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Abstract

We introduce the concept of relative Ritt order of entire Dirichlet
series and prove sum and product theorems. We also show that an
entire Dirichlet series and its derivative have the same relative Ritt
order (finite) under certain conditions.
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1 Introduction, Definition and Lemmas

For entire functions g1 and g2 let
G1(r) = max{|g1(z)| : |z| = r} and G2(r) = max{|g2(z)| : |z| = r}.

If g1 is non-constant then G1(r) is strictly increasing and a continuous
function of r and its inverse

G−1
1 : (|g1(0)|,∞) → (0,∞)

exists and lim
R→∞G−1

1 (R) = ∞.
Bernal [4] introduced the definition of relative order of g1 with respect

to g2, denoted by ρg2(g1), as follows:
ρg2(g1) = inf{μ > 0 : G1(r) < G2(r

μ) for all r > r0(μ) > 0}.
After Bernal, several papers on relative order of entire functions have ap-

peared in the literature where growing interest of workers on this topic has



2158 B. K. Lahiri and D. Banerjee

been noticed {see for example [1], [2], [3], [11], [12], [13], [14], [15]}.
Before we pass on, we remark that the papers {[7], [9], [10]} contains

investigations on relative order (H:K) of entire functions, but Bernal’s analysis
including subsequent studies after Bernal have little relevance to the studies
made in the above papers.

During the past decades, several authors {see for example [16],[17],[19] }
made close investigations on the properties of entire Dirichlet series related to
Ritt order. At this stage it therefore seems reasonable to define suitably the
relative Ritt order of entire Dirichlet series with respect to an entire function
and to enquire its basic properties in the new context. Proving some prelimi-
nary theorems on the relative Ritt order, we obtain sum and product theorems
and we show that the relative Ritt order (finite) of an entire function repre-
sented by Dirichlet series is the same as its derivative, under some restrictions.

Let f(s) be an entire function of the complex variable s = σ + it defined
by everywhere absolutely convergent Dirichlet series

∑∞
n=1 anesλn ...(1)

where 0 < λn < λn+1 (n ≥ 1), λn → ∞ as n → ∞ and a,
ns are complex con-

stants.
If σc and σa denote respectively the abscissa of convergence and absolute con-

vergence of (1) then in this case clearly σc = σa = ∞.
Let F (σ) = l.u.b.

−∞<t<∞ |f(σ + it)|. ...(2)

Then the Ritt order [16] of f(s), denoted by ρ(f) is given by

ρ(f) =limsup
σ→∞

loglogF (σ)
σ

.
In other words ρ(f) = inf{μ > 0 : logF (σ) < exp(σμ) for all σ > R(μ)}.

The following definition is now introduced.

Definition 1. The relative Ritt order of f(s) with respect to an entire
g(s) is defined by

ρg(f) = inf{μ > 0 : logF (σ) < G(σμ) for all large σ}
where G(r) = max{|g(s)| : |s| = r}.

Clearly ρg(f) = ρ(f) if g(s) = es.

The following analogous definition from [4] will be needed.

Definition 2. A nonconstant entire function g(s) is said to have the
property (A) if for any δ > 1 and positive σ, [G(σ)]2 ≤ G(σδ) holds where
G(σ) =max {|g(s)| : |s| = σ}.

Property (A) has been closely studied in [4] where several examples
may be found holding the property (A) as well do not hold the property (A).
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The symbols f, f1, f2 etc. will be reserved for nonconstant entire func-
tions each represented by everywhere absolutely convergent Dirichlet series of
the form (1) and g, g1, g2 etc. will stand for nonconstant entire functions. The
symbols G(r), G1(r), G2(r) etc. for the functions g, g1, g2 etc. will have the
same meaning as in the beginning of this section and F (σ), F1(σ), F2(σ) etc.
for the functions f, f1, f2 etc. will have analogous meaning as in (2).

The following known lemmas will be required in the sequel.

Lemma 1[4]. If α > 1, 0 < β < α then G(αr) > βG(r) for all large r.

Lemma 2[4]. If g is transcendental then
lim
r→∞

G(rk)
rnG(r)

= ∞
where k > 1 and n is any positive integer.

2 Preliminary Theorem

In the notations of section 1, we have the following theorem.

Theorem 1. (a) ρg(f) = limsup
σ→∞

G−1logF (σ)
σ

.
(b) If f(s) is a Dirichlet polynomial and g(s) is transcendental

then ρg(f) = 0.
(c) If f(s) is a Dirichlet polynomial and g(s) is a polynomial of

degree not less than two than ρg(f) = 0.
(d) If F1(σ) ≤ F2(σ) for all large σ, then ρg(f1) ≤ ρg(f2).
(e) If G1(σ) ≤ G2(σ) for all large σ, then ρg1(f) ≥ ρg2(f).

Proof :(a) This follows from definition.

(b) Let f be of the form f(s) =
∑n

k=1 ake
sλk . Then

F (σ) = l.u.b.
−∞<t<∞ |∑n

k=1 ake
(σ+it)λk |

≤ l.u.b.
−∞<t<∞ [

∑n
k=1 |ak|eσλk ]

≤ n. max
k=1,2,....,n|ak|eσλn , since we may clearly assume that σ is

positive
=Meσλn , say where M = n. max

k=1,2,....,n|ak| is a constant. . .(3)
On the other hand, since g(s) is transcendental, G(σ) > Kσm for all

large σ and m > 0, where K is a constant large at pleasure. We have then for
μ > 0

G(σμ) > Kσmμm

> logM + σλn , for all large σ and a fixed m > 1
≥ logF (σ) from (3).
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So for all large σ and arbitrary μ > 0, G−1logF (σ)
σ

< μ and this gives
that ρg(f) = 0.

(c) Let g(s) = b0s
m + b1s

m−1 + ..... + bm, b0 �= 0, m ≥ 2 and f(s) =
∑n

k=1 ake
sλk . Since σ clearly can be taken as positive, the inequality g(σ) >

1
2
|b0|σm may be derived for all large σ. Also, as in (b) F (σ) ≤ Meσλn for all

large σ. From the first inequality, we have for all large σ
G−1[1

2
|b0|σm] < σ.

Taking R = 1
2
|b0|σm, so that σ = ( 2R

|b0|)
1
m ,we obtain from above

G−1(R) < ( 2R
|b0|)

1
m for all large R.

We can now replace R by logF (σ), which is clearly justifiable because
logF (σ) is a continuous strictly increasing function of σ tending to ∞ { see
[6], [18] },and ultimately obtain

G−1[logF (σ)] < (2logF (σ)
|b0| )

1
m ≤ (2(logM+λnσ)

|b0| )
1
m .

Therefore ρg(f) =limsup
σ→∞

G−1(logF (σ))
σ

≤lim
σ→∞ (2. logM+λnσ)

|b0|σm )
1
m

= 0, since m ≥ 2.

(d) For arbitrary ε > 0 and for all large σ, we can write from (a)
F2(σ) < exp[G{σ(ρg(f2) + ε)}].

Since F1(σ) ≤ F2(σ) for all large σ , we obtain

ρg(f1) =limsup
σ→∞

G−1logF1(σ)
σ

≤ ρg(f2) + ε.
Since ε > 0 is arbitrary, this proves (d).

(e) We have σ ≤ G−1
1 (G2(σ)) . Writing μ = G2(σ), we obtain

G−1
2 (μ) ≤ G−1

1 (μ) and thus

ρg2(f) =limsup
σ→∞

G−1
2 logF (σ)

σ
≤limsup

σ→∞
G−1

1 logF (σ)

σ

= ρg1(f).

3 Sum and Product Theorems

In this section we assume that f1, f2 etc. are entire functions of s defined by
everywhere absolutely convergent ordinary Dirichlet series

∑∞
n=1

an

ns ,
∑∞

n=1
bn

ns

etc. The product of two such series is considered by Dirichlet product method,
which is also everywhere absolutely convergent { see [8], pp 66 }.

Theorem 2. Let g(s) be an entire function having the property (A). Then
(i) ρg(f1±f2) ≤ max{ρg(f1), ρg(f2)}, sign of equality holds when ρg(f1) �=

ρg(f2)
and (ii)ρg(f1f2) ≤ max{ρg(f1), ρg(f2)}.
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Proof :(i) We may suppose that ρg(f1) and ρg(f2) both are finite, because in
the contrary case the inequality follows immediately. We prove (i) for addition
only, because the proof for subtraction is analogous.

Let f = f1 + f2, ρ = ρg(f), ρi = ρg(fi), i = 1, 2 and ρ1 ≤ ρ2.
For arbitrary ε > 0 and for all large σ, we have from Theorem 1(a)

F1(σ) < exp[G(σ(ρ1 + ε))] ≤ exp[G(σ(ρ2 + ε))]
and F2(σ) < exp[G(σ(ρ2 + ε))].
So for all large σ

F (σ) ≤ F1(σ) + F2(σ)
≤ 2exp[G(σ(ρ2 + ε))]
< exp[G(σ(ρ2 + ε))]2, since for all x, 2 exp(x) < exp(x2)
≤ exp[G{σ(ρ2 + ε)}δ] for every δ > 1, by property (A).

Therefore G−1logF (σ)
σ

< (ρ2 + ε)δσδ−1, for all large σ.
Taking first δ → 1+0 and then limit superior as σ → ∞ and noting that

ε > 0 is arbitrary, we obtain ρ ≤ ρ2. This proves the first part of (i).
For the second part of (i), let ρ1 < ρ2 and suppose that ρ1 < μ < λ < ρ2 .

Then for all large σ
F1(σ) < exp[G(σμ)] . . . (4)

and there exists an increasing sequence {σn}, σn → ∞ such that
F2(σn) > exp[G(σnλ)] . . . (5)

for n = 1, 2, 3, ... .
Using Lemma 1, by setting α = λ

μ
, r = σμ, β = 1 + ε, 0 < ε < 1 such

that 1 < β < α, we obtain
G(λ

μ
σμ) > (1 + ε)G(σμ),i.e. G(λσ) > (1 + ε)G(σμ).

Therefore using (5) and then (4) and the fact that G(σ) > log2
ε

for all large
σ, we obtain

F2(σn) > exp[G(σnλ)]
> exp[(1 + ε)G(σnμ)]
> 2exp[G(σnμ)], for all large n
> 2F1(σn), for all large n. . . . (6)

Now F (σn) ≥ F2(σn) − F1(σn)
> F2(σn) − 1

2
F2(σn) , using (6)

= 1
2
F2(σn)

> 1
2
exp[G(σnλ)] , from (5)

> exp[(1 − ε)G(σnλ)] , for all large n.
Let ρ1 < λ1 < λ < ρ2 and 0 < ε < λ−λ1

λ
(which is clearly permissible). Using

Lemma 1, by setting α = λ
λ1

, β = 1
1−ε

, r = σλ1, we have, because 0 < β < α

G( λ
λ1

σλ1) > 1
1−ε

G(σλ1),
i.e. (1 − ε)G(σλ) > G(σλ1).
Hence for all large n , F (σn) > exp[G(σnλ1)],

i.e. G−1logF (σn)
σn

> λ1 for all large n.
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This gives ρ ≥ λ1. Since λ and λ1 both are arbitrary in the interval (ρ1, ρ2),
we have ρ ≥ ρ2 = max {ρ1, ρ2},
i.e. ρ(f1 + f2) ≥ max {ρg(f1), ρg(f2)}.
This in conjunction with the first part of (i) gives

ρ(f1 + f2) = max {ρg(f1), ρg(f2)}
which proves (i) completely.

(ii)Let f = f1f2 and the notations ρ, ρ1 and ρ2 have the analogous meanings
as in (i). If ρ1 ≤ ρ2 then for arbitrary ε > 0 and for all large σ

F (σ) ≤ F1(σ)F2(σ)
< exp[G(σ(ρ1 + ε))].exp[G(σ(ρ2 + ε))]
≤ exp[2G(σ(ρ2 + ε))]
≤ exp[G(σ(ρ2 + ε))]2

≤ exp[G(σ(ρ2 + ε))δ]
for every δ > 1, by property (A).

The above gives G−1logF (σ)
σ

≤ (ρ2+ε)δσδ−1 for all large σ. Letting δ → 1+0
and then considering the fact that ε > 0 is arbitrary, we obtain ρ ≤ ρ2 which
proves the theorem.

4 Relative Ritt order of the derivative

Theorem 3. Let f(s) be an entire function defined by the Dirichlet series (1)
having finite Ritt order ρ(f) and f ′(s) be its derivative. Then ρg(f) = ρg(f

′)
where g(s) is a transcendental entire function.

Proof : It is known {[16], p 139} that for all large values of σ and arbitrary
ε > 0

F (σ) − ε < (σ − σ0)F
′(σ) + |f(s0)| . . . (7)

where s0 = σ0 + it0 is a fixed complex number and F ′(σ) = l.u.b.
−∞<t<∞ |f ′(σ+ it)|.

The inequality (7) implies
F (σ) < σF ′(σ) + A + ε

where A is a constant. Taking logarithm, we see that for all large values of σ
logF (σ) < log(σF ′(σ)) + Bσ where Bσ → 0 as σ → ∞

< logF ′(σ) + logσ + Bσ

< logF ′(σ) + σ(ρg(f
′) + ε) + Bσ

< logF ′(σ) + σ(ρg(f
′) + 2ε)

< G[σ(ρg(f
′) + ε)] + σ(ρg(f

′) + 2ε)
< G[σ(ρg(f

′) + 2ε)] . . . (8)

because G[σ(ρg(f ′)+ε)]+σ(ρg(f ′)+2ε)
G[σ(ρg(f ′)+2ε)]

< 1 for all large σ on using {[4],(d) , p 213}
and {[5], p165}.
From (8) ρg(f) =limsup

σ→∞
G−1logF (σ)

σ
≤ ρg(f

′) + 2ε.
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Since ε > 0 is arbitrary , ρg(f) ≤ ρg(f
′).

To obtain the reverse inequality, we use the following inequality from {[16],
p139}

F ′(σ) − ε ≤ 1
δ
F (σ + δ) . . . (9)

where ε > 0 is arbitrary and δ > 0 is fixed.
So logF ′(σ) ≤ log(1

δ
F (σ + δ) + ε)

= logF (σ + δ) + log(1
δ

+ ε
F (σ+δ)

)

≤ G[(σ + δ)(ρg(f) + ε)] + log(1
δ

+ ε
F (σ+δ)

)

≤ G[(σ + δ)(ρg(f) + 2ε)] for all large σ.

Therefore ρg(f
′) =limsup

σ→∞
G−1logF ′(σ)

σ≤ ρg(f) + 2ε.
Since ε > 0 is arbitrary, ρg(f

′) ≤ ρg(f) which proves the theorem.
If we assume g(0) = 0, a simpler proof of the following theorem may be

provided which relates the Ritt order of f relative to g and to its derivative g′.

Theorem 4. Let f(s) be an entire function defined by the Dirichlet series
(1) and g(s) be an entire transcendental function with g(0) = 0, then

1
2
ρg(f) ≤ ρg′(f) ≤ ρg(f).

The following lemma is required.

Lemma 3. If g is transcendental with g(0) = 0 then for all large r and
0 < δ < 1

G(rδ) < Ḡ(r) < G(2r)
where Ḡ(r) = max {|g′(z)| : |z| = r}.

Proof : We may write
g(z) =

∫ z
0 g′(t)dt

where the line of integration is the segment from z = 0 to z = reiθ0, r > 0. Let
z1 = reiθ1 be a point such that |g(z1)| =max{|g(z)| : |z| = r}.

We then obtain
G(r) = |g(z1)| = | ∫ z1

0 g′(t)dt| ≤ rḠ(r). . . . (10)
Let C denote the circle |t−z0| = r where z0, |z0| = r is such that |g′(z0)| =

max {|g′(z)| : |z| = r} . Then

Ḡ(r) = |g′(z0)| = | 1
2πi

∫
C

g(t)
(t−z0)2

dt|
≤ 1

2π
.G(2r)

r2 .2πr = G(2r)
r

. . . . (11)
From (10) and (11) we obtain

G(r)
r

≤ Ḡ(r) ≤ G(2r)
r

. . . . (12)
From Lemma 2 it follows that G(rk) > rnG(r) for all large r and for

every positive integer n where k > 1. Replacing r by rδ and assuming k = 1
δ
,

this implies
G(rkδ) > rnδG(rδ) ≥ rG(rδ)
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where n is large enough to ensure nδ ≥ 1 and thus
G(r) > rG(rδ).

Using (12) for all large r

G(rδ) < G(r)
r

≤ Ḡ(r) ≤ G(2r)
r

.
Hence G(rδ) < Ḡ(r) < G(2r) for all large r where 0 < δ < 1.
This proves the lemma.

Proof of Theorem 4 : Since g(s) is transcendental and g(0) = 0, we have
by Lemma 3 for all large σ and 0 < δ < 1

G(σδ) < Ḡ(σ) < G(2σ)
where Ḡ(σ) = max {|g′(s)| : |s| = σ}.

By computations it follows that
1
2
G−1(σ) < Ḡ−1(σ) < [G−1(σ)]

1
δ

for all large σ. Therefore we can write for all large σ
1
2

G−1[logF (σ)]
σ

< Ḡ−1[logF (σ)]
σ

< {G−1[logF (σ)]} 1
δ

σ
, since logF (σ) is increasing

and tending to infinity as σ → ∞ { see [ 6 ] , [ 18 ] }.
Letting δ → 1 − 0, we obtain for all large σ

1
2

G−1logF (σ)
σ

< Ḡ−1logF (σ)
σ

≤ G−1logF (σ)
σ

and this gives
1
2
ρg(f) ≤ ρg′(f) ≤ ρg(f)

which proves the theorem.
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