‖a(t)‖ =
√
|a2· (t) + αa2

1(t) + βa2
2(t) + αβa2

3(t)|

so, we find AT εA = ε and detA = 1, thus B is a homothetic matrix and
equation (3) determines a homothetic motion.

Special cases:
(i) For the case α = β = 1, A is a orthogonal matrix and equation (3)

determines a homothetic motion at E4.(see[7])
(ii) For the case α = 1, β = −1, A is a semi-orthogonal matrix and equation

(3) determines a homothetic motion in semi-Euclidean space E4
2. (see[5]).



Homothetic motions 2323

Theorem 2. The derivation operator
·
B of the Hamilton operator B = hA, is

a quasi-orthogonal matrix.

Proof. We derivate of (2), i.e.
·
B = H[

·
a(t)], we have

·
B

T

ε
·
B = ε, and since a(t)

is unit velocity curve then det
·
B = 1.

Theorem 3. In E4
αβ, the Hamilton motion is a regular motion, and it does

not depend on h.

If we differentiate of (3) with respect to t yields
·
Y =

·
BX +

·
C + B

·
X,

where

Vr = B
·

X

is the relative velocity of X, Vs =
·
BX +

·
C is the sliding velocity of X and

Va =
·
Y is called absolute velocity of point X. So, we can give the following

theorem.

Theorem 4. In four-dimensional space E4
αβ , for 1-parameter homothetic mo-

tion, absolute velocity vector of moving system of a point X at time t is the
sum of the sliding velocity vector and relative velocity vector of that point.

5 Pole points and pole curves of the motion

We look for points where the sliding velocity of the motion is zero at all time t,
such points are called pole points of the motion at that instant in R◦. Hence,

·
BX +

·
C = 0. (5)

by theorem 4.2,
·
B is regular, so equation (5) has only one solution, i.e.

X = −
·
B

−1 ·
C

at every instant t. In this case the following theorem can be given.

Theorem 5. The pole point corresponding to each instant t in R◦ is the rota-

tion by
·
B

−1

of the speed vector
·
C of the translation vector at that moment.

Proof. As the matrix
·
B is quasi-orthogonal, the matrix

·
B

−1

is quasi-orthogonal
too. Thus, it makes a rotation.

Theorem 6. During the homothetic motion the pole curves slide and roll upon
each others and the number of the sliding-rolling of the motion is h.
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6 Acceleration centers of order (r − 1) of the

motion

Definition 5. The set of zeros of the equation of the sliding acceleration of
order r is called the acceleration center of order (r-1)[7].

In order to find the acceleration center of order (r-1) for the equation (3)
according to definition above, we find the solution of the equation

B(r)X + C(r) = 0, (6)

where

B(r) =
drB

dtr
, C(r) =

drC

dtr
.

As the curve a(t) is a regular curve of order r, then

(
a(r)
◦ (t)

)2
+ α

(
a

(r)
1 (t)

)2

+ β
(
a

(r)
2 (t)

)2

+ αβ
(
a

(r)
3 (t)

)2

�= 0, a
(r)
i =

drai

dti
,

Also, as

det B(r) =

{ [
a(r)
·

]2
+ α

[
a

(r)
1

]2

+ β
[
a

(r)
2

]2

+ αβ
[
a

(r)
3

]2
}2

,

then det B(r) �= 0. Therefore matrix B(r) has an inverse, and, by equation
(6), the acceleration center of order (r − 1) at every t instant, is

X =
[
B(r)

]−1 (−C(r)
)
.

Example 1. Let a :I ⊂ R → E4
αβ be a curve given by

t → a(t) =
1√
2

(
cos t,

1√
α

sin t,
1√
β

cos t,
1√
αβ

sin t

)
, α, β � 0.

a(t) is a unit velocity curve and differentiable regular of order r. Matrix B
can be represented as

B = H [a(t)] =
1√
2

⎡
⎢⎢⎢⎢⎣

cos t −√
α sin t −√

β cos t −√
αβ sin t

1√
α

sin t cos t −
√

α
β

sin t
√

β cos t

1√
β

cos t
√

β
α

sin t cos t −√
α sin t

1√
αβ

sin t − 1√
β

cos t 1√
α

sin t cos t

⎤
⎥⎥⎥⎥⎦

Thus a(t) satisfies all conditions of the above theorems.



Homothetic motions 2325

let C = (0, t, 0, 0), the (3) motion is given by

Y =
1√
2

⎡
⎢⎢⎢⎢⎣

cos t −√
α sin t −√

β cos t −√
αβ sin t

1√
α

sin t cos t −
√

α
β

sin t
√

β cos t

1√
β

cos t
√

β
α

sin t cos t −√
α sin t

1√
αβ

sin t − 1√
β

cos t 1√
α

sin t cos t

⎤
⎥⎥⎥⎥⎦X +

⎡
⎢⎢⎣

0
t
0
0

⎤
⎥⎥⎦ . (7)

Hence geometrical path of pole points in the Hamilton motion is determined
by equation (7) as

X =
·
B

−1 ·
(−C) = ε−1

·
B

T

ε
·

(−C)

X =
1√
2

⎡
⎢⎢⎣

√
β sin t

−(β
α
)

3
2 cos t

sin t
1√
α

cos t

⎤
⎥⎥⎦ .
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