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Abstract

In this paper we study the global behaviours of solutions of the
fourth-order difference equation

k+1
TpTn—1Tn—2Tn-3 + f(xna Tn—1,Tn-2, xnf?))xnfg + -Tnm_3 +a

xn+1 - 9

k
TnTn—1Tn—2 + f(xm Tn—1,Tn-2, xn73)$n73 +as+a

n =0,1,2, ..., where f : (0,00)* — (0,00) is arbitrary and differen-
tiable, m, k € [0,00) and the initial values x_3,z_9,2_1, 29 € (0, 00).
We also study the positive nonoscillatory solutions of the following dif-
ference equation

Al AQ Ak:—l 1

Tn41 = )

+ + ...
Tn + Tn-1 Tp—1+ Tn—2 Tn—k+2 + Tn—k+1 Tn—k

n=0,1,2, ..., where Aj, Ag, ..., A_1 € [0,00) and A = Zi-:ll A;—2>0.
Mathematics Subject Classification: 39A10

Keywords: Equilibrium, asymptotic, positive solution, difference equa-
tion, nonoscillatory solution



2090 Vu Van Khuong and Le Hong Lan

1 Introduction

It is extremely difficult to understand throughly the global behaviours of so-
lutions of rational difference equations although they have simple forms. We
can refer to [1-3, 7-12], especially [1, 3] for examples to illustrate this.

The study of rational difference equations of order greater than one is quite
challenging and rewarding because some prototypes for the development of the
basic theory of the global behaviour of nonlinear difference equations of order
greater than one come from the results for rational difference equations.

G. Ladas proposed to study the rational difference equation

Tp + Tp—1Tp-2 +a

)
TpTp—1 + Tp-2+a

Tpt1 = n=0,1,2,.. (1)
From then on, rational difference equations with the unique positive equilib-
rium Z = 1 have received considerable attention, one can refer to [7-11] and
the references cited therein.

Recently, Li [9] investigated the global behaviour of the following fourth-
order rational difference equation

TnTp—1Tp-3 + Tp + Tp—1 + Tp-3 +a
TnTp—1 + TpnTp-3 + Tn-1Tp-3 + I+a

Tpyl = , n=20,1,2,... (2)

where a € [0,00) and initial values z_3,z_5,2_1, 29 € (0, 00).
In this note, we consider the following fourth-order rational difference equa-
tion
k+1
LTpnTp—1Tn—2Tp—3 + f(xna Tp—1,Tp—-2, xn—3)xn—t3 + l‘:—bn_?, +a

k m
TpnTp—1Tp—2 + f(xna Tp—1,Tn-2, $n_3)$n73 + Tp_3 +a

Tpt+1 = ) (3>
n = 0,1,2,.., where f : (0,00)" — (0,00) is arbitrary and differentiable,
m, k,a € [0,00) and the initial values z_3,2_o,2_1, 29 € (0, 00).

It is easy to see that the positive equilibrium z of Eq. (3) satisfies

xr =

from which one can see that Eq. (3) has a unique positive equilibrium z = 1.

2 Lemma and Theorem

We need the following definition.

Definition 2.1 A solution {x,}>2 5 of Eq. (3) is said to be enventually
trivial if x, eventually equal to T = 1; otherwise, the solution is said to be
nontrivial.
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Before to draw a qualitatively clear picture for the positive solutions of Eq.
(3), we first establish a basic lemma which will play a key role in the proof of
our main results.

Lemma 2.2 Let {x,};> 4 be a nontrivial positive solution of Eq. (3). Then
the following conclusions are true for n > 0:

(a) (Tni1 —1)(zn3—1)>0
(b) (xp1 — Tp_3)(Tp_3—1) <O0.

Proof. 1t follows in light of Eq. (3) that

(xn—B - 1)[Inxn—lxn—2 + f(xTH Tn-1,Tn-2, -rn—?))qui_?,]

k m
TnTp—1Tn—2 + f(xna Tn—1, Tp-2, -rn—?))xnf‘g, +a+ Tn_3

Tny1 — 1=

n=20,1,2,... and

(v +a)(1 — xns)
TpnLp—-1Tn—2 + f(l'na Tp—1y Tp—2, .Tn,g)xﬁ_?) +a+ x:—bn—?,’

Tn+1 — Tp-3 =

n=0,1,2, .. O

Remark 2.3 If the initial conditions of the Eq. (3) satisfy xy, # 1, k =
—3,-2,—1,0, then, for any solution {xsnir} of Eq. (3), Tansr # 1, k =
—3,—2,—1,0 forn > 0. It means that

(a) If xp, # 1, k= —3,-2,—1,0 then x4p4x # 1 for n > 0.
(b) If o, > 1, k= —-3,—2,—1,0 then T4,y > 1 forn > 0.
(c) If o, <1, k=—-3,—2,—1,0 then x4,y <1 forn >0.

Theorem 2.4 Assume that m,k,a € [0,00). Then the positive equilibrium
of Eq. (3) is globally asymptotically stable.

Proof. We must prove that the positive equilibrium point £ = 1 of Eq. (3)
is both locally asymptotically stable and globally attractive. The linearized
equation of Eq. (3) about the positive equilibrium z =1 is

1+ f(z,z,2,7)
2+ f(z,z,2,%) +

Yn+1 = 0.4 +0.yp—1+ 0.yp2+ aynf?n n=0,1,2,..
By virtue of ([11], Remark 1.3.7), Z is locally asymptotically stable. It remains
to verify that every positive solution {x,}>° ., of Eq. (3) converges to z = 1
as n — o0o. Namely, we want to prove

limz, =2=1 (4)

n—oo
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If the initial values of the solution satisfy x_3 = x_» = v_; = xg = 1, then
Lemma 2.1 says the solution is eventually equal to 1 and, of course, (4) holds.
Therefore, we assume in the following that the initial values of the solution do
not satisfy x_3 =x_o =x_; = £y = 1. This means that

(x—?n T_2,T-1, l'()) 7£ (17 ]-) 17 ]-)

Based on the Lemma 2.1 we see that one of the following sixteen cases must
occur

1) Tr_3 S 1, T_9 S 1, Tr_q S ]_, ZTo S 1.
)x 3<1,x9<1, 2_1<1, 20> 1
Nax3<1l,z9<1, 2_1>1, 29>1
HNrxg<l,z<1 21>1, 2<1.
S)ax3<1l,x9>1 2.1<1, 70 <1
6)x 3<1,x9>1 2.1<1, 79> 1.
Nrx3<l, xo>1 29>1, 29> 1.
8)x_3<1, xz9>1, 2_1>1, 0 <L
Naxg>1, x29<1, 2_1<1, 9> 1
10z 3>1, . 5<1, 21 <1, 2y > 1.
1].) Tr_3 Z ]_, T_9o S 1, Tr_q Z 1, Zo S 1.
12) Tr_3 Z ]_, T_9o S 1, Tr_q Z 1, Zo S 1.
Bz s3>1, z.9>1, 241 <1, 2y >1.
M)z 3>1, 2.9>1, 21 <1, 2y >1.
By g>1l, x9>1, x4 >1, oy > 1.
16) Tr_3 Z ]_, T_9 Z 1, Tr_q Z 1, Zo < 1.

If case 1) occurs from the Lemma 2.1_a) we obtain x4, < 1, k=0,—1,—-2, -3,
for n > 0. From b) of the Lemma 2.1 we have

Tantk < Tanrn+re < L

The sequences {T4n1£ 5%, k =0, —1,—2, —3, are increasing with upper bound
1. So the limits lim x4, = P, lim 24,11 = @, lim 24,0 = R, limxy,,3 = L
n—oo n—oo n—oo

n—oo

exist and are finite, too.



A note on global behaviour of solutions 2093

Noting that

k-+1
Tant3Tan+2Tan41%4n + f(Tants, Tanto, Tant1, Tan) Ty, + T4, +a
E
Tan+3Tan4+2Tan+1 1 f($4n+3, Lan+2, Lon+1, $4n)$4n + oy, +a

k+1
Tan+2Can+1CanTan—1 + f(Tant2, Tant1s Tan, Tan—1)Tan—q + Th_y +a

Lon+4 =

I

Tyn4+3 = k ’
Tant2Tant1Tan + f(Zanto, Tant1, Tan, Tan—1)T5,_1 + 25 _1 +a
k1
| Tan1TanTan1Tan—2 + [(Tani1, Tan, Tan—1, Tan—2)Tay o + T, o+ a
Tan4+2 = + f( ) k 4 gm + )
Tan4+1T4nTon—1 Tan+1; Tan, Tan—1; Lan—2)Tgp_o T Typ_o T @
k41
. TanTan—1Tan—2%Can—3 + f(Tan, Tan—1, Tan—2, Tan—3)Tan_5 + Th_5 +a
4n+1 — )

%
TanTan-1Tan—2 + f(Zan, Tan—1, Tan—2, Tan—3)T5, 5 + T4 _5+a
n=01,2, ..

and taking the limit on both sides of those above equalities one can see that

_ PQRL+ f(L,R,Q,P)P*' 4+ P +a

b —pP=1.
LQR+ f(L,R,Q,P)P*+ P™ +a
k+1 m
[ PQRL+ f(RQ P L)L + L™ +a
LQR+ f(R,Q,P, L)Lk + L™ + a
k+1 m
po PQEL+ QP LRRT +R"+a __ , |
LQR+ f(Q,P,L,R)R* + R™ +a
PORL P, L,R P Q™

LQR+ f(P,L,R,Q)Q*+ Q™ +a

Thus, P =Q = R= L =1, we have (4).

If case 2 occurs: x_3 < 1,29 <1, z_; <1 and xyp > 1. By the similar argu-
ments, we have {Z4,41}°2 o, {ZTant2}5% 0, {Tant3 52, are increasing with upper
bound 1, and {x4,}32, is decreasing with lower bound 1. So, the limits

lim x4, = P, lim 24,41 = Q, lim 24,0 =R, lim 24,43 =1L
n—oo n—oo n—oo

n—oo

exist and are finite, too. By the above similar method, we have

too.
All of the rest cases we obtain the same result limz,, =7 = 1. O

n—oo

3 Positive nonoscillatory solutions

In this paper we also show that the following difference equation

Al A2 Ak_1 1

Tpy1 = + + ...+ — , (5)
Tp + Tp—1 Tp—1 + Tp—2 Tp—k+2 T Tn—k+1 Tn—k
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n=0,1,2 ..
where Ay, Ag, ..., Ax_1 € [0,00) and

k—1
1=1

has positive nonoscillatory solutions which converge to the positive equilibrium

Note that the linearized equation of Eq. (5) about the positive equilibrium

__ A
Tr = — 1S
2
A At At A

Yn+1 = _ﬂyn - Tynfl — .. TynkarZ -

S — + —Yn— =0,1,2
n—k+ n—ks; T ) Ly Ly eee

2AYp41 + Aryn + (A1 + A2)Yn—1 + .. + (Ag—2 + Ap—1)Yn—kt2 +
+ A 1Yn—k41 — 4Yn—r =0 (6)

The characteristic polynomial associated with Eq. (6) is

p(t) = 2AFT 4 AptF 4+ (A + At 4 (g + A )P+ Ayt —4=0
(7)

Since p(()) =—4< O, p(l) = 2A+A1+A1+A2+Ak,2+Ak,1+Ak,1—4 =4A>0

() =2Ak+D)tF + Akt 4 2(Ap_g F Ap_ )t + Ay >0 for t € (0,1).

It follows that for each Zf;l A; —2 = A > 0, there is a unique positive root
to € (0,1) of the polynomial belonging to the interval (0,1). It means that

plto) = 2AtET + Ayth + (A + Ag)th ™ + .. +
+ (Apg+ A )2+ Ap_atg —4 =0 (8)

This fact motivated us to believe that there are solutions of Eq. (5) which
have the following asymptotics

Tn =T+ atf + o(ty) 9)

where a € R and ¢t is the above mentioned root of Eq. (7). We solve the
open problem, showing that such a solution exists, developing Berg’s ideas
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in [5] which are based on the asymptotics. The asymptotics for solutions of
difference equation have been investigated by L. Berg and S. Stev¢, see, for
example [4-8], [10-12, 27-29, 31, 32, 34-39] and the reference therein. The
problem is solved by constructing appropriate sequences y,, and z, with

Yn S Tp < 2 (10)

for sufficiently large n. In [5, 6] some methods can be found for the construction
of these bounds, see, also [7, 8].

From (9) we expect that for & > 2 such solutions have the first three
members in their asymptotics in the following form

On =T + aty + bt3" (11)

This is proved by developing Berg’s ideas in [5] which are based on asymptotics.
We need the following result in the proof of main theorem. The proof of the
following theorem can be found in [38, 39].

Theorem 3.1 Let f : I**2 — I be a continuous and nondecreasing function
in each argument on the interval I C R, and let {y,} and {z,} be sequences
with y, < z, for n > ng and such that

Ynt < F(Ny Yn—kt1s ooy Yn1)y FN Zn_ksts ooy Zng1) < 2ng for n>ng+k—1
(12)

Then there is a solution of the following difference equation
Tk = f(0, Tnokit, oo, Tng1) (13)
with property (10) for n > ny.

Theorem 3.2 For each Zf;ll Ai—2=A>0and Ay, Ay, ..., A1 € [0,00)
there is a nonoscillatory solution of Eq. (5) converging to the positive equilib-

_ [A
rium T = 3 as n — o0.

Proof First, Eq. (5) can be written in the form

A A Ay -
T = L 2 NI bl —Zp ]
T, + Tp—1 Tp—1 + Tp—2 Tp—k+2 + Lp—k+1
Setting
F(xnfka Tn—k+41y -y T, anrl) = (14>

A A Ay -
:( — + A — —xnﬂ) — T

T, + Tn-1 Tn-1 + Tp—2 Tp—k+2 + Tn—k+1
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We expect the solutions of Eq. (5) have the asymptotic appropriation (11).
F= F(Spnfka Prn—k+15 -5 Pn, (pn+1) =

Ay Ay
— + + ...
(23? + at™ + b2 + atnt 4 bt2=2 2T + at" "t 4 b2 + atn 2 + b2t

-1

2% + atn—k—f—l + bt?n—2k+2 + atn—k—Q + bt2n—2k+4

— T —at"F — p?n2k,

F= ﬁ[mtk“ F AT 4 (A + A 4 4 (A + A1)+ At — At
b
+ M[Mt%+2 + AR (A 4+ A2 (Ap_g + A )t At — AP
2 2
+ % (Al AT A At At At A R 2At> + o(t*™)

ap(t) ,, bp(t?) a’? 1 1 ) k41
T {4% + 1oz (A AT+ Aot 4 Agt T At
(15)

+ Ap TR L2402 — 2(AL + Ayt 2407 b A TP A
+ 2Ak_1t—2k+3)} }t2” + o(t*™).

As mentioned earlier exists to € (0,1) such that p(tg) = 0 and 0 < 13 < t5 <
1, p(t3) < 0. Posing in (15), t =ty we obtain

bp(t%) a? -1 —1 —2
F= — | (A + Aqt Aot Aot
{ 4t(2)k + 16.T ( 1 + 1¢9 + 200 + 200 +

+ Ap 1ty " At TR 4 2A8)? — 2(A1 + Atg? + 240t .+

+ Ap 1ty T2 4 Ap_ it 4 2Ak_1t52k+3)} }tﬁ” + o(t2™).

Posing
p(t3)
B = <0
Atk
2
C= % (Ay 4+ Avtg! 4+ Aotst + Ao + o+ Aty ™+ Ayt 2 4+ 2A10)2 —

—2(A; + Aytg? +2A0t5 T+ Aty T 4 At 4 24, it P |

Therefore, we have F' = (Bb + C)2" + o(t3").
Setting

C
Hy(q) = Bg+C=0=q=—5. Hy(s) =B <0.
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We obtain that there are ¢; < ¢o and g2 > gy such that
Hto((h) > 07 Hto(qQ) < 07Q1 < go < Q2.
We assume that a # 0. If ¢, =T + atll + qot2", we obtain

qop(t)
4tk

F(@n—ka @n—k-{—ly ey @nu @n-&—l) n:Joo { + C:| t(2)n + O(t(Q)n)

With the notations
Yn =T +aty + qty", z, =T + aty + gt
We get

F(yn—k7 Yn—k+15 - Yn, yn-I—l) ~ (QIB + O)t(Q)na
F(Zn—k7 Bn—k41s +++y #ns ZTH—I) ~ (Q2B + O)t?)n

These relations show that inequalities (12) are satisfied for sufficiently large n,
where f = F + x,,_ and F is given by (14). Because the function
f(l'n,k+1, an,k+2, ceey Ly xn+1)

is continuous and nondecreasing on the interval [Z,+00). We easily have
f(z,z,..,7,Z) = &. We can apply Theorem 4.1 with I = [Z,+00) and see
that there is an ny > 0 and a solution of Eq. (5) with the asymptotics
Tp = Pn + o(td") for n > ng, where b = ¢y in $,. In particular, the solu-
: : " e A

tion converge monotonically to the positive equilibrium 7 = \/; , for n > ny.

Hence, the solution x, 4% is also such a solution when n > —k. O
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