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Abstract

We determine a sufficient condition for a function f(z) to be uni-
formly convex spirallike of order « that is also necessary when f(z) has
negative coefficients. Similar results are also obtained for corresponding

classes of spirallike functions.
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1 Introduction

Let A denote the class of all functions f(z) = z + Z a,z" defined on the unit
n=2

disk £ = {z : |z] < 1} normalized by f(0) =0, f’(0) = 1. Further, by S,(«)

we shall denote the class of spirallike function f(z) in C' and such that

Re (em%) >0, z€F

and for some a with |a| < 7/2.
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The function f(z) is convex spirallike if zf’(z) is spirallike. The function
f(2) is uniformly a-spirallike if the image of every circular arc I'z with centre
at ¢ lying in E is a-spirallike with respect to f({). The class of all uniformly
a-spirallike functions is denoted by USP(«). The function f(z) is uniformly
convex a-spiral if the image of every circular arc I'z with centre at ( lying in
FE is convex a-spirallike. The class of all uniformly convex a-spiral functions
is denoted by UCSP(«) [3]. In [3] the author obtained the analytic character-
ization for functions f in USP(«) and UCSP(«) respectively as follows:

ez = Q) f'(2)
f(z) = f(C)

fGUSP(oz)(:)Re{ }ZO,Z#C,Z,CEE (1)

(z = Of"()

feUCSP(a) < Re {em (1 + 702

)} >0,2#C(, 2, € E o <7/2
(2)
The one variable characterization for these classes is proved in [3].

Theorem 1.1 Let f € A. Then f € UCSP(«) if and only if
—ia 2f"(2) 2f"(2)

rele (1453} = [

The class of functions F(z) = zf'(z), f(z) € UCSP(«) is a subclass of the

spirallike functions and we denote it by SP,(«). In fact, the function f(z) € A
is in SPy(«) if and only if

, 2 €EFR

! !
f(2) f(z)
This condition is equivalent to
et —Z}cég) +isina el —Z}CES) +isina
Re > — 1], |a| < m/2.
cos cos

For o = 0 the classes UCSP(«) and SP,(a) respectively reduces to the classes
UCYV and Sp introduced and studied by Ronning [5].

2 Main Results

Definition 2.1 Let UCSP(a, ) be the class of functions f(z) = z—l—Z anz",
n=2

which satisfy the condition
“ia 2f"(2) 2f"(2)
refe (145075 = |5

+06, 0<pB<1.
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In what follows we give a sufficient condition for a function f to be in
UCSP(a,3).

Theorem 2.1 If Z(?n —cosa — fB)nla,| < cosa — 3 then

n=2

f(z)=z+ Zanz”, z € FEisin UCSP(a,f).
n=2

Proof By the Definition of UCSP(«, () it is sufficient if we verify the condi-

tion
2(2) (1 G
iy | = e ) P
That is, if Z;:ZS) — Re e Z;IES) < cosa — 3
We have
MG L C) 2f"(2)
re | T =T
2 Z n(n — 1)|ay,||z]"
S n=2
1— Zn|an\|z|”_1
n=2
2 i n(n —1)|a,|
S n=2
1— Zn\an\
n=2
i@n — cosa — [)n|ay,|
S n=2
1— Z nlay,|
n=2
2f"(2) ia [(2"(2)
P | ( ) ) s cosa s
only if i(Qn — cosa — fB)nla,| < cosa — B. 0

n=2



1848 C. Selvaraj and R. Geetha

Definition 2.2 Let UCSPT(«, 3) be the class of functions f(z) = z— Z an2"

which satisfy the condition

()

Theorem 2.2 Let f(z) = z2— Zan ,a, > 0. Then Z(Qn—cos a—pF)na, <

n=2

Zf”(Z)
(2)

+ 8.

cosa — (3 if and only if f(z) is in UCSPT («a, 3).

Proof In view of Theorem 2.1 we need only show that f(z) isin UCSPT(«, 3)
satisfies the coefficient inequality.
If f(z) e UCSPT(a, ) and z is real then the Definition of UCSPT(«, [3)

gives,

cosain(n — 1a,z" in (n—1)a,z"

n—2 n=2
cos o — = - B>

1-— E na,z" " 1-— E na,z" "
n=2 n=2

Let z — 1 along the real axis, then we get

cosa — 3> (14 cosa)

(cosa — 3) <1—Znan> (14 cosa) Znn—l
n=2

= cosa— 3> Z(l + cosa)(n — 1)na,
n=2

= cosa— (3 > Z(?n —cosa — ()nay,
n=2

which gives the required result. a
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Definition 2.3 A function f(z) is in SPy(«, 3) if f(2) satisfies the analytic
characterization

_ia Zf/(2> Zf,(2>
@ )

a<1, >0, when f =0, SP,(a, ) becomes SP,(c).

Re e

s

Remark 2.1 f(z) € UCSP(«) if and only if zf' € SP,(«).

Theorem 2.3 ]fz 2n—cos a)nla,| < cosa then f(z) = z+z apz",

n=2

is in UCSP(«).

Proof When 8 = 0 in Theorem 2.1 we get Theorem 2.3. a

Theorem 2.4 ]fz n — cosa)la,| < cosa then f(z) = z + Zan " s in
n=2

SP,(a).

Proof By Alexander type Theorem we get that f(z) € UCSP(«) if and only
if z2f'(2) € SPy(«).

Replacing the coefficient |a,| in Theorem 2.3 by ‘ ol we get the required
result. O

Remark 2.2 f(z) € UCSP(«,3) if and only if zf" € SP,(«, 3).

Theorem 2.5 ]fz (2n—cosa—f)|a,| < cosa— [ then f(z) = z—l—Zan ,

n=2

z € E isin SPy(«, ).

Proof By Alexander type Theorem f(z) € UCSP(«, 3) if and only if zf'(z) €
SPy(a, B).

Hence replacing |a,| in Theorem 2.1 by we get the result.

Since f(z) € UCSPT(«, ) if and only if zf( ) € SP,T(a, 3) the coefhi-
cient a,, in Theorem 2.2 can be replaced by “* to get the result for SP,T(c, 3).
O

Theorem 2.6 f(z) = z — Zan , ap, > 0 s in SPT(a, ) if and only if

[e. 9]

Z(Qn —cosa — fBa, < cosa — 3.

n=2
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3 Convolution Theorems

Let f(z2) = Z—Z a,z", a, > 0and g(z) = Z—Z b,z", b, > 0. We investigate
n=2 n=2

the nature of quasi-convolution h(z) = f(z) * g(z) = z — > 2, a,b, 2", given

that f(z) and g(z) are members of subclasses of UCSP(a, #) and SP,(«, 3).

Theorem 3.1 If f(z) =z — Zanz”, a, >0 and g(z) =z — anz”, b, >0
n=2 n=2

are elements of SP,T (o, () then (f % g)(z) = h(z) = z — > ", a,b,2" in
SP,T (o, 1) where

cosal8 + cos’ a + (3* — 6cosa + Bcosa — (] — 232
T =
2(4 —2cosa — 20+ fcosa)

0<a<l,B>0. The result is best possible.

Proof Since f(z) and ¢(z) are in SP,T(a, §) we have Z(Qn—cosa—ﬁ)an <

n=2

cosa — 3 and Z(Qn —cosa— )b, < cosa— (3. We wish to find the larget r

n=2
[eS)

such that Z(Qn — cosa — 1)ayb, < cosa — r. Equivalently we want to show

n=2
that the conditions

ZQn—cosoz—ﬁ%Sl (3)
—~ cosa — f3

and
ZQn—cosoz—ﬁbngl (@)

cosa — f3

imply that
= 2n —cosa —T
> anb, <1 (5)
~ cosa—r

for all

< cos a8 + cos? a + (32 — 6 cosa + Bcosa — (] — 23?
- 2(4 —2cosa — 26+ [cosa)

r
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From (3) and (4) and by means of Cauchy Schwarz inequality, we get that

= 2n —cosa — f3
Z cosa — f3 ¢ (6)

Hence it is enough if we prove

2n —coso —r 2n — cosa —
anb, < ﬁV%%

cosa —r cosa— 3
r<r(a,8), n=2.3,...

2n —cosa — (3 cosa —r
cosa — f3 2n —cosa —r
From (6) it follows that

Vapb, < cosa — B for all n (7)

~ 2n—cosa— (3

The above inequality is equivalent to

2
cos a—f
r+cosa COSa—m [Qn—cosa—ﬂ]
< 2 (8)
2 1 — cos a—f
2n—cos a—0

The right hand side of (8) is an increasing function of n, (n = 2,3,...). By
taking n = 2 in (8) we get

< cos a8 + cos? a + (32 — 6 cosa + Bcosa — (] — 23?
r
- 2(4 —2cosa — 20+ [cosa)

The result is sharp with equality where

cosae—f3

o) =g() =2 — P

4 —cosa—f3

Corollary 3.1 For f(z) and g(z) as in Theorem 3.1 we have

h(z) =z — i Vapbn2" € SPT (e, 3)
n=2
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Proof The result follows from Cauchy-Schwarz inequality and (6). The result
is sharp for the same function in Theorem 3.1. O

Theorem 3.2 For f(z) € SP/T(«a, £1) and g(z) € SP,T («a, £2) we have f(z)*
g(z) € SP,T (v, ) where

cos a8 + cos® a+ (313 — 6cosa) — 233,
~ 8—4dcosa—2(f + f2) + (b1 + [2) cosa

Proof Proceeding as in the proof of Theorem 3.1 we get

cos a—f3 cos a— 3
cosa+r cosa—mn [Qn—cosa—lﬂl} |:27L—COS()4—2,@2:|
< ©
1 — < cos a—[31 ) < cos a—f2 )
2n—cos a—[1 2n—cos a—f2
The right hand side of (9) is an increasing function of n = 2,3,.... Setting

n = 2 we get

cos a8 + cos® a+ 313 — 6cosa) — 23,3,
"=8 4cosa— 2(81 + B2) + (B1 + B2) cosa

O

Corollary 3.2 Let f(z),9(2),h(z) € SP,/T (o, ). Then f(z)* g(z) * h(z) €
SP,T(cv, 1) where

433 4 cos* a(38 — 4) + cos® a(32 + %)
+ cos? (3 — 332 + 603 — 80) + cos a(—43% + 2% — 483 + 64)
64 + 8% — 483 + cos' a + cos® a (8 — 8)
+cos® a(36 — 153 + 35%) + cos (80 + 505 — 123?)

ry <

Proof From Theorem 3.1 we get f(z) * g(2) € SP,T(a, ) where

< cos a8 + cos? a + (32 — 6 cosa + Bcosa — (3] — 23?
- 2(4 —2cosa— 20+ [cosa)

r

f(z) % g(2) * h(z) € SP,T(c,r;) where

< cos a(8 + cos® a+ fr — 6 cosa) — 207
,
"= 8 —dcosa—28-2r+ (B+r)cosa

substituting for » and simplifying we get the required result. a
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Theorem 3.3 Let f(z) = Z—Z anz", a, >0 and g(z) = Z—Z bn2", by, >0
n=2 n=2

be elements of UCSPT («, [3) then

f(z)*xg(2) =h(z) =2z— Zanbnz" e UCSPT(a,r)

n=2
where

3cos® a + cos? a(203 — 20) + cos (32 + 332 — 83) — 432
- 32 + (32 — 160 + cos? o + cos (63 — 16)

r

Proof From Theorem 2.2 we have for f(z) € UCSPT (a, 3).

Z(Zn —cosa — fB)na, < cosa — 3
n=2

g(z) e UCSPT(«, )
Z(?n —cosa — B)nb, < cosa — 3
n=2

Hence proceeding as in Theorem 3.1 we want to get a r which satisfies

i n(2n — cosa — r)a,by, <1
cosa—r

n=2

Using the same method we get

cosa—0 2
a—
r+cosa _COSA [Qn—cosa—ﬁ}
2 o 1— 1 cos a—f 2
n | 2n—cos a—0

This is an increasing function of n (n = 2,3,...).
By setting n = 2 we get

2
cos a—f
r+cosq Cosa—2 |:4fcosa75:|
2 o 9 _ |: cos a—f3 i|2
4—cosa—p3

or

3cos® a + cos? a2 — 20) + cos a(32 + 332 — 86) — 432
- 32+ 32 — 163 + cos? a + cos a (65 — 16)

r
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Theorem 3.4 Let f(z) € UCSPT(a, (1) and g(z) € UCSPT («, 33) then
f(z) *xg(z) €e UCSPT(a, 1) where

o cos a[32 — 4(B1 + B2) + 301 3a] + cos? a(By + Ba — 20) + 3cos® o — 431 3o
- 32 — cos (16 — 3(B1 + B2)) + cos? o — 8(f1 + [2) + 5152

Proceeding as in Theorem 3.3 we get

r

cos a—f3 cos a— 3
r 4+ cos« cos & — |:2n7cos aj,B1:| |:2n7cosaf,82:|
2 - 1— 1 ( cosa—31 ) < cos a—[32 )
n \ 2n—cosa—0B31 2n—cos a—2
Right hand side is an increasing function forn = 2,3,.... Takingn = 2 we

get the required result.

I a[32 — 4(B1 + B2) + 381 52] + cos® a(By + B2 — 20) + 3cos® a — 451 3o
- 32 — cos (16 — 3(B1 + B2)) + cos? o — 8(f1 + [2) + 5152
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